

https://doi.org/10.26637/MJM0804/0044

On anti-fuzzy EPWI-ideals of lattice pseudo W-algebras

A. Ibrahim¹ and M. Indhumathi^{2*}

Abstract

Characterizations of Anti-fuzzy EPWI-ideals of a Lattice pseudo W-algebras are established. The notions of anti-fuzzy CCPWI-ideal and anti-fuzzy EPWI-ideal are introduced. Several examples and some of their properties are investigated. Moreover, the connection between anti-fuzzy EPWI-ideal and EPWI-ideal are obtained.

Keywords

CCPWI-ideal, EPWI-ideal, fuzzy CCPWI-ideal, fuzzy EPWI-ideal, anti-fuzzy CCPWI- ideal, anti-fuzzy EPWI-ideal and lattice pseudo W-algebras.

AMS Subject Classification

06B10, 03E72, 03G10.

¹PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai – 622001, Tamil Nadu, India.

² Research Scholar, PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai–622 001, Tamil Nadu, India.

²Department of Mathematics, Rathnavel Subramaniam College of Arts and Science, Sulur-641402, Coimbatore, Tamil Nadu, India.

^{1,2} Affiliated to Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India.

*Corresponding author: ¹ ibrahimaadhil@yahoo.com; ²indumathi@rvsgroup.com

Article History: Received 21 July 2020; Accepted 19 September 2020

Contents

1	Introduction1587
2	Preliminaries1587
3	Anti-fuzzy <i>EPWI</i> -ideal of lattice pseudo <i>W</i> -algebras 1588
4	Conclusion 1591
	Beferences 1591

1. Introduction

The notion of fuzzy ideal has been introduced in many algebraic structures such as lattice, rings and algebras. The concept of fuzzy sets formulated by Zadeh [10], which can to study the basic logic framework of fuzzy set theory. The concept of an anti-fuzzy subgroups of groups was introduced by Biswas [1] in 1990. The concepts of W-algebras (Wajsberg algebras) was presented by Mordchaj Wajsberg [9]. Ceterchi Rodica [2] introduced the concept of lattice structure pseudo W-algebras. In their paper [8] introduced on fuzzy EPWIideals and obtained their properties with illustrations.

In this paper, we introduce notions of anti-fuzzy CCPWIideal and anti-fuzzy EPWI-ideal. We investigate these ideals and the properties of anti-fuzzy EPWI-ideal of lattice pseudo W-algebras are provided.

2. Preliminaries

©20 MJM.

This part refers to the required earlier information, including basic definitions and results of Anti-fuzzy *EPWI*-ideals of lattice pseudo *W*-algebras.

Definition 2.1 ([7]). Let \mathscr{M} be a lattice pseudo W-algebra. Then $K \neq \phi \subset \mathscr{M}$ is called a completely closed PWI-ideal (CCPWI-ideal) of \mathscr{M} , if it satisfied the following axioms for all $p, q \in K$.

(i)
$$0 \in K$$

(ii) $(p \rightarrow q)^{\sim}, (p \rightsquigarrow q)^{-} \in K, q \in K \text{ implies } p \in K.$

Definition 2.2 ([10]). Let \mathscr{M} be a set, then a function δ : $\mathscr{M} \to [0,1]$ is called a fuzzy subset on \mathscr{M} for each $x \in \mathscr{M}$, the value of $\delta(x)$ describes a degree of membership of x in δ .

Definition 2.3 ([10]). Let δ be a fuzzy set in \mathcal{M} , then for $\beta \in [0,1]$, the set $\delta_{\beta} = \{x \in \mathcal{M} / \delta(x) \ge \beta\}$ is called a level subset of δ .

Definition 2.4 ([10]). Let δ and λ be a non-empty two fuzzy subsets of \mathcal{M} . Then δ is called a fuzzy subset of λ if $\delta(p) \leq \lambda(p)$ for all $p \in \mathcal{M}$.

