

https://doi.org/10.26637/MJM0804/0042

Connected edge Detour global domination number of a graph

A. Punitha Tharani¹ and A. Ferdina^{2*}

Abstract

In this paper, we introduce the concept of connected edge detour global domination number of a graph is introduced. A subset D of the vertex set V(G) of a connected graph G is called a connected edge detour global dominating set if D is an edge detour global dominating set and the induced subgraph < D > is connected. The connected edge detour global domination number $\gamma_{cedg}(G)$ of G is the minimum cardinality taken over all connected edge detour global dominating sets in G. A connected edge detour global dominating set of cardinality $\gamma_{cedg}(G)$ is called a γ_{cedg} -set of G. We determine $\gamma_{cedg}(G)$ for some standard and special graphs and its properties are studied.

Keywords

Edge detour global domination number, connected edge detour global domination number.

AMS Subject Classification

05C12.

¹Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi–628001, Tamil Nadu, India.

²Research Scholar [Register Number: 19122212092006], Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi-628001, Tamil Nadu, India.

^{1,2} Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli–627012, Tamil Nadu, India.

*Corresponding author: ² aferdinafdo@gmail.com

Article History: Received 17 July 2020; Accepted 21 September 2020

©2020 MJM.

Contents

1	Introduction 1580
2	Connected Edge Detour Global Domination Number of a Graph
	References

1. Introduction

By a graph G = (V, E), we consider a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n, m respectively. Edge Detour Global Dominating graphs were introduced and studied by Punitha Tharani and Ferdina [12]. For underlying definition and results, see references [1-14].

Theorem 1.1. For any connected graph of order $n \ge 2$. Then, $2 \leq dn(G) \leq \gamma_{dg}(G) \leq n.$

Theorem 1.2. Let G be a graph of order n. Then $\gamma_{dg}(G) = n$ iff G contains only end and full vertices.

Theorem 1.3. For the path graph $P_n, \gamma_{edg}(P_n) = \left\lceil \frac{n-4}{3} \right\rceil +$ $2, n \ge 5$

Theorem 1.4. For the complete graph K_n , $\gamma_{edg}(K_n) = n, n \ge 2$

2. Connected Edge Detour Global Domination Number of a Graph

Definition 2.1. A subset D of V of a connected graph G =(V,E) is called a connected edge detour global dominating set of G if D is an edge detour global dominating set and the induced subgraph $\langle D \rangle$ is connected. The Connected edge detour global domination number $\gamma_{cedg}(G)$ of G is the minimum cardinality taken over all connected edge detour global dominating sets in G. A connected edge detour global dominating set of cardinality $\gamma_{cedg}(G)$ is called a γ_{cedg} -set of *G*.

Example 2.2. Consider the graph G given in Figure 1.

Here, $D_1 = \{v_1, v_4, v_6\}, D_2 = \{v_1, v_4, v_5\}, D_3 = \{v_1, v_3, v_5\}$ are γ_{edg} -sets of G and so $\gamma_{edg}(G) = 3$. Now $D_5 =$ $\{v_1, v_2, v_3, v_4\}, D_6 = \{v_1, v_2, v_3, v_6\}, D_7 = \{v_1, v_2, v_5, v_6\}$ are γ_{cedg} -set of G. Then $\gamma_{cedg}(G) = |D_5| = |D_6| = |D_7| = 4.$

Remark 2.3. Every γ_{cedg} -set is an edge detour global dominating set but the converse is not true. From the above figure, $D = \{v_1, v_4, v_5\}$ forms a γ_{edg} -set but not γ_{cedg} -set of G.

Theorem 2.4. Let G be a connected graph of order n. Then $2 \le \gamma_{edg}(G) \le \gamma_{cedg}(G) \le n$.

Proof. Let D be an edge detour global dominating set. Every set D needs at least two vertices so that $\gamma_{edg}(G) \ge 2$. Again, every connected edge detour global dominating set is an edge detour global dominating set, $\gamma_{cedg}(G) \ge \gamma_{edg}(G)$ since the set of all vertices of G is always a connected edge detour global dominating set. Therefore $n \ge \gamma_{cedg}(G)$. Hence $2 \le \gamma_{edg}(G) \le \gamma_{cedg}(G) \le n$.

