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Construction of larger singular and nonsingular
graphs using a path
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Abstract
A singular graph G has an adjacency matrix A(G) with nullity η(G)> 0. Vertices of singular graphs are classified
as core and noncore vertices. There are two types of noncore vertices: noncore vertices of zero null spread and
of null spread −1. Deletion of these vertices from a singular graph either changes the nullity or leave it unaltered.
In this paper larger singular and nonsingular graphs were constructed by joining singular graphs by a path. As
singular graphs have different types of vertices, the graphs constructed in this way differ in nullity depending on
the vertex we are joining during construction. An attempt was made to construct singular graph of maximum
nullity. Various spectral properties of the resulting graphs were studied.
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1. Introduction
Let G = (V,E) be a finite, undirected simple graph of

order n, with vertex set V (G) and edge set E(G). The adja-
cency matrix A(G) of the graph G is a square matrix of order
n whose (i, j)th entry is equal to one if there is an edge be-
tween the vertices vi and v j, and is equal to zero otherwise.
The characteristic polynomial of G, denoted by φ(G,x) is a
polynomial of degree n in x. The roots of φ(G,x) = 0 are
called the eigenvalues of G. The collection of the eigenvalues
together with their multiplicities is called the spectrum of G,
and is denoted by spec(G). If zero is an eigenvalue of G, then

G is a singular graph. The multiplicity of zero is called the nul-
lity η(G) of G. The nonzero vector X satisfying the equation
AX = 0 is called kernel eigenvector of G. A singular graph on
at least two vertices, with a kernel eigenvector having nonzero
entries is called a core graph. Core graphs have nullity one
or more. Let G be a singular graph of nullity one and X is a
kernel eigenvector where X = [x1,x2, . . . ,xm,0, . . . ,0]T , with
xm 6= 0, i = 1,2, . . . ,m. Then the subgraph F of G induced by
the non zero entries x1,x2, . . . ,xm is called the core graph of
G. The set of remaining vertices are called core-forbidden
vertices or noncore vertices of G. (See Figure 1)

Definition 1.1 ([15]). Let F be a core graph on at least two
vertices, with nullity η ≥ 1 and a kernel eigenvector XF hav-
ing no zero entries. If a graph N, of nullity one, having XF
as the non- zero part of a kernel eigenvector, is obtained, by
adding η − 1 independent vertices, whose neighbours are
vertices of F, then N is said to be a minimal configuration
(MC).

The set of η−1 independent vertices added to F to pro-
duce N is said to be the periphery P(N) of N.
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Core vertex

Noncore vertex

A core graph with η = 3 and
eigenvector (1,2,−1,−1,−1)t

A singular graph with η = 2
and eigen vector (1,−1,1,0,0)t

Figure 1. Two singular graphs

Now we have a very important result about eigenvalues of
graphs, known as interlacing theorem .

Theorem 1.2 ([9]). If G is an n-vertex graph with eigenvalues
λ1 ≤ λ2 ≤ ·· · ≤ λn and H is a vertex deleted sub graph of G
with eigenvalues µ1 ≤ µ2 ≤ ·· · ≤ µn−1, then λi ≤ µi ≤ λi+1,
i = 1,2, . . . ,n−1.

Interlacing theorem states that the multiplicity of an eigen-
value and hence the multiplicity of nullity can change at most
one upon deleting or adding a vertex of the graph.

Definition 1.3 ([3]). Let G−u be the induced sub graph of
the graph G obtained on deleting vertex u. The null spread of
the vertex u is : nu(G) = η(G)−η(G−u).

Clearly the null spread nu(G) of the vertex u of a graph
G satisfies −1 ≤ nu(G) ≤ 1. If u is a core vertex of G, then
nu(G) = 1. If G is a MC and u is a vertex in the periphery
of G, then nu(G) = −1. There are vertices with nu(G) = 0
also. Thus noncore vertices (vertices other than core vertices)
of a singular graph G can be classified as noncore vertices of
null spread −1 and noncore vertices of zero null spread. (See
Figure 2).

