

# Intuitionistic fuzzy classes of implicative filters in RLW-algebras

A. Ibrahim<sup>1</sup> and V. Nirmala<sup>2\*</sup>

### **Abstract**

The goal of this paper is propose the definitions of intuitionistic fuzzy positive, associative and fantastic implicative filters of a RLW - algebras (Residuated Lattice Wajsberg algebras), and to investigate those properties with illustrations. In addition, we obtain some equivalent conditions of intuitionistic fuzzy positive, associative and fantastic implicative filters.

#### **Keywords**

Wajsberg algebra; Lattice Wajsberg algebra; RLW- algebra; Fuzzy implicative filter; Intuitionistic fuzzy implicative filter; Intuitionistic fuzzy associative implicative filter; Intuitionistic fuzzy fantastic implicative filter.

#### **AMS Subject Classification**

03B52, 03G10, 03E72.

Article History: Received 17 July 2020; Accepted 22 September 2020

©2020 MJM.

### **Contents**

| 1   | Introduction                                              | . 1635 |
|-----|-----------------------------------------------------------|--------|
| 2   | Preliminaries                                             | . 1635 |
| 3   | Main Results                                              | 1637   |
| 3.1 | Intuitionistic Fuzzy Positive Implicative Filter          | 1637   |
| 3.2 | Intuitionistic Fuzzy Associative Implicative Filt<br>1638 | er     |
| 3.3 | Intuitionistic Fuzzy Fantastic Implicative Filter         | 1640   |
| 4   | Conclusion                                                | . 1642 |
|     | References                                                | . 1642 |

# 1. Introduction

In 1965, Lotfi. A. Zadeh [16] described the concept of fuzzy logic as the generalization of ordinary subsets. Krassimir .T .Atanassov [1,2] proposed the idea of fuzzy sets, known as intuitionistic fuzzy sets in 1983. Morgan Ward and R.P. Dilworth presented the idea of residuated lattices [14]. Mordchaj Wajsberg introduced the concept of Wajsberg algebras in [15]. Ibrahim and Basheer Ahamed [3,4] identified the concepts of fuzzy implicative filter and an anti-fuzzy

implicative filter of lattice Wajsberg algebras and obtained some properties. Ibrahim and Jeya lekshmi [12] introduced the notion of intuitionistic fuzzy pseudo- boolean implicative filters of lattice pseudo -Wajsberg algebras. Ibrahim and Shajitha Begum [13] proposed the concepts of fuzzy positive implicative and Associative WI- ideals of lattice Wajsberg algebras and discussed some of their properties. The authors [6,7,8,9,10,11] proposed the notions of implicative filter, fuzzy implicative filter, intuitionistic fuzzy implicative filter, positive, associative and fantastic implicative filters of RLW-algebra and discussed some of their properties.

In this research article, we present the notions of intuitionistic fuzzy positive, associative and fantastic implicative filters of RLW- algebra. Likewise, we examine a portion of their related properties. Finally, we discuss some equivalent conditions with illustrations.

# 2. Preliminaries

In this part we review some essential definitions and their properties which are useful to build up our primary outcomes.

**Definition 2.1** ([5]). Let  $(\mathcal{G}, \rightarrow, *, 1)$  be an algebra with a

<sup>&</sup>lt;sup>1</sup>PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai–622001, Tamil Nadu, India.

<sup>&</sup>lt;sup>2</sup> Research Scholar, PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai–622 001, Tamil Nadu, India.

<sup>&</sup>lt;sup>2</sup> Department of Mathematics, Rathinam Technical Campus, Coimbatore-641021, Tamil Nadu, India.

<sup>&</sup>lt;sup>1,2</sup> Affiliated to Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India.

<sup>\*</sup>Corresponding author: 1 ibrahimaadhil@yahoo.com; 2 nirmalakutty9@gmail.com

binary operation " $\rightarrow$ " and a quasi complement "\*". Then it is called Wajsberg algebra, if the following conditions are satisfied for all  $r, s, t \in \mathcal{G}$ ,

(i) 
$$1 \rightarrow r = r$$

(ii) 
$$(r \rightarrow s) \rightarrow ((s \rightarrow t) \rightarrow (r \rightarrow t)) = 1$$

(iii) 
$$(r \rightarrow s) \rightarrow s = (s \rightarrow r) \rightarrow r$$

(iv) 
$$(r^* \rightarrow s^*) \rightarrow (s \rightarrow s) = 1$$
.

**Proposition 2.2** ([5]). Let  $(\mathcal{G}, \rightarrow, *, 1)$  be a Wajsberg algebra. Then the following axioms are satisfied for all  $r, s, t \in \mathcal{G}$ ,

(i) 
$$r \rightarrow r = 1$$

(ii) If 
$$(r \rightarrow s) = (s \rightarrow r) = 1$$
 then  $r = s$ 

(iii) 
$$r \rightarrow 1 = 1$$

(iv) 
$$(r \rightarrow (s \rightarrow r)) = 1$$

(v) If 
$$(r \rightarrow s) = (s \rightarrow t) = 1$$
 then  $s \rightarrow t = 1$ 

(vi) 
$$(r \rightarrow s) \rightarrow ((t \rightarrow r) \rightarrow (t \rightarrow s)) = 1$$

(vii) 
$$r \rightarrow (s \rightarrow t) = s \rightarrow (r \rightarrow t)$$

(*viii*) 
$$r \to 0 = r \to 1^* = r^*$$

$$(ix) (r^*)^* = r$$

$$(x)$$
  $(r^* \rightarrow s^*) = s \rightarrow r$ .

**Definition 2.3** ([5]). Let  $(\mathcal{G}, \rightarrow, *, 1)$  be a Wajsberg algebra. Then it is called a lattice Wajsberg algebra, if the following conditions are satisfied for all  $r, s \in \mathcal{G}$ ,

(i) The partial ordering " $\leq$ " on a lattice Wajsberg algebra  $\mathcal{G}$  such that  $u \leq v$  if and only if  $r \rightarrow r = 1$ 

(ii) 
$$(r \lor r) = (r \to s) \to s$$

(iii) 
$$(r \wedge s) = (r^* \rightarrow s^*) \rightarrow r^*)^*$$
.