Remark 2.5. For a connected graph G with $n \ge 2$,

- (i) $\gamma_{dg}(G) \leq \gamma_{cedg}(G)$.
- (ii) $\gamma_{edg}(G) \leq \gamma_{cedg}(G)$.
- (iii) Strict inequality is also true in the above relation.
- (iv) From the above Example 2.2 n = 6, $\gamma_{edg}(G) = 3$, $\gamma_{cedg}(G) = 4$, the bound (Theorem 2.4) is sharp.
- **Observation 2.6.** (i) Path P_n of order $n(n \ge 2)$, $\gamma_{cedg}(P_n) = |V(P_n)|$.
 - (ii) Cycle C_n of order $n(n \ge 3)$, $\gamma_{cedg}(C_n) = |V(C_n)| 2$.
- (iii) Complete graph K_n of order $n(n \ge 2)$, $\gamma_{cedg}(K_n) = |V(K_n)|$.
- (iv) complete bipartite graph $K_{m,n}$.

$$\gamma_{\text{ced}g}(K_{m,n}) = \left\{ \begin{array}{cc} 2 & \text{if } m = n = 1 \\ |V(K_{m,n})| - m + 1 & \text{if } n \ge 2, m = 1 \\ 3 & \text{if } m, n \ge 2 \end{array} \right\}$$

- (v) Star graph $K_{1,n}, \gamma_{cedg}(K_{1,n}) = |V(K_{1,n})|.$
- (vi) Bistar graph $B_{n,n}$, $\gamma_{cedg}(B_{n,n}) = 2n + 2$.
- (vii) Wheel graph $W_n (n \ge 5), \gamma_{ced g} (W_n) = 3$.

Theorem 2.7. Every γ_{cedg} -set of a connected graph G contains all the pendant vertices of G.

Proof. Let D be a connected edge detour global dominating set of G. Then every set D contains all the pendant vertices, since the pendant edges lie only in the detour joining the corresponding pendant vertex with some other vertex.

Theorem 2.8. Every $\gamma_{\text{ced}g}$ -set of a connected graph G contains all the vertices of G has degree n - 1.

Proof. Let *w* be a vertex of a connected graph *G* has degree n-1. Then the vertex w belongs to every dominating set in the complement \overline{G} of *G*. since *w* is dominate itself in \overline{G} . Then all the full vertices of *G* belong to the global dominating set of *G*. Hence, every γ_{cedg} -set contains all the full vertices. \Box

Theorem 2.9. Let G be a connected graph of order $n \ge 2$ and D be a γ_{cedg} -set of G. Then for any cut vertex x of G, every component of G - x contains an element of D.

Proof. Let x be a cut vertex of a connected graph G and D be a connected edge detour global dominating set. Let H be one of the components of G - x. Suppose no vertex of D belongs to H. Then any pendant vertex of G does not belong to H (by Theorem 2.7). Therefore, H has at least one edge, say $u_t u_{t+1}$. Since D is a γ_{cedg} -set, there exists vertices $u, w \in D$ such that $u_t u_{t+1}$ lies on some u - w detour. P; $u = u_1, u_2, \dots, u_t, u_{t+1}, \dots, u_n = w$ in G or both the ends u_t and u_{t+1} of the edge $u_t u_{t+1}$ are in D. Suppose that $u_t u_{t+1}$ lies on the detour P. Let P_a be the subpath of P, say $u - u_t$ and P_b be the subpath of P, say $u_t - w$. Since x is a cut vertex of G, then x belongs to both P_a and P_b so that P is not a detour, which is a contradiction to the fact. Suppose that u_t and u_{t+1} are in D, then H contains vertices of D, which is again a contradiction. \square

Theorem 2.10. Every γ_{cedg} -set of a connected graph G contains all the cut vertices of G.

Proof. Let *x* be a cut vertex of a connected graph *G* of order $n \ge 2$ and *D* be a connected edge detour global dominating set of G. Then G - x has more than one component, say $G_1, G_2, \ldots, G_i (i \ge 2)$. Then γ_{cedg} -set *D* contains at least one vertex from each component $G_k (1 \le k \le i)$ of G - x (by Theorem 2.9). Since induced subgraph < D > is connected it follows that $x \in D$.

Corollary 2.11. Every γ_{cedg} -set of a connected graph G contains pendant vertices, full vertices and cut vertices of G.

Proof. The proof follows from Theorem 2.7, 2.8 and 2.10. \Box

Corollary 2.12. For any tree T of n vertices, $\gamma_{cedg}(T) = |V(T)|, n \ge 2$.