Definition 1.4 ([9]). Let G1 and G2 be two graphs with
disjoint vertex sets. If a vertex u ∈ G1 is identified with
a vertex v ∈ G2, then the graph G1 ◦G2 obtained of order
|G1|+ |G2|− 1, is said to be the coalescence of G1 and G2
with respect to u and v.

The following theorem gives an expression for the charac-
teristic polynomial ϕ(G,x) of the graph G = G1 ◦G2.

Theorem 1.5 ([9]). The characteristic polynomial of the co-
alescence G1 ◦G2 of two rooted graphs (G1,u) and (G2,w)
obtained by identifying the vertices u and w so that the vertex

u0

u−1

u−1

u0 – vertex of zero null spread

u−1 – vertex of null spread -1
Figure 2. Graph with both types of noncore vertices.

v = u = w become a cut vertex of G1 ◦G2 is given by

ϕ(G1 ◦G2) = ϕ(G1)ϕ(G2−w)+ϕ(G1−u)ϕ(G2)−
xϕ(G1−u)ϕ(G2−w).

(1.1)

2. Construction of Larger Singular
Graphs by a Path

In this section, we construct larger singular graphs by
joining two graphs by a path

We have the following theorems:

Theorem 2.1 ([6]). The coalescence of two singular graphs
of nullity η1 and η2 coalesced at a core vertex yield a singular
graph of nullity η1 +η2−1.

Theorem 2.2 ([7]). Let G1 be a nonsingular graph and G2
be a singular graph of nullity n2. If G1 and G2 are coalesced
at a vertex u ∈ G1 and a core vertex v ∈ G2, then the nullity
of G1 ◦G2 is η2−1.

Theorem 2.3 ([7]). Let G1 and G2 be two singular graphs of
order η1 and η2 respectively. If G1 ◦G2 is the coalescence
of G1 and G2 at a noncore vertex of null spread −1, then
η(G1 ◦G0) = η1 +η2 +1.

Theorem 2.4 ([7]). Let G1 and G2 be two singular graphs of
nullity η1 and η2 respectively. The nullity of the coalescence
of G1 and G2 at a noncore vertex of zero null spread is η1+η2.

Theorem 2.5 ([7]). Let G1 and G2 be two singular graphs of
nullity η1 and η2 respectively. The coalescence of G1 and G2
at a core vertex of G1 and at a noncore vertex (null spread 0
of −1) of G2 or vice versa yield a singular graph of nullity
η1 +η2−1.

Theorem 2.6 ([7]). Let G1 be a non singular graph and G2
be a singular graph of nullity η2. Then the nullity of the
coalescence of G1 and G2 with respect to any vertex of G1
and a noncore vertex of zero null spread of G2 is η2.

1615
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Theorem 2.7 ([7]). Let G1 be a nonsingular graph and G2
be a singular graph of nullity η2. Then the nullity of the
coalescence of G1 and G2 with respect to any vertex u ∈ G1
and a noncore vertex w ∈ G2 of null spread −1 is

1. η2 +1, if G1−u is singular

2. η2, if G2−u nonsingular.

Theorem 2.8 ([8]). Let G1 and G2 be two singular graphs of
nullity η1 and η2 respectively. If a core vertex u of G1 and a
noncore vertex w (of null spread −1 or 0) is coalesced then in
the coalesced graph, the coalesced vertex is a noncore vertex.

Theorem 2.9 ([8]). A singular graph with noncore vertices
always satisfies the following conditions.

1 If one ore more neighbours of a noncore vertex v is the
only neighbours of another vertex v′, then v′ will be a
noncore vertex.

2 the vertices having core or noncore vertex neighbours
whose neighbours are noncore vertices will be noncore
vertices.

Theorem 2.10 ([8]). Let G1 and G2 be two singular graphs of
nullity η1 and η2 respectively and G1 ◦G2 be the coalescence
of G1 and G2 with respect to u ∈ G1 and w ∈ G2. Then,
noncore vertices of G1 and G2 will remain as noncore vertices
in G1 ◦G2.