Definition 2.5 ([10]). Let δ and λ be two fuzzy subsets in \mathcal{M} , then

- (i) $(\delta \cap \lambda)(p) = \min\{\delta(p), \lambda(p)\}$ for all $p \in \mathcal{M}$
- (*ii*) $(\delta \cup \lambda)(p) = \max{\{\delta(p), \lambda(p)\}}$ for all $p \in \mathcal{M}$,

where, $(\delta \cap \lambda)$ and $(\delta \cup \lambda)$ are fuzzy sets in \mathcal{M} . In general, if $\{\lambda_{-}i, i \in \Psi\}$ is a family of fuzzy sets in \mathcal{M} , then $\bigcap_{i \in \Psi} \lambda_i(p) = \inf\{\lambda_i(p)/i \in \Psi\}$ for all $p \in \mathcal{M}$ and $\bigcup_{i \in \Psi} \lambda_i(p) = \sup\{\lambda_i(p)/i \in \Psi\}$ for all $p \in \mathcal{M}$. Where Ψ is the index set. Then for more preliminaries the references [2,3],[6-8].

Definition 2.6 ([8]). Let \mathscr{M} be a lattice pseudo W-algebra. Let K be a non-empty subset of \mathscr{M} which is not necessary an ideal of \mathscr{M} , a subset \mathscr{N} of \mathscr{M} is called an extended PWI-ideal (EPWI- ideal) of \mathscr{M} , if it satisfied

- (i) K is a subset of \mathcal{N}
- (ii) $0 \in \mathcal{N}$
- (iii) For all $p \in \mathcal{M}, q \in K$ then $(p \to q)^{\sim}, (p \rightsquigarrow q)^{-} \in K$ implies $p \in \mathcal{N}$.

Definition 2.7 ([8]). Let \mathscr{M} be a lattice pseudo W-algebra. Then the fuzzy subset λ of \mathscr{M} is called a fuzzy completely closed PWI-ideal (fuzzy CCPWI-ideal) of \mathscr{M} , if it satisfied the following axioms for all $p, q \in \mathscr{M}$

- (*i*) $\lambda(0) \geq \lambda(p)$
- (*ii*) $\lambda(p) \ge \min \{\lambda((p \to q)^{\sim}), \lambda((p \to q)^{-}), \lambda(q)\}.$

Definition 2.8 ([8]). Let δ and λ be fuzzy subsets of \mathcal{M} , then λ is called fuzzy extended PWI-ideal (fuzzy EPWI-ideal) of \mathcal{M} , if it satisfied the following axioms for all $p, q \in \mathcal{M}$

- (i) δ is a fuzzy subset of λ
- (*ii*) $\lambda(0) \geq \lambda(p)$
- (*iii*) $\lambda(p) \ge \min \{ \delta((p \to q)^{\sim}), \delta((p \to q)^{-}), \delta(q) \}.$

3. Anti-fuzzy *EPWI*-ideal of lattice pseudo *W*-algebras

In this section, we introduce the notions of anti-fuzzy *CCPWI*-ideal and anti- fuzzy *EPWI*-ideal. Further, we investigate these ideals and the properties of anti-fuzzy *EPWI*-ideal of lattice pseudo *W*-algebras are provided.

Definition 3.1. Let \mathscr{M} be a lattice pseudo W-algebra. Then the fuzzy subset δ of \mathscr{M} is called an anti-fuzzy CCPWI-ideal of \mathscr{M} , if it satisfies the following axioms for all $p, q \in \mathscr{M}$

- (*i*) $\delta(0) \leq \delta(p)$
- (*ii*) $\delta(p) \leq \max \{ \delta((p \to q)^{\sim}), \delta((p \sim q)^{-}), \delta(q) \}.$

Example 3.2. Consider a set $\mathcal{M} = \{0, e, f, g, 1\}$. Define a partial ordering " \leq "on \mathcal{M} , such that $0 \leq e \leq f \leq g \leq 1$ with the following tables (1),(2),(3) and (4).

