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On minimal Hausdorff frames
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Abstract
The concept of minimal Hausdorff topological spaces was studied and characterized by M.P. Berri. A compact
Hausdorff space is minimal Hausdorff and such spaces are reversible in the sense that every continuous self
bijection is a homeomorphism. In this paper we study minimal Hausdorffness in the context of pointfree topology.
We introduce the notion of minimal Hausdorff frames and characterize them in terms of convergence of filters in
frames. We also study the association between minimal Hausdorff frames and minimal Hausdorff topological
spaces. An application is to prove that a minimal Hausdorff frame is a reversible frame in the sense that every
order preserving self bijection is a frame isomorphism.
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1. Introduction
Garrett Birkfoff, in 1936, pointed out the notion of the

comparison of two different topologies on the same basic set.
He had done this by ordering these topologies as a lattice un-
der set inclusion. A topological space (X ,T ) with property R
is said to be minimal(maximal) R if T is a minimal(maximal)
element in the set R(X) of all topologies on the set X having
property R with the partial ordering of set inclusions. The set
of all topologies sharing a given property may not have a least
or greatest element. But it may have minimal or maximal
elements. There has been a fairly good amount of research
on minimal properties as compared to maximal properties
in the lattice of topologies. For a background on the results
concerning minimal property, we suggest the reader to refer

to A survey of minimal topological structures by M.P. Berri,
J.R. Porter and R.M. Stephenson, Jr.[3].
The concept of minimal topologies was first introduced by A.S.
Parhomeko [15] in 1939. He proved that compact Hausdorff
spaces are minimal Hausdorff. Later E. Hewitt [9] proved
that compact Hausdorff spaces are maximal compact as well
as minimal Hausdorff. A. Ramanathan [20], [21] proved
the existence of noncompact minimal Hausdorff spaces and
characterized all minimal Hausdorff spaces. The concept of re-
versible topological spaces was introduced by M. Rajagopalan
and A. Wilansky [14]. In this paper it is proved that a space
that is maximal or minimal with respect to some topological
property is reversible and vice-versa.
An intense research has been done on maximal and minimal
topologies so far. The pointfree counterpart of topological
spaces i.e. frames has not received due attention in this regard.
Hence it is relevent to study such properties in the context of
pointfree topology. The Hausdorff property for frames is not
yet successfully defined as to become an extension or equiva-
lent of the classical Hausdorff axiom for topological spaces.
Many forms of it were defined by Dowker and Strauss[5], A.
Pultr[19], J. Rosický and B. S̆marda[22] and by Isbell[11].
The aim of this paper is paper is to study the property of
minimal Hausdorffness in frames and to answer some related
questions. We also characterize such frames in terms of con-
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vergence of filters in frames. The concept of reversible frames
was introduced and characterized in [12]. A related question
is the reversibility of such frames. We also prove that such
frames are reversible in the sense that every order preserving
self bijection on such frames is a frame isomorphism.

2. Preliminaries
The term frame was coined by C.H. Dowker and studied

by D. Strauss[6]. A frame is a complete lattice L in which the
infinite distributive law a∧

∨
S =

∨
{a∧ s : s ∈ S} holds for

all a ∈ L,S ⊆ L. A map between frames that preserves arbi-
trary joins and finite meets is called a frame homomorphism.
Associated with a frame homomorphism h : M→ L is its right
adjoint h∗ : L→ M given by h∗(b) =

∨
{x ∈M : h(x)≤ b}.

