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Connected edge Detour global domination number
of a graph
A. Punitha Tharani1 and A. Ferdina2*

Abstract
In this paper, we introduce the concept of connected edge detour global domination number of a graph is
introduced. A subset D of the vertex set V (G) of a connected graph G is called a connected edge detour global
dominating set if D is an edge detour global dominating set and the induced subgraph < D > is connected.
The connected edge detour global domination number γcedg(G) of G is the minimum cardinality taken over all
connected edge detour global dominating sets in G. A connected edge detour global dominating set of cardinality
γcedg(G) is called a γcedg-set of G. We determine γcedg(G) for some standard and special graphs and its properties
are studied.
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1. Introduction
By a graph G = (V,E), we consider a finite undirected

connected graph without loops or multiple edges. The order
and size of G are denoted by n, m respectively. Edge Detour
Global Dominating graphs were introduced and studied by
Punitha Tharani and Ferdina [12]. For underlying definition
and results, see references [1-14].

Theorem 1.1. For any connected graph of order n≥ 2. Then,
2≤ dn(G)≤ γdg(G)≤ n.

Theorem 1.2. Let G be a graph of order n. Then γdg(G) = n
iff G contains only end and full vertices.

Theorem 1.3. For the path graph Pn,γedg (Pn) =
⌈ n−4

3

⌉
+

2,n≥ 5

Theorem 1.4. For the complete graph Kn,γedg (Kn)= n,n≥ 2

2. Connected Edge Detour Global
Domination Number of a Graph

Definition 2.1. A subset D of V of a connected graph G =
(V,E) is called a connected edge detour global dominating
set of G if D is an edge detour global dominating set and
the induced subgraph < D > is connected. The Connected
edge detour global domination number γcedg(G) of G is the
minimum cardinality taken over all connected edge detour
global dominating sets in G. A connected edge detour global
dominating set of cardinality γcedg(G) is called a γcedg-set of
G.

Example 2.2. Consider the graph G given in Figure 1.
Here, D1 = {v1,v4,v6}, D2 = {v1,v4,v5}, D3 = {v1,v3,v5}

are γedg-sets of G and so γedg(G) = 3. Now D5 =
{v1,v2,v3,v4}, D6 = {v1,v2,v3,v6} , D7 = {v1,v2,v5,v6} are
γcedg-set of G. Then γcedg(G) = |D5|= |D6|= |D7|= 4.
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Figure 1

Remark 2.3. Every γcedg-set is an edge detour global domi-
nating set but the converse is not true. From the above figure,
D = {v1,v4,v5} forms a γedg-set but not γcedg-set of G.

Theorem 2.4. Let G be a connected graph of order n. Then
2≤ γedg(G)≤ γcedg(G)≤ n.

Proof. Let D be an edge detour global dominating set. Every
set D needs at least two vertices so that γedg(G)≥ 2. Again,
every connected edge detour global dominating set is an edge
detour global dominating set, γcedg(G) ≥ γedg(G) since the
set of all vertices of G is always a connected edge detour
global dominating set. Therefore n ≥ γcedg(G). Hence 2 ≤
γedg(G)≤ γcedg(G)≤ n.

Remark 2.5. For a connected graph G with n≥ 2,

(i) γdg(G)≤ γcedg(G).

(ii) γedg(G)≤ γcedg(G).

(iii) Strict inequality is also true in the above relation.

(iv) From the above Example 2.2 n= 6,γedg(G)= 3, γcedg(G)
= 4, the bound (Theorem 2.4) is sharp.

Observation 2.6. (i) Path Pn of order n(n≥ 2),γcedg (Pn)=
|V (Pn)|.

(ii) Cycle Cn of order n(n≥ 3),γcedg (Cn) = |V (Cn)|−2.

(iii) Complete graph Kn of order n(n≥ 2),γcedg (Kn)
= |V (Kn)|.

(iv) complete bipartite graph Km,n.

γcedg (Km,n) =


2 if m = n = 1

|V (Km,n)|−m+1 if n≥ 2,m = 1
3 if m,n≥ 2


(v) Star graph K1,n,γcedg (K1,n) = |V (K1,n)|.

(vi) Bistar graph Bn,n,γcedg (Bn,n) = 2n+2.

(vii) Wheel graph Wn(n≥ 5),γced g (Wn) = 3.

Theorem 2.7. Every γcedg-set of a connected graph G con-
tains all the pendant vertices of G.