Theorem 2.11 ([7]). Let G1 and G2 be two singular graphs
and G1 ◦G2 be the coalescence of G1 and G2 with respect to
u ∈ G1 and w ∈ G2. Then

(i) G1 ◦G2 is singular if either G1−u or G1−w is nonsin-
gular.

(ii) G1 ◦G2 is singular if G1−u and G1−w are nonsingu-
lar.

Definition 2.12. Let (K,u) and (H,w) be two rooted graphs.
The graph KH+Pn is constructed such that u and w are joined
to any two vertices of the path Pn as shown in Figure 3.

u w

K H

Figure 3. The graph of KH +Pn.

2.1 Construction using the path P2t
Theorem 2.13. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t . If
K, H and K−u are nonsingular, then KH+P2t is nonsingular.

Proof. We know that P2t is a nonsingular graph. The graph
KH +P2t can be constructed by coalescence as follows: First
coalesce K and P2t with respect to u and any vertex of P2t .
Then coalesce H and K ◦P2t with respect to w and any ver-
tex of P2t . Thus (K ◦P2t) ◦H = KH +P2t . Since K− u is
nonsingular, we have K ◦P2t is nonsingular. As K−u is non-
singular and K ◦P2t − v for v ∈ P2t is nonsingular, it follows
that (K ◦P2t)◦H is nonsingular.

K

u w

H

Figure 4. The nonsingular graph KH +P6.

Theorem 2.14. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t .
If K, H, H−w are nonsingular and K− u is singular, then
KH +P2t is singular with nullity one or nonsingular depends
on the vertex of P2t we are joining to K and H.

Proof. First coalesce K and P2t with respect to u and any
vertex v j of P2t . Since P2t − v j is singular with nullity one
and K−u is singular, we have K ◦P2t is singular with nullity
one. So K ◦ P2t is a singular or minimal configuration of
some graph. Obviously K ◦P2t contains core and noncore (of
null spread −1) vertices. When we coalesce K ◦P2t and H
with respect to w and any core vertex v j of K ◦P2t (v j ∈ P2t),
KH +P2t is nonsingular. If v j is a noncore vertex of null
spread −1, then KH +P2t is singular of nullity one.

Theorem 2.15. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t .
If K, H are nonsingular and H−w, K−u are singular, then
KH +P2t is singular with nullity two or nonsingular depends
on the vertex of P2t we are joining to K and H.

Proof. K ◦P2t is the coalescence of K and P2t at any vertex u
of K and v j of P2t . Clearly K ◦P2t is singular with nullity one
as P2t−v j is singular with nullity one and K−u is singular. So
K ◦P2t is a singular or minimal configuration of some graph.
Clearly K ◦P2t contains core and noncore (of null spread −1)
vertices. When we coalesce K ◦P2t and H with respect to
w and any core vertex v j of K ◦P2t (v j ∈ P2t), KH +P2t is
nonsingular. If v j is a noncore vertex of null spread −1, then
KH +P2t is singular of nullity two.

Example 2.16. In Figure 5, K, H are nonsingular and K−u,
H −w are singular. The graph K ◦P6, the coalescence of
K and P6 with respect to the vertex u of K and v3 of P6 is a
singular graph of nullity one. The graph KH +P6 is obtained
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by coalescing K ◦P6 with H at a core vertex v4 of K ◦P6 and
w of H. The graph KH +P6 is a nonsingular graph.

K

u = v3

v2v1

w = v4

v5

H

v6

Figure 5. Graph of KH +P6 with core vertex v4.

Example 2.17. In Figure 6 and 7, the graphs K,H,H−w are
nonsingular and K−u is singular. In both figures the graph
K ◦P6, the coalescence of K and P6 with respect to the vertex u
of K and v3 of P6 is a singular graph of nullity one. In Figure
6, the graph KH +P6 is obtained by coalescing K ◦P6 with H
at a core vertex v4 of K ◦P6 and w of H. The graph KH +P6
is a nonsingular graph. In Figure 7, the graph KH +P6 is
obtained by coalescing K ◦P6 with H at a nonecore vertex v5
of K ◦P6 and w of H. The graph KH +P6 is a singular graph
of nullity one

K

u = v3

v2v1

w = v4

H

v5

v6

Figure 6. Graph of KH +P6 with core vertex v4

K

u = v3

v2v1

v4

w = v5
v6

H

Figure 7. Graph of KH +P6 with noncore vertex v5.