We denote the top element and the bottom element of a frame
by 1 and 0 respectively. The category of frames and frame ho-
momorphisms is denoted by Frm. The dual category Frmop

is referred to as the category of locales denoted by Loc. The
morphisms in Loc, called localic maps, are given by the right
adjoints of frame homomorphisms between two objects. A
frame is said to be spatial, if it is isomorphic to the topology
ΩX of a topological space (X ,ΩX).
A subset of a frame which is closed under arbitrary joins
and finite meets in that frame is called a subframe. A sublo-
cale M of a locale L can be represented in terms of an onto
frame homomorphism h : L→M in the sense that the image
of M under the right adjoint h∗ : M→ L will represent that
sublocale. For a locale L, denote ↑ a = {x ∈ L : x≥ a} and
↓ b = {x ∈ L : x≤ b}. Then the sublocale given by the frame
homomorphism j : L→↑ a defined by x→ a∨x for any a ∈ L
is called a closed sublocale of L. A cover in a frame L is a
subset S of L with

∨
S = 1L. A sublocale h : L→M is said to

be extension closed if for every cover C of M there is a cover
D of L such that h(D) =C.
A frame L is almost compact if whenever

∨
{xi : i ∈ I} = 1

then there exists a finite subset K ⊆ I of the index set I
such that (

∨
{xi : i ∈ K})∗ = 0 where “∗” denotes the pseudo-

complementation operator in L. A frame L is said to be com-
pact if each cover A of L has a finite subcover.
Let {Li : i ∈ I} be any class of locales for an index set I.
Then

⊕
i∈I Li denotes the locale product or the frame co-

product. For finite systems of two we write L⊕M. Also
denote ⊕i∈Iai =↓ (ai)i∈I ∪O, where O is the bottom of the
co-product. For finite systems of two we write a⊕b. For a
frame L set dL =

∨
{x⊕ y : x∧ y = 0} ∈ L⊕L.

The concept of convergence of filters in frames was introduced
by S.S. Hong [10]. A filter in a frame A is a nonempty subset
F with the property that 0 /∈ F, a≥ b ∈ F implies a ∈ F , and
a∧b∈F whenever a and b are in F . A maximal filter is called
an ultrafilter. A filter F in a frame L is said to be clustered if
for any cover S of L, secF = {x ∈ L : f or all a ∈ F,a∧ x 6= 0}
meets S. A filter F in a frame L is said to be convergent if for
any cover S of L, F meets S.
A subset B of L is a base for L if for any x ∈ L there exists a
subset C of B with

∨
C = x. A frame L is called a separated

frame if, for every filter F in L,
∨
(L−F) is either 1 or a dual

atom.
For a detailed reading of the above concepts we refer the
reader to [18].

3. Minimal Hausdorff Frames
A topological space (X .τ) is minimal Hausdorff if it is

Hausdorff and there is no strictly weaker Hausdorff topol-
ogy than τ on X . The property of being minimal Hausdorff
is a topological property. A characterization for a minimal
Hausdorff space is given in [4].

Theorem 3.1. [4] A necessary and sufficient condition that a
Hausdorff space (X ,τ) be minimal Hausdorff is that τ satisfies
the following property:

1. Every open filter-base has an adherent point;

2. If an open filter-base has a unique adherent point, then
it converges to this point.

Some results regarding minimal Hausdorff spaces are
given in M. P. Berri [2]. The pointfree counterpart of topologi-
cal spaces i.e. frames has not yet considered for carrying out a
study on such maximal or minimal frame isomorphic proper-
ties such as Hausdorff property. The definition for Hausdorff
frame as given by Isbell[11] is as follows. A frame L is called
a Hausdorff frame if the diagonal ∆ : L→ L⊕L defined by
∆(a) = {(x,y) : x∧ y≤ a} is a closed localic map. In this sec-
tion, we introduce the concept of minimal Hausdorff frames
and look forward to obtain a characterization for such frames.
We know that {0,1} is a subframe of any frame and it is Haus-
dorff. We adopt the following convention to define what is
called a proper subframe.
A proper subframe here means a frame which is a strict sub-
frame of the frame under consideration other than the trivial
frame {0,1}.

Definition 3.1. A frame L is said to be minimal Hausdorff if
L is Hausdorff and no proper subframe of L is Hausdorff.

