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Abstract
Characterizations of Anti-fuzzy EPWI-ideals of a Lattice pseudo W-algebras are established. The notions of
anti-fuzzy CCPWI-ideal and anti-fuzzy EPWI-ideal are introduced. Several examples and some of their properties
are investigated. Moreover, the connection between anti-fuzzy EPWI-ideal and EPWI-ideal are obtained.
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1. Introduction
The notion of fuzzy ideal has been introduced in many

algebraic structures such as lattice, rings and algebras. The
concept of fuzzy sets formulated by Zadeh [10], which can
to study the basic logic framework of fuzzy set theory. The
concept of an anti-fuzzy subgroups of groups was introduced
by Biswas [1] in 1990. The concepts of W-algebras (Wajsberg
algebras) was presented by Mordchaj Wajsberg [9]. Ceterchi
Rodica [2] introduced the concept of lattice structure pseudo
W-algebras. In their paper [8] introduced on fuzzy EPWI-
ideals and obtained their properties with illustrations.

In this paper, we introduce notions of anti-fuzzy CCPWI-
ideal and anti-fuzzy EPWI-ideal. We investigate these ideals
and the properties of anti-fuzzy EPWI-ideal of lattice pseudo
W-algebras are provided.

2. Preliminaries
This part refers to the required earlier information, includ-

ing basic definitions and results of Anti-fuzzy EPWI-ideals
of lattice pseudo W -algebras.

Definition 2.1 ([7]). Let M be a lattice pseudo W-algebra.
Then K 6= φ ⊂M is called a completely closed PWI-ideal
(CCPWI-ideal) of M , if it satisfied the following axioms for
all p,q ∈ K.

(i) 0 ∈ K

(ii) (p→ q)∼,(p q)− ∈ K,q ∈ K implies p ∈ K.

Definition 2.2 ([10]). Let M be a set, then a function δ :
M → [0,1] is called a fuzzy subset on M for each x ∈M ,
the value of δ (x) describes a degree of membership of x in δ .

Definition 2.3 ([10]). Let δ be a fuzzy set in M , then for
β ∈ [0,1], the set δβ = {x ∈M /δ (x)≥ β} is called a level
subset of δ .

Definition 2.4 ([10]). Let δ and λ be a non-empty two fuzzy
subsets of M . Then δ is called a fuzzy subset of λ if δ (p)≤
λ (p) for all p ∈M .

Definition 2.5 ([10]). Let δ and λ be two fuzzy subsets in
M , then
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(i) (δ ∩λ )(p) = min{δ (p),λ (p)} for all p ∈M

(ii) (δ ∪λ )(p) = max{δ (p),λ (p)} for all p ∈M ,

where, (δ ∩λ ) and (δ ∪λ ) are fuzzy sets in M . In general, if
{λ−i, i ∈ ψ} is a family of fuzzy sets in M , then ∩i∈ψ λi(p) =
inf{λi(p)/i ∈ ψ} for all p∈M and

⋃
i∈ψ λi(p)= sup{λi(p)/

i∈ψ} for all p∈M . Where ψ is the index set. Then for more
preliminaries the references [2,3],[6-8].

Definition 2.6 ([8]). Let M be a lattice pseudo W-algebra.
Let K be a non-empty subset of M which is not necessary an
ideal of M , a subset N of M is called an extended PWI-
ideal (EPWI− ideal) of M , if it satisfied

(i) K is a subset of N

(ii) 0 ∈N

(iii) For all p ∈M ,q ∈ K then (p→ q)∼,(p q)− ∈ K
implies p ∈N .

Definition 2.7 ([8]). Let M be a lattice pseudo W-algebra.
Then the fuzzy subset λ of M is called a fuzzy completely
closed PWI-ideal (fuzzy CCPWI-ideal) of M , if it satisfied
the following axioms for all p,q ∈M

(i) λ (0)≥ λ (p)

(ii) λ (p)≥min{λ ((p→ q)∼) ,λ ((p q)−) ,λ (q)}.

Definition 2.8 ([8]). Let δ and λ be fuzzy subsets of M , then
λ is called fuzzy extended PWI-ideal (fuzzy EPWI-ideal ) of
M , if it satisfied the following axioms for all p,q ∈M

(i) δ is a fuzzy subset of λ

(ii) λ (0)≥ λ (p)

(iii) λ (p)≥min{δ ((p→ q)∼) ,δ ((p q)−) ,δ (q)}.