Example 2.18. In Figure 8, K, H are nonsingular and K−u,
H −w are singular. The graph K ◦P6, the coalescence of

K and P6 with respect to the vertex u of K and v3 of P6 is a
singular graph of nullity one. The graph KH +P6 is obtained
by coalescing K ◦P6 with H at a nonecore vertex v5 of K ◦P6
and w of H. The graph KH +P6 is a nonsingular graph of
nullity two.

K

u = v3

v2v1

v4

w = v5

v6

H

Figure 8. Graph of KH +P6 with noncore vertex v5.

Theorem 2.19. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t . If
K is singular with nullity 1, u is a core vertex, H and H−w
are nonsingular, then KH +P2t is nonsingular.

Proof. Since u is a core vertex, K ◦P2t , the coalescence of
K and P2t with respect to u and any vertex v j of P2t is a
nonsingular graph. As H−w is nonsingular, (K ◦P2t)◦H =
KH +P2t is nonsingular.

Theorem 2.20. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t+1.
If K is singular with nullity 1, u is a noncore vertex, H and
H−w are nonsingular, then KH +P2t+1 is a singular graph
of nullity one or two.

Proof. K ◦P2t+1, the coalescence of K and P2t+1 with respect
to the noncore vertex u and any vertex v j of P2t is a singular
graph of nullity two. To construct the graph KH +P2t , we
coalesce the graph K ◦P2t and H with respect to any vertex
v j of P2t and w of H. Being a singular graph K ◦P2t has core
and noncore vertices (of null spread 0 and −1). If v j is a core
vertex, KH +P2t+1 is a singular graph of nullity one. If v j is
a noncore vertex (of null spread 0 and -1), then KH +P2t is a
singular graph of nullity two (by Theorem 2.6 and 2.7).

Theorem 2.21. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t . If
K and H are singular with nullity one, then

(i) KH+P2t is nonsingular when u and w are core vertices.

(ii) KH +P2t is singular of nullity greater than or equal to
two when u and w are noncore vertices of null spread
−1.

(iii) KH +P2t is singular of nullity greater than or equal to
one when u is a core vertex and w is a noncore vertex
or vice versa.
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Proof. (i) If u is a core vertex, then K−u is nonsingular.
So K ◦ P2t is nonsingular. Since w is a core vertex,
we have H−w is nonsingular and so H ◦ (K ◦P2t) is
nonsingular.

(ii) If u is a noncore vertex of null spread −1, then K−u is
singular of nullity two. So K ◦P2t is singular of nullity
two. Now, coalesce K ◦P2t and H with respect to any
vertex v j of P2t and w of H. Since K ◦P2t is a graph of
nullity two, it contains core and noncore (of null spread
zero and null spread −1) vertices. If v j is a core vertex,
(K ◦P2t)◦H has nullity two. If v j is a noncore vertex
of null spread −1, K ◦ (P2t ◦H) has nullity four. If v j is
a noncore vertex of null spread 0, then K ◦ (P2t ◦H) has
nullity three.

(iii) Without loss of generality suppose that u is a core vertex
and w is a noncore vertex (of null spread −1). Clearly
K ◦P2t is nonsingular as K− u is nonsingular. Next
Coalesce K ◦P2t and H with respect to any vertex v j of
P2t and w of H. If (K ◦P2t)−v j is nonsingular, we have
K ◦ (P2t ◦H) is singular of nullity one. If (K ◦P2t)− v j
is singular, then (K ◦P2t) ◦H is singular with nullity
two.

Theorem 2.21 can be generalized as follows:

Theorem 2.22. Let (K,u) and (H,w) be the components of
the graph obtained by deleting the path P2t from KH +P2t . If
K and H are singular with nullity η1 and η2, then

i KH +P2t is singular of nullity η1 +η2−2 when u and
w are core vertices.

ii KH +P2t is singular of nullity greater than or equal
to η1 +η2 when u and w are noncore vertices of null
spread −1.

iii KH +P2t is singular of nullity greater than or equal to
η1 +η2−1 when u is a core vertex and w is a noncore
vertex or vice versa.