The four element frame B4 = {0,a,b,1} where a ||b, a∨
b = 1, a∧ b = 0 is a Hausdorff frame as it is regular and is
minimal Hausdorff by definition. Then any Boolean frame
other than B4 is not minimal Hausdorff since any such frame
contains B4 as a subframe. Thus B4 is the only finite frame
that is minimal Hausdorff.
When we come to infinite spatial frames, there are Hausdorff
frames containing no Boolean frames as a proper subframe.
For example, the set of all real numbers with usual topology,
denoted by (R,ΩR), is regular and hence the frame ΩR is reg-
ular. Since every regular frame is Hausdorff, ΩR is Hausdorff.
But R is a connected space and there are no open and closed
sets other than R and φ . Hence ΩR contains no Boolean
frame as a proper subframe. Also (R,ΩR) is coarser than
discrete topological space. We will prove later that ΩR is not
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minimal Hausdorff. This reveals the presence infinite spatial
Hausdorff frames which contains Hausdorff frames other than
Boolean ones. The task of verifying minimal Hausdorffness
is very complex in infinite case as verifying the presence of
Hausdorff frames in such frames is practically very difficult.
Hence we need some characterizations for minimal Hausdorff-
ness in frames.
Let D(F) = {A⊆ F : φ 6= A =↓ A} , where ↓ A = {x ∈ L :
x≤ u,u ∈ A} and F is any bounded meet semilattice on a
frame L. Then D(F) is a frame under set inclusion. The
following remarks on D(F) are used in the proof of the char-
acterization theorem for minimal Hausdorff frames.

Remark 3.1. Let A, B ∈ D(F). Then ↓ A = A and ↓ B = B.
Therefore ↓ (A∩B) = A∩B. Hence ↓ ((A∩B)⊕ (A∩B)) =
(A∩B)⊕ (A∩B). Now dD(F) =

∨
{U⊕V : U ∩V = {0}}.

Then
↓ dD(F) =

∨
{↓ (U⊕V ) : U ∩V = {0}}

=
∨
{↓U⊕ ↓V : U ∩V = {0}}=

∨
{U⊕V : U ∩V = {0}}

= dD(F).
Therefore,
↓
(
[(A∩B)⊕ (A∩B)]∨dD(F)

)
= [(A∩B)⊕ (A∩B)]∨dD(F).

Remark 3.2. Let A,B ∈D(F), Then x ∈ A∩B implies
x ∈ {a∧b : a ∈ A, b ∈ B}. Conversely if a ∈ A, b ∈ B and
since a∧b≤ a, b, we have a∧b ∈ ↓LA = A, a∧b ∈ ↓LB = B.
Thus a∧b ∈ A∩B and hence A∩B = {a∧b : a ∈ A, b ∈ B}.

For the following theorem, see [18].

Theorem 3.2. A frame L is Hausdorff if and only if for any
a, b ∈ L, a⊕b≤ ((a∧b)⊕ (a∧b))∨dL.

Now we prove the following theorem which helps to prove
our main result in this section.

Theorem 3.3. Let L be a Hausdorff frame and let F be a
bounded meet semilattice in L. Then the frame (D(F),⊆) is
Hausdorff.
Proof. {(a∧b)⊕ (a∧b) : a ∈ A, b ∈ B} is a join basis for
[(A∩B)⊕ (A∩B)], since {a⊕b : a ∈ A, b ∈ A} forms a join
basis for A⊕B.
If U ∩V = {0} where U,V ∈D(F),
by Remark 3.2 U ∩V = {u∧ v : u ∈U, v ∈V} and hence

{0}=U ∩V ⇔ u∧ v = 0, ∀u ∈U, v ∈V

Thus U⊕V has join basis {u⊕ v : u∧ v = 0, u ∈U, v ∈V}.
Since L is Hausdorff, by Theorem 3.2, for any a,b ∈ L,

a⊕b≤ [(a∧b)⊕ (a∧b)]∨dL (3.1)

Now [(a∧b)⊕ (a∧b)]∨L⊕LdL

= [(a∧b)⊕ (a∧b)]∨L⊕L

[∨
L⊕L
{x⊕ y : x∧ y = 0}

]
=

∨
L⊕L
{[(a∧b)⊕ (a∧b)]∨ (x⊕ y) : x∧ y = 0}

Then [(A∩B)⊕ (A∩B)]∨D(F)⊕D(F)dD(F)