Thus,  $(\mathscr{G}, \vee, \wedge, *, \rightarrow, 0, 1)$  is a lattice Wajsberg algebra with lower bound 0 and upper bound 1.

**Proposition 2.4** ([5]). Let  $(\mathcal{G}, \rightarrow, *, 1)$  be a Wajsberg algebra. Then the following axioms are satisfied for all  $u, s, w \in \mathcal{G}$ ,

(i) If 
$$r \le s$$
 then  $r \to t \ge s \to t$  and  $t \to r \le t \to s$ 

(ii) 
$$r \le s \to r$$
 if and only if  $s \le r \to t$ 

(iii) 
$$(r \vee s)^* == (r^* \wedge z^*)$$

$$(iv) (r \wedge s)^* = (r^* \vee s^*)$$

(v) 
$$(r \lor s) \to t = (r \to t) \land (s \to t)$$

(vi) 
$$r \rightarrow (s \land t) = (r \rightarrow s) \land (r \rightarrow t)$$

(vii) 
$$(u \rightarrow s) \lor (s \rightarrow r) = 1$$

(viii) 
$$r \rightarrow (s \lor t) = (r \rightarrow s) \lor (r \rightarrow t)$$

(ix) 
$$(r \land s) \rightarrow t = (r \rightarrow t) \lor (s \rightarrow t)$$

$$(x)$$
  $(r \land s) \lor t = (r \lor t) \land (s \lor t)$ 

(xi) 
$$(r \land s) \rightarrow t = (r \rightarrow s) \rightarrow (r \rightarrow t)$$
.

**Definition 2.5** ([14]). Let  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, 0, 1)$  be an algebra of type (2, 2, 2, 2, 0, 0). Then, it is called a residuated lattice, if the following axioms are satisfied for all  $r, s, t \in \mathcal{G}$ ,

- (i)  $(\mathcal{G}, \vee, \wedge, 0, 1)$  is a bounded lattice
- (ii)  $(\mathcal{G}, \odot, 1)$  is a commutative monoid
- (iii)  $r \odot s \le t$  if and only if  $r \le s \to t$ .

**Definition 2.6** ([5]). Let  $(\mathcal{G}, \vee, \wedge, \to, *, 0, 1)$  be a lattice Wajsberg algebra. Then, it is called a RLW - algebra, if a binary operation " $\odot$ " on  $\mathcal{G}$ , satisfied the condition  $r \odot s = (r \to s^*)^*$  for all  $t, s, \in \mathcal{G}$ .

**Note 2.7.** From the Definition 2.6, we have  $(\mathscr{G}, \vee, \wedge, \odot, \rightarrow , *, 0, 1)$  is called a RLW - algebra.

**Definition 2.8** ([5]). Let  $\mathcal{G}$  be a lattice Wajsberg algebra. Then a subset  $\mathcal{P}$  of  $\mathcal{G}$  is called an implicative filter of  $\mathcal{G}$ , if the following axioms are satisfied for all  $r, s \in \mathcal{G}$ ,

(i) 
$$1 \in \mathscr{P}$$

(ii) 
$$r \in \mathcal{P}$$
 and  $r \to s \in \mathcal{P}$  imply  $r \in \mathcal{P}$ .

**Definition 2.9** ([9]). Let  $\mathcal{G}$  be a RLW - algebra. Then the non-empty subset  $\mathcal{P}$  of  $\mathcal{G}$  is called a positive implicative filter of g, if the following axioms are satisfied for all  $r, s, t \in \mathcal{G}$ 

(i) 
$$1 \in \mathscr{P}$$

(ii) 
$$(s \odot r) \rightarrow t \in \mathscr{P}$$
 and  $r \rightarrow s \in \mathscr{P}$  imply  $r \rightarrow t \in \mathscr{P}$ 

(iii) 
$$(r \to s) \to s \in \mathscr{P}$$
 and  $r \in \mathscr{P}$  imply  $s \in \mathscr{P}$ .

**Definition 2.10** ([9]). Let  $\mathcal{G}$  be a RLW - algebra. Then the non-empty subset  $\mathcal{P}$  of  $\mathcal{G}$  is called a associative implicative filter of  $\mathcal{G}$ , if the following axioms are satisfied for all  $r, s, t \in \mathcal{G}$ ,

(i) 
$$1 \in \mathscr{P}$$

(ii) 
$$r \odot (s \odot t) \in \mathcal{P}$$
 and  $r \odot s \in \mathcal{P}$  imply  $t \in \mathcal{P}$ 

(iii) 
$$r \to (s \to t) \in \mathscr{P}$$
 and  $r \to s \in \mathscr{P}$  imply  $t \in \mathscr{P}$ .

**Definition 2.11** ([11]). Let g be a RLW – algebra. Then a subset  $\mathscr{P}$  of  $\mathscr{G}$  is called a fantastic implicative filter of  $\mathscr{G}$ , if the following axioms are satisfied for all  $r, s, t \in \mathscr{G}$ ,

(i) 
$$1 \in \mathscr{P}$$

(ii) If 
$$r, s \in \mathcal{G}$$
 then  $r \odot v \in \mathcal{P}$ 

(iii) 
$$t \to (s \to r) \in \mathscr{P}$$
 and  $t \in \mathscr{P}$  imply  $((r \to s) \to s) \to r \in \mathscr{P}$ .



**Definition 2.12** ([15]). Let  $\mathcal{G}$  be a set. A function  $\eta : \mathcal{G} \to [0,1]$  is called a fuzzy subset on  $\mathcal{G}$ , for each  $r \in \mathcal{G}$ . The value of  $\eta(r)$  describes a degree of membership of r in  $\eta$ .

**Definition 2.13** ([15]). Let  $\eta$  be a fuzzy subset of X, then the complement of  $\eta$  is denoted by  $\overline{\eta(r)}$  and defined as  $\overline{\eta(r)} = 1 - \eta(r)$  for all  $u \in X$ .