Example 2.23. In Figure 9, K is a singular graph of nullity
3 and H is a singular graph of nullity 2. K and H are joined
by P4 at the noncore vertices of null spread −1 of K and H.
The graph KH +P4 is singular of nullity 7.

K

u

P4

w

H

Figure 9. Larger singular graph constructed by an even Path

2.2 Construction using the path P2t+1
In this section we construct the graph KH +P2t+1 using the
path P2t+1 of odd number of vertices. We have the following
obvious result about paths having odd number of vertices.

Theorem 2.24. In a path P2t+1 = v1,v2,v3, . . . ,v2t+1, the ver-
tices v2,v4, . . . ,v2t are noncore vertices of null spread −1 and
v1,v3, . . . ,v2t+1 are core vertices.

The path P2t+1 contains core vertices and noncore vertices
of null spread −1. Also, there is no edges between noncore
verices. Being a graph of nullity one, it is clearly a minimal
configuration.

Lemma 2.25. Let K be a nonsingular graph such that K−u
is singular, where u ∈ K. If K ◦P2t+1 is the coalescence of K
and P2t+1 with respect to u ∈ K and a core vertex v ∈ P2t+1,
then K ◦P2t+1 is nonsingular. Moreover, K ◦P2t+1−v′ for any
v′ ∈ P2t+1 is singular.

Proof. By Theorem 2.7, we have K ◦P2t+1 is nonsingular.
Now it remains to prove that K ◦P2t+1− v′ for any v′ ∈ P2t+1
is singular. Suppose that v′ is a non-pendant core vertex
of P2t+1. Then P2t+1− v′ will split into two points of even
number of vertices, each of which is nonsingular. As K−u is
singular, the coalescence of K with any of these paths of even
number of vertices yield a singular graph of nullity one. If v′ is
a pendant core vertex, then P2t+1−v′ is a path of even number
of vertices and coalescence of this path with K again yield a
singular graph of nullity one. Next suppose that v′ is a noncore
vertex of P2t+1. In this case P2t+1− v′ will split into two parts
of odd number of vertices. The coalescence of K with any
if these paths at its core vertices yield a nonsingular graph.
Since the other odd component is singular, K ◦P2t+1− v′ is
singular.

Theorem 2.26. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at core vertices of P2t+1. If K,H and
H−w are nonsingular and K−u is singular, then KH+P2t+1
is nonsingular.

Proof. We know that KH +P2t+1 = (K ◦P2t+1)◦H. Since K
is a nonsingular and the coalescence is done at a core vertex of
P2t+1, by Lemma 2.2, we have K ◦P2t+1 is nonsingular. Now
(K ◦P2t+1)◦H is nonsingular as H and H−w are nonsingular.

Theorem 2.27. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at core vertices of P2t+1. If K,H are
nonsingular and K−u, H−w are singular, then KH +P2t+1
is singular.

Proof. We know that KH +P2+1t = (K ◦P2t+1)◦H. Since K
is nonsingular and the coalescence of K and P2t+1 is done at
the core vertices of P2t+1, by Lemma 2.25, we have K ◦P2t+1
is nonsingular. As K ◦P2t+1−v′ for any v′ ∈ P2t+1 and H−w
are singular, it follows that KH +P2t+1 is singular.
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Remark 2.28. The graph KH + P2t+1 is singular if H in
Theorem 2.27 is also singular. However, if it is singular and
H−w is nonsingular, then KH +P2t+1 is nonsingular.

Lemma 2.29. Let K be a nonsingular graph such that K−u
is singular, where u ∈ K. If K ◦P2t+1 is the coalescence of
K and P2t+1 with respect to u ∈ K and a noncore vertex v ∈
P2t+1, then K ◦ P2t+1 is singular of nullity two. Moreover,
K ◦P2t+1− v′ for any v′ ∈ P2t+1 is singular.