Proof. The proof follows from Corollary 2.11.

Corollary 2.13. Let G be any connected graph with 1 pendant vertices, m full vertices and n cut vertices. Then $\max\{2, l + m + n\} \le \gamma_{\operatorname{ced} g}(G) \le n$.

Proof. The proof follows from Theorem 2.4 and Corollary 2.11. \Box

Theorem 2.14. For $3 \le j \le n(\forall j, n \in \mathbb{Z})$, there exists a connected graph G of order n with $\gamma_{\text{ced}g}(G) = j$.

Proof. Case 1: If j = n, Let $G = P_n$. Then by Observation 2.6 (i), $\gamma_{cedg}(G) = j$.

Case 2. If 3 = j < n, Let $G = W_n$. Then by Observation 2.6 (vii), $\gamma_{\text{ced}g}(G) = j$.

Case 3. 3 < j < n, Let *G* be a connected graph obtained from W_{n-j+3} . Let $V(G) = \{v, v_1, v_2, v_3, \dots, v_{n-j+2}, w_1, w_2, \dots, w_{j-3}\}$. The graph G is shown in Figure 2.

Let $V(W_{n-j+3}) = \{v, v_1, v_2, v_3, \dots, v_{n-j+2}\}$ and $w_1, w_2, \dots, w_{n-j+2}$

 w_{j-3} be the new vertices which are joining to v_2 . Now we have to prove that $\gamma_{\text{ced}g}(G) = j$. Then the set $D = \{w_1, w_2, \dots, w_{j-3}\}$ together with a cut vertex v_2 is a subset of every γ_{cedg} -set G. It is clear that D is a global dominating set but not an edge detour set of G. Let $D' = D \cup \{v, v_{j-3}\}$. Then every edge of G lies on a detour joining a pair of vertices of D'. Clearly, the set D' is γ_{edg} -set and < D' > is connected. Therefore, D' is a connected edge detour global dominating set of minimum cardinality,

$$\begin{aligned} |D'| &= |D \cup \{v, v_{j-3}\}| \\ &= |D| + |\{v, v_{j-3}\}| \\ &= |\{w_1, w_2, \dots, w_{j-3}\}| + |v_2| + |\{v, v_{j-3}\}| \\ &= j - 3 + 1 + 2 = j. \end{aligned}$$

Hence $\gamma_{cedg}(G) = j$.

References

- [1] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley Publishing Company, Redwood City, San Francisco Peninsula, 1990.
- [2] G. Chartrand, H. Escuadro and B. Zang, Distance in graph, Taking the long view, AKCE J. Graphs and Combin., 1(1), (2014), 1–13.
- G. Chartrand, H. Escuadro and B. Zang, Detour distance in graph, *J. Combinmath. Combin Computer*, 53(2005), 75–94.
- [4] G. Chartrand, L. Johns and P. Zang, Detour Number of a Graph, *Utilitas Mathematics*, 64(2003), 97–113.
- [5] G. Chartrand, T. W. Haynes, M. A. Henning, and P. Zhang, Detour Domination in Graphs, *Ars Combinatoria*, (2004), 149–160.

- [6] F. Harary, *Graph Theory*, Addison Wesley Publishing Company Reading Mass, 1972.
- [7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Funda-mentals of Domination in Graphs*, Marcel Dekker, Inc., NY, 1998.
- ^[8] John Adrian Bondy, Murty U.S.R. *Graph Theory*, Springer, 2009.
- ^[9] V. R Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India, 2012.
- [10] A. Mahalakshmi, K. Palani, S. Somasundaram, Edge Detour Domination Number of Graphs, *Proceedings of International Conference on Recent Trends in Mathematical Modeling*, 6(2016), 135–144.
- [11] A. Punitha Tharani and A. Ferdina, Detour Global Domination Number of Some Standard And Special Graphs, *International Journal of Advanced Science and Technol*ogy, 29, 185–189.
- [12] A. Punitha Tharani and A. Ferdina, Edge Detour Global Domination Number of a Graph, *Mukt Shabd Journal*, 9(9)(2020), 137–143.
- [13] E. Sampathkumar, The Global Domination Number of a Graph, J. Math. Phys. Sci, 23(1989), 377–385.
- [14] J. Vijaya Xavier parthipan, C. Caroline Selvaraj, Connected Detour Domination Number of Some Standard Graphs, *Journal of Applied Science and Computations*, 5(11), 486–489).

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******