3. Anti-fuzzy EPWI-ideal of lattice pseudo
W -algebras

In this section, we introduce the notions of anti-fuzzy
CCPWI-ideal and anti- fuzzy EPWI-ideal. Further, we inves-
tigate these ideals and the properties of anti-fuzzy EPWI-ideal
of lattice pseudo W -algebras are provided.

Definition 3.1. Let M be a lattice pseudo W-algebra. Then
the fuzzy subset δ of M is called an anti-fuzzy CCPWI-ideal
of M , if it satisfies the following axioms for all p,q ∈M

(i) δ (0)≤ δ (p)

(ii) δ (p)≤max{δ ((p→ q)∼) ,δ ((p∼ q)−) ,δ (q)}.

Example 3.2. Consider a set M = {0,e, f ,g,1}. Define a
partial ordering ” ≤ ”on M , such that 0 ≤ e ≤ f ≤ g ≤ 1
with the following tables (1),(2),(3) and (4).

Table: 1
x x−

0 1
e f
f e
g e
1 0

Table: 2
→ 0 e f g 1
0 1 1 1 1 1
e f 1 1 1 1
f e e 1 1 1
g e e f 1 1
1 0 e f g 1

Table: 3
x x∼

0 1
e g
f e
g f
1 0

Table: 4
 0 e f g 1
0 1 1 1 1 1
e g 1 1 1 1
f e e 1 1 1
g f e f 1 1
1 0 e f g 1

Then {M ,V,∧,−,∼,−→, ,0,1} is a lattice pseudo W-
algebra and consider the fuzzy subsets δ1 and δ2 on M as,

δ1(x) =
{

0.2 if x = 0,e
0.8 if x = f ,g,1.

Then δ1(x) is an anti-fuzzy CCPWI− ideal of M , but

δ2(x) =
{

0.3 if x = 0,1
0.7 if x = e, f ,g.

Then δ2(x) is not an anti-fuzzy CCPWI-ideal of M since,
δ2(e)≤max{δ2 ((e→ 1)∼) ,δ2 ((e 1)−) ,δ2(1)}

δ2(e)≤max{δ2(0),δ2(0),δ2(1)}⇒ 0.76 0.3.

Thus δ2(e)6max{δ2 ((e→ 1)∼) ,δ2 ((e 1)−) ,δ2(1)}.

Definition 3.3. Let δ and ϕ be fuzzy subsets of M , then ϕ

is called an anti-fuzzy EPWI-ideal of M , if it satisfies the
following axioms for all p,q ∈M .

(i) ϕ is a fuzzy subset of δ

(ii) ϕ(0)≤ ϕ(p)

(iii) ϕ(p)≤max{δ ((p→ q)∼) ,δ ((p q)−) ,δ (q)}.

Example 3.4. Consider a set M = {0,m,n,1}. Define a par-
tial ordering ” ≤ ” on M , such that 0 ≤ m ≤ 1;0 ≤ n ≤ 1
with the following tables (5),(6),(7) and (8).

Table: 5
x x−

0 1
m n
n m
1 0

Table: 6
→ 0 m n 1
0 1 1 1 1
m n 1 1 1
n m n 1 1
1 0 m n 1

Then {M ,∨,∧,−,∼,→, ,0,1} is a lattice pseudo W-
algebra. Consider the fuzzy subsets δ and ϕ on M as,

δ (x)=
{

0.8 if x = 0
0.6 if x = m,n,1 , ϕ(x)=

{
0.2 if x = 0
0.5 if x = m,n,1
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Table: 7
x x∼

0 1
m n
n m
1 0

Table: 8
 0 m n 1
0 1 1 1 1
m n 1 1 1
n m m 1 1
1 0 m n 1

Then, ϕ is an anti-fuzzy EPWI-ideal of M related to δ .