Ta	uble: 1			ŗ	Table	e: 2				
Х	<i>x</i> ⁻		\rightarrow	0	e	f	g	1		
0	1		0	1	1	1	1	1		
e	f		e	f	1	1	1	1		
f	e		f	e	e	1	1	1		
g	e		g	e	e	f	1	1		
1	0		1	0	e	f	g	1		
Τa	uble: 3		Table: 4							
Х	x^{\sim}		$\sim \rightarrow$	0	e	f	g	1		
0	1		0	1	1	1	1	1		
e	g		e	g	1	1	1	1		
f	e		f	e	e	1	1	1		
g	f		g	f	e	f	1	1		
1	0]	1	0	е	f	σ	1		

Then $\{\mathcal{M}, \mathbf{V}, \wedge, -, \sim, \longrightarrow, \infty, 0, 1\}$ is a lattice pseudo Walgebra and consider the fuzzy subsets δ_1 and δ_2 on \mathcal{M} as,

$$\delta_1(x) = \begin{cases} 0.2 & \text{if } x = 0, e \\ 0.8 & \text{if } x = f, g, 1 \end{cases}$$

Then $\delta_1(x)$ is an anti-fuzzy CCPWI- ideal of \mathcal{M} , but

$$\delta_2(x) = \begin{cases} 0.3 & \text{if } x = 0, 1\\ 0.7 & \text{if } x = e, f, g. \end{cases}$$

Then $\delta_2(x)$ is not an anti-fuzzy CCPWI-ideal of \mathscr{M} since, $\delta_2(e) \leq \max \{\delta_2((e \to 1)^{\sim}), \delta_2((e \rightsquigarrow 1)^{-}), \delta_2(1)\}$

$$\delta_2(e) \le \max \left\{ \delta_2(0), \delta_2(0), \delta_2(1) \right\} \Rightarrow 0.7 \le 0.3.$$

Thus $\delta_2(e) \leq \max \{ \delta_2((e \to 1)^{\sim}), \delta_2((e \rightsquigarrow 1)^{-}), \delta_2(1) \}.$

Definition 3.3. Let δ and φ be fuzzy subsets of \mathcal{M} , then φ is called an anti-fuzzy EPWI-ideal of \mathcal{M} , if it satisfies the following axioms for all $p, q \in \mathcal{M}$.

- (i) φ is a fuzzy subset of δ
- (ii) $\varphi(0) \leq \varphi(p)$
- (*iii*) $\varphi(p) \le \max \{ \delta((p \to q)^{\sim}), \delta((p \to q)^{-}), \delta(q) \}.$

Example 3.4. Consider a set $\mathcal{M} = \{0, m, n, 1\}$. Define a partial ordering " \leq " on \mathcal{M} , such that $0 \leq m \leq 1; 0 \leq n \leq 1$ with the following tables (5),(6),(7) and (8).

Tal	ole: 5	Table: 6					
X	<i>x</i> ⁻	\rightarrow 0 m n					
0	1	0	1	1	1	1	
m	n	m	n	1	1	1	
n	m	n	m	n	1	1	
1	0	1	0	m	n	1	

Then $\{\mathcal{M}, \lor, \land, -, \sim, \rightarrow, \rightsquigarrow, 0, 1\}$ is a lattice pseudo Walgebra. Consider the fuzzy subsets δ and φ on \mathcal{M} as,

$$\delta(x) = \begin{cases} 0.8 & \text{if } x = 0\\ 0.6 & \text{if } x = m, n, 1 \end{cases}, \quad \varphi(x) = \begin{cases} 0.2 & \text{if } x = 0\\ 0.5 & \text{if } x = m, n, 1 \end{cases}$$

Table: 7			Table: 8					
X	x^{\sim}		$\sim \rightarrow$	0	m	n	1	
0	1		0	1	1	1	1	
m	n		m	n	1	1	1	
n	m		n	m	m	1	1	
1	0		1	0	m	n	1	

Then, φ is an anti-fuzzy EPWI-ideal of \mathcal{M} related to δ .

Example 3.5. Consider a set $\mathcal{M} = \{0, c, d, 1\}$. Define a partial ordering " \leq " on \mathcal{M} , such that $0 \leq c \leq 1$; $0 \leq d \leq 1$ with the following tables (9),(10),(11) and (12). Then,

Ta	Table: 9			Table: 10						
Х	<i>x</i> ⁻	1	\rightarrow	0	c	d	1			
0	1	1	0	1	1	1	1			
с	d]	c	d	1	1	1			
d	с]	d	c	с	1	1			
1	0]	1	0	c	d	1			
Tal	ble: 11	Table: 12								

Ta	able: 11	Table: 12				
X	x^{\sim}	$\sim \rightarrow$	0	c	d	1
0	1	0	1	1	1	1
c	d	c	d	1	1	1
d	с	d	c	c	1	1
1	0	1	0	c	d	1