Proof. By Theorem 2.7, we have K ◦P2t+1 is singular of nul-
lity two. Now, we prove that K ◦P2t+1− v′ for v′ ∈ P2t+1 is
singular. First suppose that v′ is a non-pendant core vertex
of P2t+1. Then P2t+1− v′ will split into two paths of even
number of vertices each of which is nonsingular. Since K−u
is singular, the coalescence of K with any of these paths yield
a singular graph of nullity one. So K ◦P2t+1− v′ is singular if
v′ is a non-pendant core vertex of P2t+1. If v′ is a pendant core
vertex, then P2t+1−v′ is a path of even number of vertices and
coalescence of this path with K again yield a singular graph
of nullity one. Finally suppose that v′ is a noncore vertex of
P2t+1. In this case, P2t+1− v′ will split into two paths of odd
number of vertices. The coalescence of K with any of these at
its noncore vertices yield a nonsingular graph of nullity two.
Since the other odd component is singular of nullity one, it
follows that K ◦P2t+1− v′ is singular of nullity three.

Theorem 2.30. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at noncore vertices of P2t+1. If K,H and
H−w are nonsingular and K−u is singular, then KH+P2t+1
is singular.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.29, we know K ◦P2t+1 is singular of nullity two. Since the
coalescence is done at noncore vertices of P2t+1 and K ◦P2t+1
is singular of nullity two, we have KH+P2t+1 is singular.

Lemma 2.31. Let K be a singular graph such that K−u is
nonsingular, where u ∈ K. If K ◦P2t+1 is the coalescence of
K and P2t+1 with respect to u ∈ K and a core vertex v ∈ P2t+1,
then K ◦P2t+1 is singular. Moreover, K ◦P2t+1− v′ for any
v′ ∈ P2t+1 is nonsingular if v′ is a core vertex and singular if
v′ is a noncore vertex.

Proof. Since K and P2t+1 are singular, and K− u, P2t+1− v
are nonsingular, it follows by Theorem 2.11 that K ◦P2t+1
is a singular graph of nullity one. First suppose that v′ is a
pendant core vertex of P2t+1. Clearly P2t+1− v′ is a path of
even number of vertices and the coalescence of this path with
K yield a nonsingular graph. If v′ is a non-pendant core vertex
of P2t+1, P2t+1− v′ will split into two paths of even number
of vertices. The coalescence of K with any of these even
paths gives a nonsingular graph. Finally if v′ is a noncore
vertex, then P2t+1−v′ with split into two paths of odd number
of vertices. The coalescence of any one of these path at its
core vertices with K yield a singular graph of nullity one.
Since the other component is also singular of nullity one, we

have K ◦P2t+1− v′ is a singular graph of nullity two, if v′ is a
noncore vertex.

Theorem 2.32. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at core vertices of P2t+1. If K is singular
and K− u, H, H −w are nonsingular, then KH +P2t+1 is
nonsingular.

Proof. We know that KH +P2t+1 = (K ◦P2t+1) ◦H. As K
is singular and K− u is nonsingular and the coalescence is
done at the core vertex of P2t+1, by Lemma 2.31, we can
see that K ◦P2t+1 is singular. We are coalescing K ◦P2t+1
with H at the core vertices of P2t+1 to construct KH +P2t+1.
Since K ◦P2t+1− v′ is nonsingular for core vertex v′ ∈ P2t+1,
it follow that KH +P2t+1 is nonsingular.

Theorem 2.33. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at core vertices of P2t+1. If K, H are
singular and K−u, H−w are nonsingular, then KH +P2t+1
is singular.

Proof. We know that KH +P2t+1 = (K ◦P2t+1) ◦H. Here
also, we have by Lemma 2.31, K ◦P2t+1 is singular. Since H
is singular and K ◦P2t+1 is singular of nullity one, it is clear
that (K ◦P2t+1)◦H is a singular graph of nullity one.