Example 3.5. Consider a set M = {0,c,d,1}. Define a par-
tial ordering ” ≤ ” on M , such that 0 ≤ c ≤ 1;0 ≤ d ≤ 1
with the following tables (9),(10),(11) and (12). Then,

Table: 9
x x−

0 1
c d
d c
1 0

Table: 10
→ 0 c d 1
0 1 1 1 1
c d 1 1 1
d c c 1 1
1 0 c d 1

Table: 11
x x∼

0 1
c d
d c
1 0

Table: 12
 0 c d 1
0 1 1 1 1
c d 1 1 1
d c c 1 1
1 0 c d 1

{M ,V,Λ,−,∼,→, ,0,1} is a lattice pseudo W-algebra.
Consider the fuzzy subsets δ and ϕ on M as,

δ (x) =

 0.5 if x = 0
0.7 if x = c,d
0.9 if x = 1

, ϕ(x) =
{

0.2 if x = 0,1
0.6 if x = c,d

Then, ϕ is an anti-fuzzy EPWI-ideal of M related to δ .
But, ϕ is not an anti-fuzzy CCPWI- ideal. since, ϕ(d) ≤
max{ϕ ((d→ 1)∼) ,ϕ ((d 1)−) ,ϕ(1)}⇒ 0.6 
 0.2.
Next, we show that the union of two anti-fuzzy EPWI-ideals
is also be an anti-fuzzy EPWI− ideal from the example given
below.

Example 3.6. In Example 3.4, consider the fuzzy subsets
δ1,δ2 and ϕ1,ϕ2 on M as,

δ1(x) =

 0.3 if x = 0
0.6 if x = m
0.9 if x = n,1

, ϕ1(x) =

 0.2 if x = 0
0.5 if x = m
0.7 if x = n,1

δ2(x) =

 0.3 if x = 0
0.7 if x = n
0.8 if x = m,1

, ϕ2(x) =

 0.1 if x = 0
0.5 if x = n
0.7 if x = m,1

Then, ϕ1 and ϕ2 are an anti-fuzzy EPWI-ideal of M related
to δ1 and δ2 respectively.

δ1∪δ2(x)=


0.3 if x = 0
0.6 if x = m
0.7 if x = n
0.9 if x = 1

,ϕ1∪ϕ2(x)=

 0.2 if x = 0
0.5 if x = m,n
0.7 if x = 1

And also ϕ1∪ϕ2 is an anti-fuzzy EPWI-ideal of A related to
δ1∪δ2. Since,

β1∪β2(1)≤max{δ1∪δ2 ((1→ n)∼) ,δ1∪δ2(
(1 n)−

)
,δ1∪δ2(n)

}
≤max{δ1∪δ2(m),δ1∪δ2(m),

δ1∪δ2(n)}= 0.7 = 0.7.

Proposition 3.7. Let {ϕi/(i ∈ ψ)} be a family of anti-fuzzy
EPWI-ideal of M related to a fuzzy subset δ of M . Then
∪i∈ψ βi is an anti-fuzzy EPWI-ideal of M related to δ .

Proof. Let {ϕi/(i ∈Ψ)} be a family of anti-fuzzy EPWI-
ideal of M ,

(i) Let p ∈M , If ϕi is a fuzzy subset of δ for all i ∈ ψ.
Then, we have ϕi(p) ≤ δ (p) for all i ∈ ψ Thus, sup
{ϕi(p)/i ∈Ψ} ≤ µ(p) and ∪i∈ψ ϕi(p)≤ µ(p). Hence,
we get ∪i∈ψ ϕi is a fuzzy subset of δ .

(ii) Let p ∈M , then ∪i∈Ψϕi(0) = sup{ϕi(0)/i ∈ ψ} ≤
ϕ(p), since ϕi(0)≤ ϕ(p) for all i ∈ ψ .

(iii) Let p,q ∈M . Then, we have

∪i∈ψ ϕi(p) = sup{ϕi(p)/i ∈ ψ}
≤ sup

{
δ ((p→ q)∼) ,δ

(
(p q)−

)
,δ (q)

}
.

Since,

ϕi(p) = sup{ϕi(p)/i ∈ ψ}
≤ sup

{
δ ((p→ q)∼) ,δ

(
(p q)−

)
,δ (q)

}
for all i ∈ ψ

Ui∈ψ ϕi ≤ sup
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
.

Therefore, ∪i∈ψ ϕi is an anti-fuzzy EPWI-ideal of M related
to δ .

Proposition 3.8. Let M be a lattice pseudo W-algebra, δ

and ϕ be fuzzy subsets of M and also ϕ is an anti-fuzzy
EPWI-ideal of M related to δ if and only if the level subset
δα is an EPWI-ideal of M related to ϕα for all α ∈ [0,ϕ(0)],
ϕ(0) = infx∈M ϕ(p).