Proof. Let D be a connected edge detour global dominating
set of G. Then every set D contains all the pendant vertices,
since the pendant edges lie only in the detour joining the
corresponding pendant vertex with some other vertex.

Theorem 2.8. Every γcedg-set of a connected graph G con-
tains all the vertices of G has degree n−1.

Proof. Let w be a vertex of a connected graph G has degree
n−1. Then the vertex w belongs to every dominating set in
the complement Ḡ of G. since w is dominate itself in Ḡ. Then
all the full vertices of G belong to the global dominating set
of G. Hence, every γcedg-set contains all the full vertices.

Theorem 2.9. Let G be a connected graph of order n≥ 2 and
D be a γcedg-set of G. Then for any cut vertex x of G, every
component of G− x contains an element of D.

Proof. Let x be a cut vertex of a connected graph G and
D be a connected edge detour global dominating set. Let
H be one of the components of G− x. Suppose no vertex
of D belongs to H. Then any pendant vertex of G does not
belong to H (by Theorem 2.7). Therefore, H has at least
one edge, say utut+1. Since D is a γcedg-set, there exists
vertices u,w ∈ D such that utut+1 lies on some u−w detour.
P;u = u1,u2, . . .ut ,ut+1, . . . ,un = w in G or both the ends ut
and ut+1 of the edge utut+1 are in D. Suppose that utut+1 lies
on the detour P. Let Pa be the subpath of P, say u− ut and
Pb be the subpath of P, say ut −w. Since x is a cut vertex of
G, then x belongs to both Pa and Pb so that P is not a detour,
which is a contradiction to the fact. Suppose that ut and ut+1
are in D, then H contains vertices of D, which is again a
contradiction.

Theorem 2.10. Every γcedg-set of a connected graph G con-
tains all the cut vertices of G.

Proof. Let x be a cut vertex of a connected graph G of order
n ≥ 2 and D be a connected edge detour global dominating
set of G. Then G− x has more than one component, say
G1,G2, . . . ,Gi(i ≥ 2). Then γcedg-set D contains at least one
vertex from each component Gk(1 ≤ k ≤ i ) of G− x (by
Theorem 2.9). Since induced subgraph < D > is connected it
follows that x ∈ D.

Corollary 2.11. Every γcedg-set of a connected graph G con-
tains pendant vertices, full vertices and cut vertices of G.

Proof. The proof follows from Theorem 2.7, 2.8 and 2.10.

Corollary 2.12. For any tree T of n vertices, γcedg(T ) =
|V (T )|,n≥ 2.

Proof. The proof follows from Corollary 2.11.

Corollary 2.13. Let G be any connected graph with 1 pendant
vertices, m full vertices and n cut vertices. Then max{2, l +
m+n} ≤ γcedg(G)≤ n.

Proof. The proof follows from Theorem 2.4 and Corollary
2.11.

Theorem 2.14. For 3≤ j ≤ n(∀ j,n ∈ Z), there exists a con-
nected graph G of order n with γcedg(G) = j.
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Proof. Case 1: If j = n, Let G = Pn. Then by Observation
2.6 (i),γcedg(G) = j.
Case 2. If 3 = j < n, Let G =Wn. Then by Observation 2.6
(vii),γcedg(G) = j.
Case 3. 3 < j < n, Let G be a connected graph obtained from
Wn− j+3. Let V (G)=

{
v,v1,v2,v3, . . . ,vn− j+2,w1,w2, . . . ,w j−3

}
.

The graph G is shown in Figure 2.
Let V

(
Wn− j+3

)
=
{

v,v1,v2,v3, . . . ,vn− j+2
}

and w1,w2, . . . ,

Figure 2

w j−3 be the new vertices which are joining to v2. Now we have
to prove that γcedg(G)= j. Then the set D=

{
w1,w2, . . . ,w j−3

}
together with a cut vertex v2 is a subset of every γcedg-set G.
It is clear that D is a global dominating set but not an edge
detour set of G. Let D′ = D∪

{
v,v j−3

}
. Then every edge of

G lies on a detour joining a pair of vertices of D′. Clearly, the
set D′ is γedg-set and < D′ > is connected. Therefore, D′ is
a connected edge detour global dominating set of minimum
cardinality,∣∣D′∣∣= ∣∣D∪{v,v j−3

}∣∣
= |D|+

∣∣{v,v j−3
}∣∣

=
∣∣{w1,w2, . . . ,w j−3

}∣∣+ |v2|+
∣∣{v,v j−3

}∣∣
= j−3+1+2 = j.

Hence γcedg(G) = j.
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