= [(A∩B)⊕ (A∩B)]∨D(F)⊕D(F)[∨
D(F)⊕D(F)

{U⊕V : U ∩V = {0}}
]

=
∨

D(F)⊕D(F)

{
[(A∩B)⊕ (A∩B)]∨D(F)⊕D(F)

(U⊕V ) : U ∩V = {0}}

=
∨

L⊕L

{∨
L⊕L
{[(a∧b)⊕ (a∧b)]∨ (x⊕ y) : x∧ y = 0}

}
=
∨

L⊕L
{[(a∧b)⊕ (a∧b)]∨dL : a ∈ A, b ∈ B} (3.2)

Hence [(a∧b)⊕ (a∧b)]∨dL forms a join basis for
[(A∩B)⊕ (A∩B)]∨dD(F). Since [(A∩B)⊕ (A∩B)]∨dD(F)

is a downset by Remark 3.1, we have

[(a∧b)⊕ (a∧b)]∨dL ∈ [(A∩B)⊕ (A∩B)]∨dD(F)

and hence a⊕b ∈ [(A∩B)⊕ (A∩B)]∨dD(F) by (3.1). Thus
A⊕B⊆ (A∩B)⊕(A∩B)∨dD(F). Hence D(F) is Hausdorff,
by Theorem 3.2.

We state the following theorem from [10] which we use
to prove our next result.

Theorem 3.4. A filter F is convergent if and only if for any
C ⊆ B with

∨
C = 1 where B a base for L, F meets C.

The following result is proved in [18].

Theorem 3.5. Let F be a semilattice and L be a frame. Let
f : F→ L be a semilattice homomorphism(L viewed, for a mo-
ment, as the semilattice(L,∧,1)). Then there exists precisely
one frame homomorphism h : D(F)→ L such that h◦λF = f
where λF : F →D(F) defined by λF(x) =↓ x.

From now a filter means any filter other than {1} unless
stated otherwise.

Lemma 3.1. Let L be any Hausdorff frame which contains
a clustered filter that is not convergent. Then there exists a
proper subframe of L which is Hausdorff.

Proof. Let F ′ be the clustered filter in L that is not convergent.
Then F = F ′ ∪{0} is a bounded meet semilattice in L. By
Theorem 3.5, for every meet semilattice homomorphism f :
F→ L, there is exactly one frame homomorphism h : D(F)→
L such that h◦λF(a) = f (a), namely the mapping given by
h(A) =

∨
{ f (a) : a ∈ A}. Take f = i : F → L,the inclusion

map, then h(A) =
∨

A.
Claim: h : D(F)→ L is not onto.
Suppose h : D(F)→ L is onto. Then for any x ∈ L there
exists A ∈D(F) such that

∨
A = x. Thus F is a base for the

frame L. As any cover C of F meets F ′, by Theorem 3.4,
the filter F ′ is convergent which is a contradiction. Also if
h(D(F)) = {0,1}, then F = h◦λF(F)⊆ h(D(F)) = {0,1}.
Then F = {1}, a contradiction. Hence h(D(F)) is a proper
subframe of L that is Hausdorff by Theorem 3.3.
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An element x ∈ L is dense, if a∧ x 6= 0, for all 0 6= x ∈ L.
That is x is dense if and only if x∗ = 0. Denote by D(L) =
{l ∈ L : l∗ = 0}, the set of all dense elements of L, is a filter
in L. Recall from the [10] that a filter F in L clusters if and
only if

∨
{x∗ : x ∈ F}< 1. Since

∨
{x∗ : x ∈ D(L)}< 1, D(L)

clusters.
We state the following theorem from [17] for proving our main
theorem on characterzation of minimal Hausdorff frames.

Theorem 3.6. 1. A compact frame is almost compact.

2. A frame L is not almost compact if and only if an ideal
Q in L exists such that Q⊆ SL = {l ∈ L : l∗ = 0L} and∨

Q = 1L.

We prove the following lemma using the above theorem.

Lemma 3.2. A frame in which every clustered filter converges
is almost compact.