Proof. Let ϕ be an anti-fuzzy EPWI-ideal of M related to δ

and α ∈ [0,ϕ(0)].
To prove: δα is an EPWI-ideal of M related to ϕα

(i) It is clear that ϕα ⊆ δα and ϕ(0)≤ α implies 0 ∈ ϕα .

(ii) Let p,q ∈M , such that (p→ q)∼,(p q)− ∈ ϕα and
q ∈ ϕα implies δ ((p→ q)∼) ≤ α,δ ((p q)−) ≤ α

and δ (q)≤ α .

So max{δ ((p→ q)∼) ,δ ((p q)−) , δ (q)} ≤ α .
But

ϕ(p)≤max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
.

Since ϕ is an anti-fuzzy EPWI-ideal of M related to δ . There-
fore, ϕ(p)≤ α implies x ∈ δα . Hence, δα is an EPWI-ideal
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of M related to ϕα .
Conversely,
Let δα be an EPWI-ideal of M related to ϕα for all α ∈
[0,ϕ(0)],ϕ(0) = x∈M infϕ(x) To prove, ϕ is an anti-fuzzy
EPWI-ideal of M related to δ .

(i) Let p ∈M and α = ϕ(p)⇒ p ∈ ϕα implies p ∈ δα ,
since ϕα ⊆ δα is an EPWI-ideal ofM , so that ϕ(p)≤
α ⇒ ϕ(p)≤ δ (p)⇒ ϕ ⊆ δ .

(ii) It is clear that ϕ(0)≤ ϕ(p) for all p ∈M .

(iii) Let p,q ∈M , such that

max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
= α.

implies δ ((p→ q)∼)≤α,δ ((p q)−)≤α and δ (q)
≤ α ⇒ (p→ q)∼,(p q)− ∈ ϕα and q ∈ ϕα implies
p ∈ δα since δα be an EPWI-ideal of M related to ϕα .
So that, ϕ(p)≤ α implies that

ϕ(p)≤max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
.

Therefore, ϕ is an anti-fuzzy EPWI-ideal of M related to
δ .

Note 3.9. Let ϕ be a fuzzy subset of lattice pseudo W-algebra
of M , the set {p ∈M /ϕ(p) = ϕ(0)} is denoted by Mϕ .

Proposition 3.10. Let M be a lattice pseudo W-algebra. If
ϕ is an anti-fuzzy EPWI-ideal related to δ such that ϕ(0) =
δ (0), then the set Mδ is an EPWI-ideal of M related to Mϕ .

Proof. Let ϕ be an anti fuzzy EPWI-ideal of M related to δ .

(i) Since ϕ(0) = δ (0) and ϕ(p) ≤ δ (p) for all p ∈M
implies Mϕ is a subset of Mδ .

(ii) Let (p→ q)∼,(p q)− ∈Mϕ and q ∈Mϕ .

Then, we have δ ((p→ q)∼) = δ ((p q)−) = δ (q) = δ (0).
Thus, max{δ ((p→ q)∼) ,δ ((p q)−) ,δ (q)}= δ (0). But,
ϕ(p)≤max{δ ((p→ q)∼) ,δ ((p q)−) ,δ (q)}= δ (0).

Then, ϕ(p)= δ (0) implies ϕ(p)=ϕ(0)⇒ p∈Mδ . Hence,
Mδ is an EPWI-ideal of M related to Mϕ .

Note 3.11. Let ϕ be a fuzzy subset of a lattice pseudo W-
algebra of M , then ϕ ′ is defined to be ϕ ′(p) = ϕ(p)+1−
ϕ(0) for all p ∈M .

Proposition 3.12. Let δ and ϕ be fuzzy subsets of lattice
pseudo W-algebra of M such that ϕ(0) = δ (0). Then ϕ is
an anti-fuzzy EPWI-ideal of M related to δ if and only if ϕ ′

is an anti-fuzzy EPWI-ideal of M related to δ ′.

Proof. Let ϕ be an anti-fuzzy EPWI-ideal of M related to δ .

(i) Let p∈M then ϕ(p)≤ δ (p) implies ϕ(p)+1−ϕ(0)≤
ϕ(p)+1−ϕ(0). Then, we have ϕ ′(p)≤ δ ′(p). There-
fore ϕ ′ is a fuzzy subset of δ ′.

(ii) ϕ ′(0)=ϕ(0)+1−ϕ(0)⇒ϕ ′(0)= 1⇒ϕ ′(0)≤ϕ ′(p)
for all p ∈M .