**Definition 2.14** ([10]). Let  $\mathcal{G}$  be a RLW - algebra. Then the fuzzy subset  $\eta$  of  $\mathcal{G}$  is called a fuzzy positive implicative filter of  $\mathcal{G}$ , if it satisfies the following axioms for all  $u, v, w \in \mathcal{G}$ ,

- (i)  $\eta(1) \geq \eta(r)$
- (ii)  $\eta(r \to t) \ge \min\{\eta((s \odot r) \to r), \eta(r \to s)\}$
- (iii)  $\eta(s) \ge \min\{\eta((r \to s) \to s), \eta(r)\}.$

**Definition 2.15** ([10]). Let  $\mathcal{G}$  be a RLW – algebra. Then the fuzzy subset  $\eta$  of  $\mathcal{G}$  is called a for all  $u, s, t \in \mathcal{G}$ ,

- (i)  $\eta(1) \geq \eta(r)$
- (ii)  $\eta(t) \ge \min\{\eta(r \odot (s \odot t)), \eta(r \odot s)\}$
- (iii)  $\eta(t) \ge \min{\{\eta(r \to (s \to t)), \eta(r \to s)\}}$ .

**Definition 2.16** ([11]). Let g be a RLW - algebra. Then a fuzzy subset  $\eta$  of G is called a fuzzy fantastic implicative filter of g, if it satisfies the following axioms for all  $r, s, t \in \mathcal{G}$ ,

- (i)  $\eta(1) \geq \eta(r)$
- (ii)  $\eta(r \odot s) \ge \min\{\eta(r), \eta(s)\}$

(iii) 
$$\eta(((r \to s) \to s) \to r) \ge \min\{\eta(t \to (s \to r)), \eta(t)\}.$$

**Definition 2.17** ([1]). An intuitionistic fuzzy set H in a non-empty set X is an object having the for

$$H = \{ (r, \eta_H(r), \theta_H(r)) / r \in X \} = (\eta_H, \theta_H),$$

where the functions  $\eta_H : X \to [0,1]$  and  $\theta_H : X \to [0,1]$  denote the degree of membership and the degree of nonmembership respectively, and  $0 \le \eta_H(r) + \theta_H(r) \le 1$  for any  $r \in X$ .

**Definition 2.18** ([8]). Let  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, *, 0, 1)$  be a RLW - algebra. Then, an intuitionistic fuzzy set  $H = (\eta_H, \theta_H)$  of  $\mathcal{G}$  is said to be an intuitionistic fuzzy implicative filter of  $\mathcal{G}$  if the following axioms are satisfied for all  $r, s \in \mathcal{G}$ ,

- (i)  $\eta_H(1) \ge \eta_H(r)$  and  $\theta_H(1) \le \theta_H(r)$
- (ii)  $\eta_H(s) \ge \min \{ \eta_H(r \to s), \eta_H(r) \}$
- (iii)  $\theta_H(s) \leq \max\{\theta_H(r \to s), \theta_H(r)\}$
- (iv)  $\eta_H(r \odot s) \ge \min \{ \eta_H(r), \eta_H(s) \}$
- (v)  $\theta_H(r \odot s) \leq \max \{\theta_H(r), \theta_H(s)\}.$

### 3. Main Results

In this section, all propositions are discussed under the condition of intuitionistic fuzzy positive, associative and fantastic implicative filters of *RLW* - algebra and obtain some useful results with illustrations.

#### 3.1 Intuitionistic Fuzzy Positive Implicative Filter

**Definition 3.1.** Let  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, *, 0, 1)$  be a RLW- algebra. Then, an intuitionistic fuzzy set  $H = (\eta_H, \theta_H)$  of  $\mathcal{G}$  is called an intuitionistic fuzzy positive implicative filter of  $\mathcal{G}$ , if it satisfies the following axioms for all  $r, s, t \in \mathcal{G}$ ,

- (i)  $\eta_H(1) \ge \eta_H(r)$  and  $\theta_H(1) \le \theta_H(r)$
- (ii)  $\eta_H(r \to t) \ge \min \{ \eta_H((s \odot r) \to t), \eta_H(r \to s) \}$
- (iii)  $\theta_H(r \to t) \le \max \{\theta_H((s \odot r) \to t), \theta_H(r \to s)\}$
- (iv)  $\eta_H(s) \ge \min \{ \eta_H((r \to s) \to s), \eta_H(u) \}$
- (v)  $\theta_H(s) \leq \max \{\theta_H((r \to s) \to s), \theta_H(r)\}.$

**Example 3.2.** Let  $\mathcal{G} = \{0, p, q, \ell, m, n, o, 1\}$  be a set with Figure 1 as a partial ordering. Define a binary operation  $\rightarrow$  and a quasi-complement on  $\mathcal{G}$  as in Tables 2 and 3.

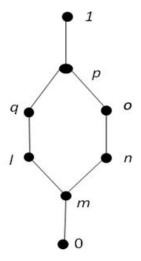


Figure 1. Lattice diagram

Table 1. Complement

| • | 1. Compi |        |  |  |  |  |  |  |
|---|----------|--------|--|--|--|--|--|--|
|   | r        | $r^*$  |  |  |  |  |  |  |
|   | 0        | 1      |  |  |  |  |  |  |
|   | p        | m      |  |  |  |  |  |  |
|   | q        | n      |  |  |  |  |  |  |
|   | $\ell$   | 0      |  |  |  |  |  |  |
|   | m        | p      |  |  |  |  |  |  |
|   | n        | q      |  |  |  |  |  |  |
|   | 0        | $\ell$ |  |  |  |  |  |  |
|   | 1        | 0      |  |  |  |  |  |  |



Table 2. Implication

| 1             |        |   |   |        |   |   |   |   |
|---------------|--------|---|---|--------|---|---|---|---|
| $\rightarrow$ | 0      | p | q | $\ell$ | m | n | О | 1 |
| 0             | 1      | 1 | 1 | 1      | 1 | 1 | 1 | 1 |
| p             | 1      | 1 | p | p      | O | 0 | 0 | 1 |
| q             | m      | 1 | 1 | p      | О | О | О | 1 |
| $\ell$        | О      | 1 | 1 | 1      | О | o | О | 1 |
| m             | p      | 1 | 1 | 1      | 1 | 1 | 1 | 1 |
| n             | 1      | 1 | p | p      | p | 1 | 1 | 1 |
| О             | $\ell$ | 1 | p | p      | p | p | 1 | 1 |
| 1             | 0      | p | q | $\ell$ | m | n | О | 1 |