Proof. Let L be such a frame and suppose, for contradiction,
that L is not almost compact. Then by Theorem 3.6, L−
D(L) is a cover of L. Since D(L) misses this cover, D(L)
does not converge. But this is a contradiction because D(L)
clusters.

Now we prove the main theorem on characterization of
minimal Hausdorff frames in terms of convergence of filters.

Theorem 3.7. A frame L is minimal Hausdorff if and only if
every clustered filter in L converges.

Proof. We assume that L is not boolean because the only
boolean frame that is minimal Hausdorff is B4 for which the
result is true. Suppose that L is minimal Hausdorff. If there
exists a clustered filter that does not converge, then by Lemma
3.1, there exists a proper subframe of L that is Hausdorff,
contradicting the minimality of L.
Conversely assume that every clustered filter in L converges.
Now by Lemma 3.2, L is almost compact. Let A is a proper
subframe of L and let “∗A” be the pseudo-complementation
operator in A. Then A is almost compact and by Proposition
2.1 [17] there exists no ideal Q ⊆ SA = {l ∈ A : l∗A 6= 0} in
A with

∨
Q = 1. Let M be the ultrafilter in A containing

F = {l ∈ A : l∗A = 0}. Then by corollary 3 [7], A−M is a
minimal prime ideal in A and

∨
(A−M) 6= 1 because A−M⊆

SA. Now suppose that
∨
(A−M) = u, where u is a dual atom

in A. Then either u∨ u∗A = u or u∨ u∗A = 1. If u∨ u∗A = u,
then u∗A ≤ u and we get u∗A = 0. Thus u∈ F ⊆M. Since M is
an ultrafilter u∗A ∈ A−M and hence u∗A 6= 0, a contradiction.
If u∨u∗A = 1, then u∗A = uc, the complement of u in L. Now
u, uc /∈ F

′
= {l ∈ L : l∗ = 0} as u 6= 1 and u 6= 0. Now the

cover {u, uc} of L does not intersect F
′

and hence F
′

is not
convergent. If x∧ y = 0 for some y ∈ F

′
, 0 6= x ∈ L, then

x ≤ y∗ = 0 and hence x = 0, a contradiction. Thus x∧ y = 0
for no y ∈ F

′
if 0 6= x ∈ L. Therefore secF

′
= L−{0}. Since

every cover of L contains at least one element different from
0, every cover of L intersects secF

′
and hence F

′
is clustered.

This contradicts our assumption that every clustered filter in
L converges.Thus

∨
(A−M) = u, where u is neither 1 nor

a dual atom. Thus A is not a separated frame and hence
not Hausdorff since every Hausdorff frame is separated by
Proposition 4 [23]. Hence L is minimal Hausdorff.

Corollary 3.8. Every filter in a minimal Hausdorff frame is
clustered.

Proof. The proof follows from Theorem 3.7, Lemma 3.2 and
Theorem 3.9.

We state the following theorem before we prove the next
corollary.

Theorem 3.9. [17] For a frame L, the following are equiva-
lent:

1. L is almost compact.

2. Every filter in L is clustered.

3. Every maximal filter in L is convergent.

Corollary 3.10. A minimal Hausdorff frame is almost com-
pact.

Proof. By Theorem 3.9, if every filter in a frame is clustered,
then it is almost compact.

The converse that an almost compact frame is minimal
Hausdorff need not be true, as a finite Boolean frame other
than B4 is compact and hence almost compact but not minimal
Hausdorff.
We state the following Lemma due to Banaschewski[1].

Lemma 3.3. A frame is compact if and only if each of its
prime upsets converges.

Corollary 3.11. A minimal Hausdorff frame is compact

Proof. The result follows from Corollary 3.8 and Lemma
3.3.

Corollary 3.12. Let L be a minimal Hausdorff frame then the
clustered filters in L are exactly the convergent filters in L.

Proof. If L is minimal Hausdorff, then every clustered filter
is convergent by Theorem 3.7. Also every convergent filter is
clustered.

Theorem 3.13. An extension closed sublocale h : L→M of
a minimal Hausdorff frame L is minimal Hausdorff.