 $\{\mathscr{M}, V, \Lambda, -, \sim, \rightarrow, \rightsquigarrow, 0, 1\}$ is a lattice pseudo W-algebra. Consider the fuzzy subsets δ and φ on \mathscr{M} as,

$$\delta(x) = \begin{cases} 0.5 & \text{if } x = 0\\ 0.7 & \text{if } x = c, d\\ 0.9 & \text{if } x = 1 \end{cases}, \quad \varphi(x) = \begin{cases} 0.2 & \text{if } x = 0, 1\\ 0.6 & \text{if } x = c, d \end{cases}$$

Then, φ is an anti-fuzzy EPWI-ideal of \mathscr{M} related to δ . But, φ is not an anti-fuzzy CCPWI- ideal. since, $\varphi(d) \leq \max \{\varphi((d \rightarrow 1)^{\sim}), \varphi((d \rightarrow 1)^{-}), \varphi(1)\} \Rightarrow 0.6 \leq 0.2$. Next, we show that the union of two anti-fuzzy EPWI-ideals is also be an anti-fuzzy EPWI- ideal from the example given below.

Example 3.6. In Example 3.4, consider the fuzzy subsets δ_1, δ_2 and φ_1, φ_2 on \mathcal{M} as,

$$\begin{split} \delta_1(x) &= \begin{cases} 0.3 \ if \ x = 0 \\ 0.6 \ if \ x = m \\ 0.9 \ if \ x = n, 1 \end{cases}, \quad \phi_1(x) = \begin{cases} 0.2 \ if \ x = 0 \\ 0.5 \ if \ x = m \\ 0.7 \ if \ x = n, 1 \end{cases} \\ \delta_2(x) &= \begin{cases} 0.3 \ if \ x = 0 \\ 0.7 \ if \ x = n \\ 0.8 \ if \ x = m, 1 \end{cases}, \quad \phi_2(x) = \begin{cases} 0.1 \ if \ x = 0 \\ 0.5 \ if \ x = n \\ 0.7 \ if \ x = n, 1 \end{cases} \end{split}$$

Then, φ_1 and φ_2 are an anti-fuzzy EPWI-ideal of \mathcal{M} related to δ_1 and δ_2 respectively.

$$\delta_1 \cup \delta_2(x) = \begin{cases} 0.3 & \text{if } x = 0\\ 0.6 & \text{if } x = m\\ 0.7 & \text{if } x = n\\ 0.9 & \text{if } x = 1 \end{cases}, \varphi_1 \cup \varphi_2(x) = \begin{cases} 0.2 & \text{if } x = 0\\ 0.5 & \text{if } x = m, n\\ 0.7 & \text{if } x = 1 \end{cases}$$

And also $\varphi_1 \cup \varphi_2$ is an anti-fuzzy EPWI-ideal of A related to $\delta_1 \cup \delta_2$. Since,

$$\begin{split} \beta_1 \cup \beta_2(1) &\leq \max\left\{\delta_1 \cup \delta_2\left((1 \to n)^{\sim}\right), \delta_1 \cup \delta_2\right.\\ &\left((1 \rightsquigarrow n)^{-}\right), \delta_1 \cup \delta_2(n)\right\} \\ &\leq \max\left\{\delta_1 \cup \delta_2(m), \delta_1 \cup \delta_2(m), \\ &\left.\delta_1 \cup \delta_2(n)\right\} = 0.7 = 0.7. \end{split}$$

Proposition 3.7. Let $\{\varphi_i/(i \in \psi)\}$ be a family of anti-fuzzy *EPWI-ideal of* \mathcal{M} related to a fuzzy subset δ of \mathcal{M} . Then $\cup_{i \in \psi} \beta_i$ is an anti-fuzzy *EPWI-ideal of* \mathcal{M} related to δ .