Define  $\vee$ ,  $\wedge$  and  $\odot$  operations on  $(\mathcal{G}, \vee, \wedge, 0, 1)$  as follow  $(r \vee s) = (r \rightarrow s) \rightarrow s$ ,  $(r \wedge s) = ((r^* \rightarrow s^*) \rightarrow s^*)^*$ .  $r \odot s = (r \rightarrow s^*)^*$  for all  $r, s \in \mathcal{G}$ . Then,  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, *0, 1)$  is a RLW – algebra. Consider an intuitionistic fuzzy subset  $H = (\eta_H, \theta_H)$  on  $\mathcal{G}$  is defined by

$$\eta_H(r) = \begin{cases}
1 & \text{if } r = 1 \text{ for all } r \in \mathcal{G} \\
0.2 & \text{otherwise for all } r \in \mathcal{G},
\end{cases}$$

$$\theta_H(r) = \begin{cases}
0 & \text{if } r = 1 \text{ for all } r \in \mathcal{G} \\
0.3 & \text{otherwise for all } r \in \mathcal{G}.
\end{cases}$$

Then, H is an intuitionistic fuzzy positive implicative filter of RLW -  $algebra \mathcal{G}$ .

From the previous example, let us consider an intuitionistic fuzzy subset  $H = (\eta_H, \theta_H)$  on  $\mathscr{G}$  as,

$$\eta_H(r) = \left\{ \begin{array}{ll} 0.7 \text{ if} & r \in \{0, p, \ell\} \text{ for all } r \in \mathscr{G} \\ 0.5 \text{ otherwise for all } r \in \mathscr{G}, \end{array} \right.$$

$$\theta_H(u) = \begin{cases} 0.4 \text{ if } r \in \{0, p, \ell\} \text{ for all } r \in \mathcal{G} \\ 0.6 \text{ otherwise for all } r \in \mathcal{G}. \end{cases}$$

Then, H is not an intuitionistic fuzzy positive implicative filter of RLW-algebra  $\mathcal{G}$ . Since,

$$\eta_H(1 \rightarrow q) < \min \{ \eta_H((p \odot 1) \rightarrow q), \eta_H(1 \rightarrow p) \}$$

and

$$\theta_H(1 \to q) > \max \{\theta_H((p \odot 1) \to q), \theta_H(1 \to p)\}.$$

**Proposition 3.3.** Every intuitionistic fuzzy positive implicative filter of RLW - algebra  $\mathcal{G}$  is an intuitionistic fuzzy implicative filter.

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy positive implicative filter of RLW – algebra  $\mathscr{G}$ . From (ii) of Definition 3.1

$$\eta_H(r \to t) \ge \min \{ \eta_H((s \odot r) \to t), \eta_H(r \to s) \}.$$

We know that,  $(s \odot r) \rightarrow t = s \rightarrow (r \rightarrow t)$ ,

$$\eta_H(r \to t) > \min \{ \eta_H(s \to (r \to t)), \eta_H(r \to s) \}.$$

Taking r = 1,, from (i) of Definition 2.1 we get,

$$\eta_H(1 \to t) > \min \{ \eta_H(s \to (1 \to t)), \eta_H(1 \to s) \},$$

 $\eta_H(w) \ge \min \{ \eta_H(s \to t), \eta_H(s) \}$ . Similarly, from (iii) of Definition 3.1

$$\theta_H(r \to t) \le \max \{\theta_H((s \odot r) \to t), \theta_H(r \to s)\},\$$

$$\theta_H(r \to t) \le \max \{\theta_H(s \to (r \to t)), \theta_H(r \to s)\}.$$

Taking r = 1, From (i) of Definition 2.1, we get

$$\theta_H(1 \to t) \le \max \{\theta_H(s \to (1 \to t)), \theta_H(1 \to s)\},\$$

 $\theta_H(t) \le \max \{\theta_H(s \to t), \theta_H(s)\}$ . Hence,  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy implicative filter of  $\mathscr{G}$ .

**Proposition 3.4.** Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy implicative filter of RLW – algebra  $\mathcal{G}$ , then  $H = (\eta_H, \theta_H)$  is order preserving.

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy implicative filter of *RLW*-algebra  $\mathcal{G}$ . Then,

$$\eta_H(s) \ge \min\{\eta_H(r \to s), \eta_H(r)\}, [\text{From (ii) of Definition 2.14}]$$

$$= \min\{\eta_H(1), \eta_H(r)\} \quad [\text{ From (i) of Definition 2.3}]$$

$$= \eta_H(r).$$

Thus,

$$\eta_H(s) \geq \eta_H(r)$$

$$\theta_H(s) \le \max \{\theta_H(r \to s), \theta_H(r)\} [$$
 From (ii) of Definition2.14 $]$   
=  $\max \{\theta_H(1), \theta_H(r)\} [$  From (i) of Definition2.3 $]$   
=  $\theta_H(r)$ .

Thus,  $\theta_H(s) \leq \theta_H(r)$ . Hence,  $H = (\eta_H, \theta_H)$  is order preserving.

#### 3.2 Intuitionistic Fuzzy Associative Implicative Filter

**Definition 3.5.** Let  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, *, 0, 1)$  be a RLW – algebra. Then, an intuitionistic fuzzy set  $H = (\eta_H, \theta_H)$  of  $\mathcal{G}$  is called an intuitionistic fuzzy associative implicative filter of  $\mathcal{G}$ , if it satisfies the following axioms for all  $r, v, w \in \mathcal{G}$ ,

- (i)  $\eta_H(1) \ge \eta_H(u)$  and  $\theta_H \le \theta_H(r)$ .
- (ii)  $\eta_H(t) \ge \min \{ \eta_H(r \to (s \to t)), \eta_H(r \to s) \}.$
- (iii)  $\theta_H(t) \leq \max \{ \theta_H(r \to (s \to t), \theta_H(r \to s) \}.$
- (iv)  $\eta_H(t) \ge \min \{ \eta_H(r \odot (s \odot t)), \eta_H(r \odot s) \}.$
- (v)  $\theta_H(t) \leq \max\{\theta_H(r \odot (s \odot t)), \theta_H(r \odot s)\}.$

**Example 3.6.** Let  $\mathcal{G} = \{0, f, g, n, o, 1\}$  be a set with Figure 2 as a partial ordering. Define a binary operation " $\rightarrow$ " and a quasi-complement "\*" on  $\mathcal{G}$  as in Tables 3 and 4.