(iii) Let p,q ∈M then

ϕ
′(p) =ϕ(p)+1−ϕ(0)

≤max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
+1−δ (0)

≤max
{

δ ((p→ q)∼)+1−δ (0),δ
(
(p q)−

)
+1−δ (0),δ (q)+1−δ (0)}

≤max
{

δ
′ ((p→ q)∼) ,δ ′

(
(p q)−

)
,δ ′(q)

}
ϕ
′(p)≤max

{
δ
′ ((p→ q)∼) ,δ ′

(
(p q)−

)
,δ ′(q)

}
.

Hence ϕ ′ is an anti-fuzzy EPWI-ideal of M related to δ ′.
Conversely,

(i) Let ϕ ′ is an anti-fuzzy EPWI-ideal of M related to δ ′.
Then we have ϕ ′ is a fuzzy subset of δ ′ and ϕ ′(p) ≤
δ ′(p) for all p ∈M . Thus, ϕ(p)+1−ϕ(0)≤ ϕ(p)+
1−ϕ(0) for all p∈M and ϕ(p)≤ µ(p) for all p∈M
since, ϕ(0) = δ (0). Therefore, we have ϕ is a fuzzy
subset of δ .

(ii) Let p ∈M then ϕ ′(0)≤ δ ′(p) implies ϕ(0)≤ δ (p).

(iii) Let p,q ∈M then

ϕ
′(p)≤max

{
δ
′ ((p→ q)∼) ,δ ′

(
(p q)−

)
,δ ′(q)

}
ϕ
′(p)≤max

{
δ ((p→ q)∼)+1−δ (0),δ

(
(p q)−

)
+1−δ (0),δ (q)+1−δ (0)}

ϕ
′(p)≤max

{
δ ((p→ q)∼) ,δ

(
(p q)−

)
,δ (q)

}
+1−δ (0)

ϕ(p)≤max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
.

Hence ϕ is an anti-fuzzy EPWI-ideal of M related to δ .

Note 3.13. Let ϕ be a fuzzy subset of lattice pseudo W-
algebra of M , then the set {p∈M /ϕ(v)≤ ϕ(p)} is denoted
by (ϕ(v))∗.

Proposition 3.14. Let M be a lattice pseudo W-algebra and
v ∈M . If ϕ is an anti-fuzzy EPWI-ideal of M related to δ

such that ϕ(v) = δ (v), then (δ (v))∗ is an EPWI-ideal of M
related to (ϕ(v))∗.

Proof. Let ϕ is an anti fuzzy EPWI-ideal of M related to
δ . To prove that (δ (v))∗ is an EPWI-ideal of M related to
(ϕ(v))∗.

(i) If p ∈ (ϕ(v))∗ implies ϕ(v) ≤ ϕ(p) ⇒ δ (v) ≤
δ (p), since ϕ(v) = δ (v) and ϕ(p)≤ δ (p).

(ii) since ϕ(0)≤ ϕ(v) implies 0 ∈ (ϕ(v))∗.
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(iii) If p ∈M and q ∈ (ϕ(v))∗ such (p→ q)∼,(p q)− ∈
(ϕ(v))∗ and q ∈ (ϕ(v))∗ implies, then, we have

δ ((p→ q)∼)≤ ϕ(v),δ
(
(p q)−

)
≤ ϕ(v)

and δ (q)≤ ϕ(v). Thus,

ϕ(v)≥ δ ((p→ q)∼) ,ϕ(v)≥ δ
(
(p q)−

)
and ϕ(v)≥ δ (q). Therefore,

ϕ(v)≥max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
.

But,

ϕ(p)≤max
{

δ ((p→ q)∼) ,δ
(
(p q)−

)
,δ (q)

}
.

Then, we have

ϕ(v)≤ ϕ(p)⇒ δ (w)≤ δ (p)⇒ p ∈ (δ (v))∗.

Hence, (µ(v))∗ is an EPWI-ideal of M related to
(ϕ(v))∗.

4. Conclusion
In this paper, we have discussed some representations of

anti-fuzzy CCPWI-ideal and anti-fuzzy EPWI-ideal of lattice
pseudo W -algebras. We show that the connection between
anti-fuzzy EPWI-ideal and EPWI-ideal. This idea can further
be generalized to intuitionistic fuzzy EPWI-ideal for new
results in our future work.
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