Lemma 2.34. Let K be a singular graph such that K−u is
nonsingular, where u ∈ K. If K ◦P2t+1 is the coalescence of K
and P2t+1 with respect to u∈K and a noncore vertex v∈P2t+1,
then K ◦P2t+1 is a singular graph of nullity one. Moreover,
K ◦P2t+1− v′ for any v′ ∈ P2t+1 is nonsingular if v′ is a core
vertex and singular of nullity two if v′ is a noncore vertex.

Proof. Proof of the lemma is similar to the proof of Lemma
2.29.

Theorem 2.35. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at noncore vertices of P2t+1. If K is
singular and K− u, H, H −w are nonsingular, then KH +
P2t+1 is singular of nullity one.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.34, K ◦P2t+1 is a singular graph of nullity one. As K ◦
P2t+1− v′ is singular of nullity two if v′ is a nocore vertex of
P2t+1, it follows that KH +P2t+1 is a singular graph of nullity
one.

Theorem 2.36. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at noncore vertices of P2t+1. If K, H−w
are singular and K−u, H are nonsingular, then KH +P2t+1
is a singular graph of nullity two.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.34, K ◦P2t+1 is a singular graph of nullity one. As K ◦
P2t+1− v′ is a singular graph of nullity two if v′ is a noncore
vertex of P2t+1 and H−w is singular, we have (K ◦P2t+1)◦H
is a singular graph of nullity two.
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Lemma 2.37. Let K be a nonsingular graph such that K−u
is nonsingular, where u ∈ K. If K ◦P2t+1 is the coalescence
of K and P2t+1 with respect to u ∈ K and a noncore vertex
v ∈ P2t+1, then K ◦P2t+1 is a singular graph of nullity one.
Moreover, K ◦P2t+1−v′ for any v′ ∈ P2t+1 is nonsingular if v′

is a core vertex and singular if v′ is a noncore vertex.

Proof. Proof of lemma is similar to the proof of Lemma 2.29.

Theorem 2.38. Let K and H be two nonsingular graphs and
KH +P2t+1 is the graph obtained by joining (K,u) to P2t+1
at a noncore vertex of P2t+1 and (H,w) to P2t+1 at a core
vertex of P2t+1. Then KH +P2t+1 is nonsingular or singular
of nullity one according as K−u is nonsingular or singular.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.37, if K − u is nonsingular, then K ◦ P2t+1 is a singular
graph of nullity one. Also, by Lemma 2.37, K ◦P2t+1− v′

for v′ ∈ P2t+1 is nonsingular, for core vertex v′. Since H is
nonsingular and (H,w) is joining to P2t+1 at a core vertex, we
have KH +P2t+1 is nonsingular. By Lemma 2.29, if K−u is
singular, then K ◦P2t+1 is singular of nullity two. Also, by
Lemma 2.29, K ◦P2t+1− v′ for any v′ ∈ P2t+1 is singular. So,
clearly we have, KH +P2t+1 is singular.

Lemma 2.39. Let K be a singular graph of nullity η such
that K−u is singular of nullity η−1 for u ∈ K (u is a core
vertex). If K ◦P2t+1 is the coalescence of K and P2t+1 with
respect to u ∈ K and a core vertex of P2t+1, then K ◦P2t+1
is a singular graph of nullity η . Moreover, K ◦P2t+1− v′ is
singular of nullity η−1, if v′ is a core vertex and singular of
nullity η +1, if v′ is a noncore vertex of P2t+1.

Proof. Proof is similar to Lemma 2.37.

Theorem 2.40. Let (K,u) and (H,w) be two singular graphs
of nullity η1 and η2 respectively and u is a core vertex and w is
a noncore vertex of null spread−1. If the graph KH+P2t+1 is
obtained by joining (K,u) to a core vertex of P2t+1 and (H,w)
to a noncore vertex of P2t+1, then KH +P2t+1 is a singular
graph of nullity η1 +η2 +1.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.39, we have K ◦P2t+1 is a singular graph of nullity η1. Since
K ◦ P2t+1 − v′ for noncore v′ ∈ P2t+1 is singular of nullity
η1+1, by Lemma 2.39 and H−w is singular of nullity η2+1,
it follows from Theorem 2.3 that KH +P2t+1 is singular of
nullity η1 +η2 +1.