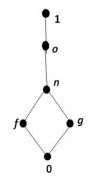


Figure 2. Lattice diagram

Table 3. Complement

| r* |
|----|
| 1  |
| g  |
| f  |
| 0  |
| 0  |
| 0  |
|    |

**Table 4.** Implication

| $\rightarrow$ | 0 | f | g | n | 0 | 1 |
|---------------|---|---|---|---|---|---|
| 0             | 1 | 1 | 1 | 1 | 1 | 1 |
| f             | g | 1 | g | 1 | 1 | 1 |
| g             | f | n | 1 | 1 | 1 | 1 |
| n             | 0 | f | g | 1 | 1 | 1 |
| О             | 0 | f | g | n | 1 | 1 |
| 1             | 0 | f | g | n | o | 1 |

*Define*  $\vee$ ,  $\wedge$  *and*  $\odot$  *operations on*  $(\mathscr{G}, \vee, \wedge, 0, 1)$  *as follow*  $(r \lor s) = (r \to s) \to s, (r \land s) = ((r^* \to s^*) \to s^*)^*. r \odot s =$  $(r \to s^*)^*$  for all  $r, s \in \mathcal{G}$ . Then,  $(\mathcal{G}, \vee, \wedge, \odot, \to, *0, 1)$  is a RLW - algebra. Consider an intuitionistic fuzzy subset H = $(\eta_H, \theta_H)$  on  $\mathscr{G}$  is defined by

$$\eta_H(r) = \left\{ egin{array}{ll} 1 & \textit{if } r = 1 \textit{ for all } r \in \mathscr{G} \\ 0.3 & \textit{otherwise for all } r \in \mathscr{G} \end{array} 
ight. \\ heta_H(r) = \left\{ egin{array}{ll} 0 & \textit{if } r = 1 \textit{ for all } r \in \mathscr{G} \\ 0.4 & \textit{otherwise for all } r \in \mathscr{G}. \end{array} 
ight.$$

$$\theta_H(r) = \begin{cases}
0 & \text{if } r = 1 \text{ for all } r \in \mathcal{G} \\
0.4 & \text{otherwise for all } r \in \mathcal{G}
\end{cases}$$

Then, H is an intuitionistic fuzzy associative implicative filter of RLW-algebra G.

From the Example 3.6 let us consider an intuitionistic fuzzy subset  $H = (\eta_H, \theta_H)$  on  $\mathscr{G}$  as,

$$\eta_H(r) = \left\{ \begin{array}{ll} 0.8 \text{ if } & r \in \{0,g,n\} \text{ for all } r \in \mathscr{G} \\ 0.6 & \text{ otherwise for all } r \in \mathscr{G}, \end{array} \right.$$

$$\theta_H(r) = \begin{cases} 0.2 \text{ if } r \in \{0, g, n\} \text{ for all } r \in \mathcal{G} \\ 0.5 \text{ otherwise for all } r \in \mathcal{G}. \end{cases}$$

Then, H is not an intuitionistic fuzzy associative implicative filter of RLW - algebra A. Since,

$$\eta_H(1) < \min \{ \eta_H ((f \odot (g \odot 1)), \eta_H(f \odot g) \}$$

and

$$\theta_H(1) > \max \{\theta_H((f \odot (g \odot 1)), \theta_H(f \odot g)\}.$$

Proposition 3.7. Every intuitionistic fuzzy associative implicative filter of RLW - algebra G with respect to 1 is an intuitionistic fuzzy implicative filter.

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy associative implicative filter of RLW-algebra  $\mathscr{G}$  with respect to 1. Then,

$$\eta_H(t) \ge \min \{ \eta_H(1 \to (s \to t)), \eta_H(1 \to s) \}$$
[ From (ii) of Definition 3.5 ]
$$= \{ \eta_H(s \to t), \eta_H(s) \} [ \text{ From (i) of Definition 2.1 ]}$$

Therefore, 
$$\eta_H(t) \ge \{\eta_H(s \to t), \eta_H(s)\}$$
. Now,

$$\theta_H(t) \le \max \{\theta_H(1 \to (s \to t)), \theta_H(1 \to s)\}$$
[From (iii) of Definition 3.5]

= max 
$$\{\theta_H(s \to t), \theta_H(s)\}$$
 [From (iii) of Definition 2.1]

Therefore,  $\theta_H(t) \leq \max{\{\theta_H t, \theta_H(s)\}}$ . Hence,  $H = (\eta_H, \theta_H)$ be an intuitionistic fuzzy implicative filter of  $\mathscr{G}$ .

**Proposition 3.8.** Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy implicative filter of RLW – algebra  $\mathcal{G}$ , then  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy associative implicative filter of  $\mathscr G$  if and only if satisfies the following conditions:

$$(i) \eta_H((r \to s) \to t) \ge \eta_H(r \to (s \to t))$$

(ii) 
$$\theta_H((r \to s) \to t) \le \theta_H((r \to (s \to t)), \text{ for all } r, s, t \in \mathcal{G}.$$
(3.1)

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy implicative filter of *RLW*-algebra  $\mathscr{G}$  and satisfies  $\eta_H((r \to s) \to t) \ge$  $\eta_H(r \to (s \to t))$  and  $\gamma_M((r \to s) \to t) \le \gamma_M((r \to (s \to t)))$ for all  $r, s, t \in \mathcal{G}$ . Then,

$$\eta_H(t) \ge \min \{ \eta_H((r \to s) \to z), \eta_H(r \to s) \}$$
[ From (ii) of Definition 3.5 ]
$$\ge \min \{ \eta_H(r \to (s \to t)), \eta_H(r \to s) \}$$
[ From (vii) of Proposition 2.2 ]

$$\begin{aligned} \theta_{H}(t) \leq & \max \left\{ \theta_{H}((r \to s) \to z) \theta_{H}(r \to s) \right\} \\ & \left[ \text{ From (ii) of Definition 3.5 } \right] \\ \leq & \max \left\{ \theta_{H}(r \to (s \to t)), \theta_{H}(r \to s) \right\} \text{ for all } r, s, t \in \mathscr{G} \\ & \left[ \text{ From (vii) of Proposition 2.2 } \right]. \end{aligned}$$

Therefore,  $H = (\eta_H, \theta_H)$  is an intuitionistic fuzzy associative implicative filter of  $\mathcal{G}$ .