Proof. Let $\{\varphi_i/(i \in \Psi)\}$ be a family of anti-fuzzy *EPWI*-ideal of \mathcal{M} ,

- (i) Let $p \in \mathcal{M}$, If φ_i is a fuzzy subset of δ for all $i \in \psi$. Then, we have $\varphi_i(p) \leq \delta(p)$ for all $i \in \psi$ Thus, sup $\{\varphi_i(p)/i \in \Psi\} \leq \mu(p)$ and $\bigcup_{i \in \psi} \varphi_i(p) \leq \mu(p)$. Hence, we get $\bigcup_{i \in \psi} \varphi_i$ is a fuzzy subset of δ .
- (ii) Let $p \in \mathcal{M}$, then $\cup_{i \in \Psi} \varphi_i(0) = \sup \{\varphi_i(0) | i \in \Psi\} \le \varphi(p)$, since $\varphi_i(0) \le \varphi(p)$ for all $i \in \Psi$.
- (iii) Let $p, q \in \mathcal{M}$. Then, we have

$$\begin{split} \cup_{i \in \psi} \varphi_i(p) &= \sup \left\{ \varphi_i(p) / i \in \psi \right\} \\ &\leq \sup \left\{ \delta \left((p \to q)^{\sim} \right), \delta \left((p \rightsquigarrow q)^{-} \right), \delta(q) \right\}. \end{split}$$

Since,

$$\begin{split} \varphi_{i}(p) &= \sup \left\{ \varphi_{i}(p)/i \in \psi \right\} \\ &\leq \sup \left\{ \delta \left((p \to q)^{\sim} \right), \delta \left((p \rightsquigarrow q)^{-} \right), \delta(q) \right\} \text{ for all } i \in \psi \\ U_{i \in \psi} \varphi_{i} &\leq \sup \left\{ \delta \left((p \to q)^{\sim} \right), \delta \left((p \rightsquigarrow q)^{-} \right), \delta(q) \right\}. \end{split}$$

Therefore, $\bigcup_{i \in \psi} \varphi_i$ is an anti-fuzzy *EPWI*-ideal of \mathscr{M} related to δ .

Proposition 3.8. Let \mathscr{M} be a lattice pseudo W-algebra, δ and φ be fuzzy subsets of \mathscr{M} and also φ is an anti-fuzzy EPWI-ideal of \mathscr{M} related to δ if and only if the level subset δ_{α} is an EPWI-ideal of \mathscr{M} related to φ_{α} for all $\alpha \in [0, \varphi(0)]$, $\varphi(0) = \inf_{x \in \mathscr{M}} \varphi(p)$.

Proof. Let φ be an anti-fuzzy *EPWI*-ideal of \mathcal{M} related to δ and $\alpha \in [0, \varphi(0)]$.

To prove: δ_{α} is an *EPWI*-ideal of \mathcal{M} related to φ_{α}

- (i) It is clear that $\varphi_{\alpha} \subseteq \delta_{\alpha}$ and $\varphi(0) \leq \alpha$ implies $0 \in \varphi_{\alpha}$.
- (ii) Let $p, q \in \mathcal{M}$, such that $(p \to q)^{\sim}, (p \rightsquigarrow q)^{-} \in \varphi_{\alpha}$ and $q \in \varphi_{\alpha}$ implies $\delta((p \to q)^{\sim}) \leq \alpha, \delta((p \rightsquigarrow q)^{-}) \leq \alpha$ and $\delta(q) \leq \alpha$.

So max { $\delta((p \to q)^{\sim}), \delta((p \rightsquigarrow q)^{-}), \delta(q)$ } $\leq \alpha$. But

$$\boldsymbol{\varphi}(p) \leq \max\left\{\boldsymbol{\delta}\left((p \rightarrow q)^{\sim}\right), \boldsymbol{\delta}\left((p \rightsquigarrow q)^{-}\right), \boldsymbol{\delta}(q)\right\}.$$

Since φ is an anti-fuzzy *EPWI*-ideal of \mathscr{M} related to δ . Therefore, $\varphi(p) \leq \alpha$ implies $x \in \delta_{\alpha}$. Hence, δ_{α} is an *EPWI*-ideal

of \mathscr{M} related to φ_{α} .

Conversely,

Let δ_{α} be an *EPWI*-ideal of \mathscr{M} related to φ_{α} for all $\alpha \in [0, \varphi(0)], \varphi(0) = {}_{x \in \mathscr{M}} \inf \varphi(x)$ To prove, φ is an anti-fuzzy *EPWI*-ideal of \mathscr{M} related to δ .