Theorem 2.41. Let (K,u) and (H,w) be two singular graphs
of nullity η1 and η2 respectively and u is a core vertex and w
is a noncore vertex of null spread−1. If the graph KH+P2t+1
is obtained by joining (K,u) and (H,w) by P2t+1 at the core
vertices of P2t+1, then KH + P2t+1 is a singular graph of
nullity η1 +η2−1.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.39, KH +P2t+1 is a singular graph of nullity η1. As K ◦
P2t+1− v′ for core v′ ∈ P2t+1 is singular of nullity η1−1 and
H−w is singular of nullity η2 +1 by Theorem 2.5, we have
KH +P2t+1 is singular of nullity η1 +η2−1.

Lemma 2.42. Let K be a singular graph of nullity η such
that K−u is singular of nullity η +1 (u is a noncore vertex
of null spread −1). If K ◦P2t+1 is the coalescence of K and
P2t+1 with respect to u ∈ K and a noncore vertex of P2t+1,
then K ◦P2t+1 is a singular graph of nullity η +2. Moreover,
K ◦P2t+1− v′ is singular of nullity η +1, if v′ is a core vertex
and singular of nullity η +3, if v′ is a noncore vertex of P2t+1.

Proof. Proof of the lemma is similar to the proofs of other
lemmas.

Theorem 2.43. Let KH +P2t+1 is obtained by joining (K,u)
and (H,w) by P2t+1 at noncore vertices of P2t+1. If K and H
are singular graphs of nullity η1 and η2 respectively and u,w
are noncore vertices, then KH +P2t+1 is singular of nullity
η1 +η2 +3.

Proof. We know that KH+P2t+1 =(K◦P2t+1)◦H. By Lemma
2.42, we have, K ◦P2t+1 is singular of nullity η1 +2. Since by
Lemma 2.42, K ◦P2t+1− v′ for noncore v′ ∈ P2t+1 is singular
of nullity η1 + 3 and H−w is singular of nullity η2 + 1, it
follows by theorem 2.3 that KH +P2t+1 is singular of nullity
η1 +η2 +3.

Remark 2.44. In the above theorem if (K,u) and (H,w) are
connected by P2t+1 at core vertices of P2t+1 then KH +P2t+1
is a singular graph of nullity η1 +η2 +1. If (K,u) and (H,w)
are connected by P2t+1 at a core vertex to (K,u) and at a
noncore vertex to (H,w), then KH +P2t+1 is again a singular
graph of nullity η1 +η2 +1. Also, if u and w are core vertices
in theorem 2.43, then KH+P2t+1 is a singular graph of nullity
η1 +η2 +1.

K

u

H

P5

w

Figure 10. The graph KH +P5 with K−u and H−w
nonsingular.
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Example 2.45. In Figure 10, the graph K, H are singular
and K−u, H−w are nonsingular. The graph KH +P5 is a
singular graph of nullity one. Note that K and H are joined
at the noncore vertices of P5.

Example 2.46. In Figure 11, the graphs K, H−w are singu-
lar of nullity one and K−u, H are nonsingular. The graph
KH +P5 is a singular graph of nullity two. Obviously K and
H joined at noncore vertices of P5.

Example 2.47. Theorem 2.43 can be used to construct singu-
lar graph of larget nullity. In Figure 12, we have a singular
graph of nullity 23.

u

P5

w

H

K

Figure 11. The graph KH +P5 with K−u and H
nonsingular.

H1

H2

P7

H3

H4

Figure 12. A singular graph of larger nullity.

3. Conclusion
In this paper, we have constructed larger singular and non-

singular graphs using a path. The presence of three types
of vertices in a singular graph is the key in the construction.
We have established that how a graph of largest nullity can
be constructed using a path. Singular graphs have important
applications in mathematics and science. Singular graphs
are widely used in Chemistry. If the nullity of the molecular
graph is greater than zero, then the corresponding chemical

compound is highly reactive or unstable. Because of this
reason, the Chemists have a great interest in singular graphs.
So we are sure that, in some way, our findings will have
application in Chemistry.
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