Conversely, assume that  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy associative implicative filter of RLW - algebra and for all  $r, s, t \in \mathcal{G}$ . Then, we have

$$\begin{split} r \to ((s \to t) \to t) = &(s \to w) \to (r \to t) \\ = &(s \to t) \to ((r \to s) \to (r \to t)) \\ & [\text{From (vii) of Proposition 2.2}] \\ = &(r \to s) \to ((s \to t) \to (r \to t)) \\ & [\text{From (vii) of Proposition 2.2}] \\ = &1 \in F \qquad [\text{From (vi) of Proposition 2.2}] \end{split}$$



Now,

$$\begin{split} & \eta_H((r \to s) \to t) \\ & \geq \min \left\{ \eta_H(r \to ((s \to t) \to ((r \to s) \to t))), \eta_H(r \to t) \right\} \\ & = \min \left\{ \eta_H(1), \eta_H(r \to (s \to t)) \right\}, [\text{From (i) of Proposition 2.2}] \\ & = \eta_H(r \to (s \to t)). \end{split}$$

Hence, 
$$\eta_H((r \to s) \to t) \ge \eta_H(r \to (s \to t))$$
. Similarly,

$$\begin{aligned} &\theta_{H}((r \to s) \to t) \\ &\leq \max \left\{ \theta_{H}(r \to ((s \to t) \to t)), \theta_{H}(r \to (s \to t)) \right\} \\ &= \min \left\{ \theta_{H}(1), \theta_{H}(r \to t) \right\}, [\text{ From (i) of Proposition 2.2}] \\ &= \theta_{H}(r \to (s \to t)). \end{aligned}$$

Hence, 
$$\theta_H((r \to s) \to t) \le \theta_H(r \to (s \to t))$$

**Proposition 3.9.** An intuitionistic fuzzy set  $H = (\eta_H, \theta_H)$  is an implicative filter of RLW – algebra  $\mathcal{G}$ . Then,  $H = (\eta_H, \theta_H)$  is an intuitionistic fuzzy associative implicative filter of RLW algebra  $\mathcal{G}$  if and only if satisfies the following axioms:

$$(i) \, \eta_H(s) \ge \eta_H(r \to (r \to s))$$

(ii) 
$$\theta_H(s) \le \theta_H(r \to (r \to s))$$
 for all  $r, s \in \mathcal{G}$ . (3.2)

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy implicative filter of *RLW* - algebra  $\mathscr{G}$ .

**To prove:**  $H = (\eta_H, \theta_H)$  is an intuitionistic fuzzy associative implicative filter of  $\mathscr{G}$ .

It is enough to show that (3.1) and (3.2) are equivalent. Let r = s in equation (3.2), then

$$\eta_H((s \to s) \to t)) > \eta_H(s \to (s \to t)).$$

From (i) of Proposition 2.2,  $\eta_H(t) \ge \eta_H(s \to (s \to t))$  and  $\theta_H((s \to s) \to t)) \le \theta_H(s \to (s \to t))$ . Also From (i) of Proposition 2.2,  $\theta_H(t) \le \theta_H(s \to (s \to t))$ . Hence, (3.2) and (3.2) are equivalent.

Conversely, assume that if (3.2.2) hold

$$\begin{aligned} & \operatorname{Let}(r \to (s \to t)) \to (r \to (r \to ((r \to s) \to t))) \\ &= 1 \to ((r \to (s \to t)) \to (r \to (r \to ((r \to s) \to t)))) \\ &= ((s \to t) \to (r \to (r \to s) \to t))) \\ &\to ((r \to t) \to (r \to (r \to (r \to ((r \to s) \to t))))) \\ &= (r \to (s \to t)) \to ((s \to t) \to (r \to (r \to s) \to t)))) \\ &\to (r \to (r \to ((r \to s) \to t'))) \\ &= (r \to (s \to t)) \to (r \to (s \to t)) \\ &= 1 \qquad [\text{From (i) of Proposition 2.2}] \end{aligned}$$

Since,

$$(r \to (s \to t)) \to (r \to (r \to ((r \to s) \to t))) \in \mathscr{P}$$

Let,

$$\eta_{H}((r \to s) \to t) \ge \{\eta_{H}(r \to ((r \to s) \to t)))\} 
\ge \min\{\eta_{H}(1), \eta_{H}(r \to (s \to t))\} 
= \eta_{H}(r \to (s \to t))$$

Similarly,  $\theta_H((r \to s) \to t) \le \theta_H(r \to (s \to t))$ . Hence,  $H = (\eta_H, \theta_H)$  is an intuitionistic fuzzy associative implicative filter of  $\mathscr{G}$ .

# 3.3 Intuitionistic Fuzzy Fantastic Implicative Filter

**Definition 3.10.** Let  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, *, 0, 1)$  be a RLW-algebra. Then, an intuitionistic fuzzy set  $H = (\eta_H, \theta_H)$  of  $\mathcal{G}$  is called an intuitionistic fuzzy fantastic implicative filter of  $\mathcal{G}$ , if it satisfies the following axioms for all  $r, s, t \in \mathcal{G}$ ,

(i) 
$$\eta_H(1) \ge \eta_H(r)$$
 and  $\theta_H(1) \le \theta_H(r)$ 

(ii) 
$$\eta_H(((r \rightarrow 8) \rightarrow s) \rightarrow r) \ge \min\{\eta_H(t \rightarrow (s \rightarrow r)), \eta_H(t)\}$$

(iii) 
$$\theta_H(((r \to s) \to s) \to r) \le \max\{\theta_H(t \to (s \to r)), \theta_H(t)\}$$

(iv) 
$$\eta_H(r \odot s) \ge \min \{ \eta_H(r), \eta_H(s) \}$$

(v) 
$$\theta_H(r \odot s) \leq \max \{\theta_H(r), \theta_H(s)\}.$$

**Example 3.11.** Let  $\mathcal{G} = \{0, n, o, 1\}$  be a set with Figure 3 as a partial ordering. Define a binary operation"  $\rightarrow$  " and a quasi-complement" "\*" on  $\mathcal{G}$  as in Tables 5 and 6.