- (i) Let $p \in \mathscr{M}$ and $\alpha = \varphi(p) \Rightarrow p \in \varphi_{\alpha}$ implies $p \in \delta_{\alpha}$, since $\varphi_{\alpha} \subseteq \delta_{\alpha}$ is an *EPWI*-ideal of \mathscr{M} , so that $\varphi(p) \le \alpha \Rightarrow \varphi(p) \le \delta(p) \Rightarrow \varphi \subseteq \delta$.
- (ii) It is clear that $\varphi(0) \leq \varphi(p)$ for all $p \in \mathcal{M}$.
- (iii) Let $p, q \in \mathcal{M}$, such that

$$\max\left\{ \boldsymbol{\delta}\left((p \rightarrow q)^{\sim}\right), \boldsymbol{\delta}\left((p \rightsquigarrow q)^{-}\right), \boldsymbol{\delta}(q) \right\} = \boldsymbol{\alpha}.$$

implies $\delta((p \to q)^{\sim}) \leq \alpha$, $\delta((p \to q)^{-}) \leq \alpha$ and $\delta(q) \leq \alpha \Rightarrow (p \to q)^{\sim}, (p \to q)^{-} \in \varphi_{\alpha}$ and $q \in \varphi_{\alpha}$ implies $p \in \delta_{\alpha}$ since δ_{α} be an EPWI-ideal of \mathscr{M} related to φ_{α} . So that, $\varphi(p) \leq \alpha$ implies that

$$\varphi(p) \leq \max\left\{\delta\left((p \to q)^{\sim}\right), \delta\left((p \rightsquigarrow q)^{-}\right), \delta(q)\right\}.$$

Therefore, φ is an anti-fuzzy *EPWI*-ideal of \mathcal{M} related to δ .

Note 3.9. Let φ be a fuzzy subset of lattice pseudo W-algebra of \mathcal{M} , the set $\{p \in \mathcal{M} | \varphi(p) = \varphi(0)\}$ is denoted by \mathcal{M}_{φ} .

Proposition 3.10. Let \mathscr{M} be a lattice pseudo W-algebra. If φ is an anti-fuzzy EPWI-ideal related to δ such that $\varphi(0) = \delta(0)$, then the set \mathscr{M}_{δ} is an EPWI-ideal of \mathscr{M} related to \mathscr{M}_{φ} .

Proof. Let φ be an anti fuzzy *EPWI*-ideal of \mathcal{M} related to δ .

- (i) Since φ(0) = δ(0) and φ(p) ≤ δ(p) for all p ∈ M implies M_φ is a subset of M_δ.
- (ii) Let $(p \to q)^{\sim}, (p \rightsquigarrow q)^{-} \in \mathscr{M}_{\varphi}$ and $q \in \mathscr{M}_{\varphi}$.

Then, we have $\delta((p \to q)^{\sim}) = \delta((p \to q)^{-}) = \delta(q) = \delta(0)$. Thus, max { $\delta((p \to q)^{\sim}), \delta((p \to q)^{-}), \delta(q)$ } = $\delta(0)$. But, $\varphi(p) \le \max \{\delta((p \to q)^{\sim}), \delta((p \to q)^{-}), \delta(q)\} = \delta(0)$.

Then, $\varphi(p) = \delta(0)$ implies $\varphi(p) = \varphi(0) \Rightarrow p \in \mathcal{M}_{\delta}$. Hence, \mathcal{M}_{δ} is an *EPWI*-ideal of \mathcal{M} related to \mathcal{M}_{φ} .

Note 3.11. Let φ be a fuzzy subset of a lattice pseudo *W*-algebra of \mathcal{M} , then φ' is defined to be $\varphi'(p) = \varphi(p) + 1 - \varphi(0)$ for all $p \in \mathcal{M}$.

Proposition 3.12. Let δ and φ be fuzzy subsets of lattice pseudo W-algebra of \mathcal{M} such that $\varphi(0) = \delta(0)$. Then φ is an anti-fuzzy EPWI-ideal of \mathcal{M} related to δ if and only if φ' is an anti-fuzzy EPWI-ideal of \mathcal{M} related to δ' .

Proof. Let φ be an anti-fuzzy *EPWI*-ideal of \mathcal{M} related to δ .