Proof. Let F be any clustered filter in M. Then by Proposition
1.6 [10] , h−1(F) is clustered in L and is convergent as L is
minimal Hausdorff. Thus F is a filter in M such that h−1(F)
converges in L. Since every filter is an upset and h : L→M is
extension closed, by Proposition 3.3 [8] , F converges in M.
Hence the theorem.

Corollary 3.14. A closed sublocale of a minimal Hausdorff
frame is minimal Hausdorff.

Proof. Since every closed sublocale is extension closed, the
proof directly follows.
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4. Association with topological spaces

We know that Hausdorffness in frames is not equivalent to
Hausdorffness defined in topological spaces, but an imitation
of the classical Hausdorffness axiom in topological spaces.
Also, if ΩX is a Hausdorff frame, then (X ,ΩX) need not be a
Hausdorff space by the following example.

Example 4.1. Let X = {a,b,c,d} and ΩX = {X ,φ ,{a,b} ,
{c,d}}. Then ΩX is a Hausdorff frame, but (X ,ΩX) is not a
Hausdorff space.

The space (X ,ΩX) need not be Hausdorff when ΩX is a
Hausdorff frame. But it is true when X is a T0 space. We have
a similar result on minimal Hausdorffness by the following
theorem.

Theorem 4.1. Let (X ,ΩX) be a T0 topological space. If ΩX
is a minimal Hausdorff frame, then (X ,ΩX) is a minimal
Hausdorff space.

Proof. Let B be an open filter-base in the topological space
X having a unique cluster point p. Let F be the filter in the
frame ΩX generated by B. Let A be a cover of the frame
ΩX and let G be an open neighbourhood of p in A . Since p
is a cluster point of B, the neighbourhood G intersects every
element of B and consequently every member of F . Thus F
is a clustered filter in ΩX . Since ΩX is minimal Hausdorff, by
Theorem 3.7, F is convergent in ΩX . Let U be the filter with
base B in the topological space X . Then U is covergent in X
and assume that it converges to a point x 6= p. Consider the
open filter-base C which contains all sets that are the finite in-
tersection of elements of

{
B∪Np : B ∈B,Np ∈Np

}
where

Np is the open neighbourhood system at p. Consequently this
generates a filter that converges to both p and x which is not
possible in a Hausdorff space. Hence the open filter-base B
must converge to p. Thus (X ,ΩX) is minimal Hausdorff by
Theorem 3.1.

Corollary 4.2. The set of all real numbers with usual topol-
ogy is denoted by (R,ΩR). Then the frame ΩR is not minimal
Hausdorff.

Proof. (R,ΩR) is T0 and is not minimal Hausdorff. Hence
ΩR cannot be a minimal Hausdorff frame.

Remark 4.1. The converse of the above theorem need not
be true. Let X = {a,b,c}. Consider the topological space
(X , P(X)) where P(X) is the power set of X. It is a minimal
Hausdorff space as it is compact and Hausdorff. But the
frame P(X) is a Boolean frame containing B4 and hence not
a minimal Hausdorff frame.

Remark 4.2. In the category Sp of all topological spaces and
continuous mappings, a compact Hausdorff space is minimal
Hausdorff. But in the category Frm this need not happen. The
frame in the example provided in Remark 4.1 is a compact
frame, but not minimal Hausdorff.

5. Application
A frame is said to be reversible[12], if every order preserv-

ing self bijection is a frame isomorphism. A characterization
for reversible frames is given in [12]. It is also proved that a
frame that is maximal or minimal with respect to some frame
isomorphic property is reversible. This leads to the following
result.

Theorem 5.1. A minimal Hausdorff frame is reversible

Proof. By Theorem 3.7 [12] a minimal Hausdorff frame is
reversible

A reversible frame need not be minimal Hausdorff. A
boolean frame strictly containing B4 is not minimal Hausdorff
but reversible by Theorem 3.14 of [12]. Hence the charac-
terization for minimal Hausdorff frames can be used as one
method to identify reversible frames.
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