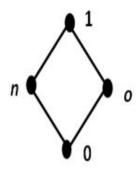


Figure 3. Lattice diagram

Table 5. Complement

| - | . I   |
|---|-------|
| r | $r^*$ |
| 0 | 1     |
| n | o     |
| О | n     |
| 1 | 0     |

**Table 6.** Implication

| $\rightarrow$ | 0 | n | О | 1 |
|---------------|---|---|---|---|
| 0             | 1 | 1 | 1 | 1 |
| n             | n | 1 | 1 | 1 |
| О             | n | n | 1 | 1 |
| 1             | 0 | n | 0 | 1 |

Define  $\vee$ ,  $\wedge$  and  $\odot$  operations on  $(\mathcal{G}, \vee, \wedge, 0, 1)$  as follow  $(r \vee s) = (r \rightarrow s) \rightarrow s$ ,  $(r \wedge s) = ((r^* \rightarrow s^*) \rightarrow s^*)^* \ r \odot s = (r \rightarrow s^*)^*$  for all  $r, s \in \mathcal{G}$ . Then,  $(\mathcal{G}, \vee, \wedge, \odot, \rightarrow, *0, 1)$  is a



*RLW-algebra. Consider an intuitionistic fuzzy subset H* =  $(\eta_H, \theta_H)$  on  $\mathcal{G}$  is defined by

$$\eta_H(r) = \begin{cases}
1 & \text{if } r = 1 \text{ for all } r \in \mathcal{G} \\
0.5 & \text{otherwise for all } r \in \mathcal{G}
\end{cases}$$

$$\theta_{H}(r) = \begin{cases} 0 & \text{if } r = 1 \text{ for all } r \in \mathcal{G} \\ 0.7 & \text{otherwise for all } r \in \mathcal{G}. \end{cases}$$

Then, H is an intuitionistic fuzzy fantastic implicative filter of RLW - algebra  $\mathcal{G}$ .

In the same Example 3.11 let us consider an intuitionistic fuzzy subset  $H = (\eta_H, \theta_H)$  on  $\mathscr{G}$  as,

$$\eta_H(r) = \left\{ \begin{array}{ll} 0.6 & \text{if } r \in \{0,1\} \text{ for all } r \in \mathcal{G} \\ 0.8 & \text{if } r \in \{n,o\} \text{ for all } r \in \mathcal{G} \end{array} \right.,$$

$$\gamma_{M}(r) = \begin{cases} 0.3 & \text{if } r \in \{0, 1\} \text{ for all } r \in \mathcal{G} \\ 0.2 & \text{if } r \in \{n, o\} \text{ for all } r \in \mathcal{G}. \end{cases}$$

Then, H is not an intuitionistic fuzzy fantastic implicative filter of RLW - algebra  $\mathscr{G}$ . Since,  $\eta_H(n \odot o) < \min \{ \eta_H(n), \eta_H(o) \}$  and  $\theta_H(n \odot o) > \min \{ \theta_H(n), \theta_H(o) \}$ .

**Proposition 3.12.** Every intuitionistic fuzzy fantastic implicative filter of RLW-algebra  $\mathcal{G}$  is an intuitionistic fuzzy implicative filter.

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy fantastic implicative filter of RLW – algebra  $\mathscr{G}$ .

Let r = 1 in (iii) of Definition 3.10, Then, we have

$$\eta_H(((r \to 1) \to 1) \to r) \ge \min \{ \eta_H(t \to (1 \to r)), \eta_H(t) \}$$
$$\eta_H((1 \to 1) \to r) \ge \min \{ \eta_H(t \to r), \eta_H t \}$$

From (iii) of Proposition 2.2 and from (i) of Definition 2.1, we have

$$\eta_H(1 \to r) \ge \min \left\{ \eta_H(t \to r), \eta_H t \right\},$$

$$\eta_H(r) \ge \min \left\{ \eta_H(t \to r), \eta_H(t) \right\}.$$

Also, from (iii) of Proposition 2.2 and from (i) of Definition 2.1, we have

$$\begin{split} \theta_H(((r \to 1) \to 1) &\to r) \leq \max \left\{ \theta_H(t \to (1 \to r)), \theta_H(t) \right\} \\ \theta_H((1 \to 1) \to r) &\leq \max \left\{ \theta_H(t \to r), \theta_H(t) \right\} \\ \theta_H((1 \to 1) \to r) &\leq \max \left\{ \theta_H(t \to r), \theta_H(t) \right\} \\ \theta_H(r) &\leq \max \left\{ \theta_H(t \to r), \theta_H(t) \right\}. \end{split}$$

Hence, H is an intuitionistic fuzzy fantastic implicative filter of RLW - algebra  $\mathcal{G}$ .

**Proposition 3.13.** *Let* Let  $H = (\eta_H, \theta_H)$  *be an intuitionistic* fuzzy fantastic implicative filter of RLW - algebra  $\mathcal{G}$ , if  $t \le r \to v$ , then

(i) 
$$\eta_H(((r \to s) \to s) \to r) \ge \eta_H(t)$$

(ii) 
$$\theta_H(((r \to s) \to s) \to r) \le \theta_H(t)$$
 for all  $r, s, t \in \mathcal{G}$ .