(i) Let p ∈ M then φ(p) ≤ δ(p) implies φ(p)+1-φ(0) ≤ φ(p)+1-φ(0). Then, we have φ'(p) ≤ δ'(p). Therefore φ' is a fuzzy subset of δ'.

(ii)
$$\varphi'(0) = \varphi(0) + 1 - \varphi(0) \Rightarrow \varphi'(0) = 1 \Rightarrow \varphi'(0) \le \varphi'(p)$$

for all $p \in \mathcal{M}$.

(iii) Let $p,q \in \mathcal{M}$ then

$$\begin{split} \varphi'(p) = &\varphi(p) + 1 - \varphi(0) \\ &\leq \max\left\{\delta\left((p \to q)^{\sim}\right), \delta\left((p \rightsquigarrow q)^{-}\right), \delta(q)\right\} \\ &+ 1 - \delta(0) \\ &\leq \max\left\{\delta\left((p \to q)^{\sim}\right) + 1 - \delta(0), \delta\left((p \rightsquigarrow q)^{-}\right) \\ &+ 1 - \delta(0), \delta(q) + 1 - \delta(0)\right\} \\ &\leq \max\left\{\delta'\left((p \to q)^{\sim}\right), \delta'\left((p \rightsquigarrow q)^{-}\right), \delta'(q)\right\} \\ &\varphi'(p) \leq \max\left\{\delta'\left((p \to q)^{\sim}\right), \delta'\left((p \rightsquigarrow q)^{-}\right), \delta'(q)\right\}. \end{split}$$

Hence φ' is an anti-fuzzy *EPWI*-ideal of \mathscr{M} related to δ' . Conversely,

(i) Let φ' is an anti-fuzzy *EPWI*-ideal of \mathscr{M} related to δ' . Then we have φ' is a fuzzy subset of δ' and $\varphi'(p) \leq \delta'(p)$ for all $p \in \mathscr{M}$. Thus, $\varphi(p) + 1 - \varphi(0) \leq \varphi(p) + 1 - \varphi(0)$ for all $p \in \mathscr{M}$ and $\varphi(p) \leq \mu(p)$ for all $p \in \mathscr{M}$ since, $\varphi(0) = \delta(0)$. Therefore, we have φ is a fuzzy subset of δ .

(ii) Let
$$p \in \mathcal{M}$$
 then $\varphi'(0) \leq \delta'(p)$ implies $\varphi(0) \leq \delta(p)$.

(iii) Let $p, q \in \mathcal{M}$ then

$$\begin{split} \varphi'(p) &\leq \max\left\{\delta'\left((p \to q)^{\sim}\right), \delta'\left((p \rightsquigarrow q)^{-}\right), \delta'(q)\right\}\\ \varphi'(p) &\leq \max\left\{\delta\left((p \to q)^{\sim}\right) + 1 - \delta(0), \delta\left((p \rightsquigarrow q)^{-}\right)\right.\\ &+ 1 - \delta(0), \delta(q) + 1 - \delta(0)\right\}\\ \varphi'(p) &\leq \max\left\{\delta\left((p \to q)^{\sim}\right), \delta\left((p \rightsquigarrow q)^{-}\right), \delta(q)\right\}\\ &+ 1 - \delta(0)\\ \varphi(p) &\leq \max\left\{\delta\left((p \to q)^{\sim}\right), \delta\left((p \rightsquigarrow q)^{-}\right), \delta(q)\right\}. \end{split}$$

Hence φ is an anti-fuzzy *EPWI*-ideal of \mathcal{M} related to δ . \Box

Note 3.13. Let φ be a fuzzy subset of lattice pseudo *W*-algebra of \mathcal{M} , then the set $\{p \in \mathcal{M} / \varphi(v) \leq \varphi(p)\}$ is denoted by $(\varphi(v))^*$.

Proposition 3.14. *Let* \mathscr{M} *be a lattice pseudo* W*-algebra and* $v \in \mathscr{M}$. *If* φ *is an anti-fuzzy EPWI-ideal of* \mathscr{M} *related to* δ *such that* $\varphi(v) = \delta(v)$ *, then* $(\delta(v))^*$ *is an EPWI-ideal of* \mathscr{M} *related to* $(\varphi(v))^*$.

Proof. Let φ is an anti fuzzy *EPWI*-ideal of \mathscr{M} related to δ . To prove that $(\delta(v))^*$ is an *EPWI*-ideal of \mathscr{M} related to $(\varphi(v))^*$.

- (i) If $p \in (\varphi(v))^*$ implies $\varphi(v) \le \varphi(p) \Rightarrow \delta(v) \le \delta(p)$, since $\varphi(v) = \delta(v)$ and $\varphi(p) \le \delta(p)$.
- (ii) since $\varphi(0) \le \varphi(v)$ implies $0 \in (\varphi(v))^*$.

(iii) If $p \in \mathscr{M}$ and $q \in (\varphi(v))^*$ such $(p \to q)^{\sim}, (p \rightsquigarrow q)^- \in (\varphi(v))^*$ and $q \in (\varphi(v))^*$ implies, then, we have

$$\delta\left((p \to q)^{\sim}\right) \le \varphi(v), \delta\left((p \rightsquigarrow q)^{-}\right) \le \varphi(v)$$

and $\delta(q) \leq \varphi(v)$. Thus,

$$\varphi(v) \ge \delta((p \to q)^{\sim}), \varphi(v) \ge \delta((p \rightsquigarrow q)^{-})$$

and $\varphi(v) \geq \delta(q)$. Therefore,

$$\boldsymbol{\varphi}(v) \geq \max\left\{\boldsymbol{\delta}\left((p \rightarrow q)^{\sim}\right), \boldsymbol{\delta}\left((p \rightsquigarrow q)^{-}\right), \boldsymbol{\delta}(q)\right\}$$

But,

$$\varphi(p) \le \max \left\{ \delta\left((p \to q)^{\sim}\right), \delta\left((p \rightsquigarrow q)^{-}\right), \delta(q) \right\}.$$

Then, we have

$$\varphi(v) \le \varphi(p) \Rightarrow \delta(w) \le \delta(p) \Rightarrow p \in (\delta(v))^*.$$

Hence, $(\mu(v))^*$ is an *EPWI*-ideal of \mathcal{M} related to $(\varphi(v))^*$.

4. Conclusion

In this paper, we have discussed some representations of anti-fuzzy *CCPWI*-ideal and anti-fuzzy *EPWI*-ideal of lattice pseudo *W*-algebras. We show that the connection between anti-fuzzy *EPWI*-ideal and *EPWI*-ideal. This idea can further be generalized to intuitionistic fuzzy *EPWI*-ideal for new results in our future work.

References

- R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Sets and Systems, 35(1990), 121–124.
- [2] Ceterchi Rodica, The Lattice Structure of Pseudo-Wajsberg Algebras, *Journal of Universal Computer Science*, 6(1)(2000), 22–38.
- [3] A. Ibrahim and M. Indhumathi, PWI-Ideals of Lattice Pseudo-Wajsberg algebras, *Advances in Theoretical and Applied Mathematics*, 13(1)(2018), 1–14.
- [4] A. Ibrahim and M. Indhumathi, Fuzzy PWI-Ideals of Lattice Pseudo-Wajsberg algebras, *International Journal* of Mathematics and its Applications, 6(4)(2018), 21–31.
- [5] A. Ibrahim and M. Indhumathi, P-Ideals of Lattice Pseudo-Wajsberg algebras, *Journal of Engineering Mathematics and Statistics*, 3(1)(2018), 1–10.
- [6] A. Ibrahim and M. Indhumathi, Classes of p-ideals of Lattice pseudo-Wajsberg Algebras, *International Journal* of Research in Advent Technology, 7(5)(2019), 172–179.
- [7] A. Ibrahim and M. Indhumathi, Various types of PWI-Ideals of a Lattice pseudo-Wajsberg Algebras, *Advances in Mathematics: Scientific Journal*, 8(3)(2019), 285–291.

- [8] A. Ibrahim and M. Indhumathi, On fuzzy Extended PWI-Ideals of Lattice pseudo-Wajsberg Algebras, *International Journal of Advanced Science and Technology*, 29(2)(2020), 1163–1168.
- [9] M. Wajsberg, Beitrage zum Metaaussagenkalkul I, Monat. Mat. Phys., 42(1935), 221–242.
- [10] L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338– 353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******