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy fantastic implicative filter of *RLW* algebra *G*. Let  $w \le r \to s$  then

$$t \rightarrow (r \rightarrow s) = r \rightarrow (t \rightarrow s) = 1.$$

Assume that,

$$\eta_{H}(((r \to s) \to s) \to r) \ge \min \{\eta_{H}(t \to (r \to s)), \eta_{H}(t)\} 
\eta_{H}(((r \to s) \to s) \to r) \ge \in \{\eta_{H}(1), \eta_{H}(t)\} 
\ge \eta_{H}(t).$$

Similarly,

$$\begin{aligned} \theta_H(((r \to s) \to s) \to r) &\leq \max \left\{ \theta_H(t \to (s \to s)), \theta_H(t) \right\} \\ \theta_H(((r \to s) \to s) \to r) &\leq \max \left\{ \theta_H(1), \theta_H(t) \right\} \\ &\leq \theta_H(t). \end{aligned}$$

**Proposition 3.14.** Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy fantastic implicative filter of RLW - algebra  $\mathcal{G}$  if and only if it satisfies the following axioms

(i) 
$$(\eta_H(((r \to s) \to s) \to r) \ge \eta_H(s \to r)$$

(ii) 
$$(\theta_H(((r \to s) \to s) \to r) \le \theta_H(s \to r) \text{ for all } r, s, t \in \mathcal{G}$$
.

*Proof.* Let  $H = (\eta_H, \theta_H)$  be an intuitionistic fuzzy fantastic implicative filter of *RLW* algebra  $\mathscr{G}$ . Then, from (ii) of Definition 3.10,

$$\eta_H(((r \to s) \to s) \to r) > \min \{ \eta_H(t \to (s \to r)), \eta_H(t) \}.$$

Let t = 1, from (i) of Definition 2.1, we get

$$\eta_{H}(((r \to s) \to s) \to r) \ge \min \{\eta_{H}(1 \to (s \to r)), \eta_{H}(1)\} 
\eta_{H}(((s \to s) \to s) \to r) \ge \min \{\eta_{H}(s \to r), \eta_{H}(1)\} 
\ge \eta_{H}(s \to r),$$

From (iii) of Definition 3.10.

$$\theta_H(((r \to s) \to s) \to r) \le \max \{\theta_H(t \to (s \to r)), \theta_H(t)\}.$$

Let t = 1, we get

$$\theta_H(((r \to s) \to s) \to r) < \max \{\theta_H(1 \to (s \to r)), \theta_H(1)\}.$$

From (i) of Definition 2.1,

$$\gamma_{\mathcal{M}}(((r \to s) \to s) \to r) \le \max\{\gamma_{\mathcal{M}}(s \to r), \gamma_{\mathcal{M}}(1)\}$$

$$\le \gamma_{\mathcal{M}}(s \to r).$$

Conversely, assume that

$$\eta_H(((r \to s) \to s) \to r) > \eta_H(s \to u),$$

then

$$\eta_H(((r \to s) \to s) \to r) \ge \min \{\eta_H(t \to r), \eta_H(t)\}.$$

Similarly,

$$\eta_H(((r \to s) \to s) \to r) \le \max \{\gamma_M(s \to (s \to r)), \gamma_M(s)\}.$$

Hence,  $H = (\eta_H, \theta_H)$  is an intuitionistic fuzzy fantastic implicative filter of RLW – algebra  $\mathscr{G}$ .



# 4. Conclusion

The ideas of intuitionistic fuzzy positive, associative and fantastic implicative filters of *RLW* – algebra was defined in this paper and discussed some of their properties with examples. Furthermore, we examined an identical condition of intuitionistic fuzzy positive and associative implicative filters of *RLW* - algebra were established.

#### References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1)(1986), 87–96.
- <sup>[2]</sup> K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 61(2)(1994), 137–142.
- [3] M. Basheer Ahamed and A. Ibrahim, Fuzzy implicative filters of lattice Wajsberg algebras, *Advances in Fuzzy Mathematics*, 6(2)(2011), 235–243.
- [4] M. Basheer Ahamed and A. Ibrahim, Anti fuzzy implicative filters in lattice Walgebras, *International Journal of Computational Science and Mathematics*, 4(1)(2012), 49–56.
- [5] J. M. Font, A. J. Rodriguez and A. Torrens, Wajsberg algebras, *Stochastica*, 8(1)(1984), 5–31.
- [6] A. Ibrahim and V. Nirmala, Implicative Filters of Residuated Lattice Wajsberg algebras, Global Journal of Pure and Applied Mathematics, 14(2018), 625–634.
- [7] A. Ibrahim and V. Nirmala, Fuzzy Implicative Filters of Residuated Lattice Wajsberg algebras, *Journal of Computer and Mathematical Science*, 9(9)(2018), 1201–1209.
- [8] A. Ibrahim and V. Nirmala, Intuitionistic Fuzzy Implicative Filters of Residuated Lattice Wajsberg Algebras, *In*ternational Journal of Advanced Science and Technology, 29(2)(2020), 1048–1056.
- [9] A. Ibrahim and V. Nirmala, Positive and Associative Implicative Filters of Residuated Lattice Wajsberg Algebras, Advances in Mathematics: Scientific Journal, 8(3)(2019), 226–232.
- [10] A. Ibrahim and V. Nirmala, Fuzzy Positive and Associative Implicative Filters of Residuated Lattice Wajsberg algebras, *Journal of Information and Computational Science*, 10(3)(2020), 1194–1204.
- [11] A. Ibrahim and V. Nirmala, Fantastic and Fuzzy Fantastic Implicative Filters of Residuated Lattice Wajsberg algebras, *Journal of Xi'an University of Architecture & Technology*, 12(4)(2020), 1770–1780.
- [12] A. Ibrahim and K. Jeya lekshmi, Intuitionistic Fuzzy Pseudo- Boolean Implicative Filters of Lattice Pseudo-Wajsberg algebras, *International Journal of Engineering and Advanced Technology*, 9(2)(2019), 246–250.
- [13] A. Ibrahim and C. Shajitha Begum, Fuzzy Positive Implicative and Fuzzy Associative WI-ideals of Lattice Wajsberg algebras, *International Journal of Recent Technology and Engineering*, 8(4)(2019), 689–693.
- [14] M. Word and R. P. Dilworth, Residuated lattices, Trans-

- actions of the American Mathematical Society, 45(1939), 335–354.
- [15] M. Wajsberg, Beitragezum Metaaussagenkalkul 1, *Monat*, *Mat. Phys.*, 42(1939), 221–242.
- [16] L. A. Zadeh, Fuzzy sets, *Information Control*, 8(1965), 338–353.

\*\*\*\*\*\*\*\*
ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666

\*\*\*\*\*

