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Strong convergence of modified implicit hybrid
S-iteration scheme for finite family of nonexpansive
and asymptotically generalized Φ-hemicontractive
mappings
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Abstract
In this paper, we consider a modified implicit hybrid S-iteration scheme for finite family of nonexpansive and
asymptotically generalized Φ-hemicontractive mappings in the frame work of real Banach spaces. We remark
that the iteration process of Kang et al. [17] can be obtained as a special case of our iteration process. Our result
mainly improves and extends the result of Kang et al. [17] and several other results in the literation from the class
of strongly psudocontractive mapping to the more general class asymptotically generalized Φ-hemicontractive
mappings. A different approach is used to obtain our result and the necessity of applying condition (C3) for the
two mappings is weaken to only one mapping.
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1. Introduction
Let E be an arbitrary real Banach space with dual E∗. We

denote by J the normalized duality mapping from E into 2E∗

defined by

J(x) = { f ∗ ∈ E∗ : 〈x, f ∗〉= ‖x‖2 = ‖ f ∗‖2}, ∀x ∈ E,(1.1)

where 〈·, ·〉 denotes the generalized duality pairing. The single-
valued-normalized duality mapping is denoted by j and F(T )
denotes the set of fixed points of mapping T , i.e., F(T ) =
{x ∈ E : T x = x}.

In the sequel, we give the following definitions which will
be useful in this study.

Definition 1.1. Let K be a nonempty subset of real Banach
space E. A mapping T : K→ K is said to be:

(1) Non expansive if,

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈ K; (1.2)

(2) Strongly pseudocontractive (Kim et al. [20]) if for all
x,y∈K, there exists a constant k∈ (0,1) and j(x−y)∈
J(x− y) satisfying

〈T x−Ty, j(x− y)〉 ≤ k‖x− y‖2; (1.3)

(3) φ -strongly pseudocontractive (Kim et al. [20]) if for
all x,y ∈ K, there exists a strictly increasing function
φ : [0,∞)→ [0,∞) with φ(0)= 0 and j(x−y)∈ J(x−y)
satisfying

〈T x−Ty, j(x− y)〉 ≤ ‖x− y‖2−φ(‖x− y‖)‖x− y‖;(1.4)
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It has been proved (see [23]) that the class of φ -strongly
pseudocontractive mappings properly contains the class
of strongly pseudocontractive mappings. By taking
Φ(s) = sφ(s), where φ : [0,∞)→ [0,∞) is a strictly in-
creasing function with φ(0) = 0. However, the converse
is not true.

(4) Generalized Φ-pseudocontractive (Albert et al. [1],
Chidume and Chidume [4]) if for all x,y ∈ K, there
exists a strictly increasing function Φ : [0,∞)→ [0,∞)
with Φ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

〈T x−Ty, j(x− y)〉 ≤ ‖x− y‖2−Φ(‖x− y‖);(1.5)

The class of generalized Φ-pseudocontractive mappings
is also called uniformly pseudocontractive mappings
(see [4]). Clearly, the class of generalized Φ-pseudo
contractive mappings properly contains the class of
φ -pseudo contractive mappings.

(5) Generalized Φ-hemicontractive if F(T )= {x∈K : T x=
x} 6= /0, and there exists a strictly increasing function
Φ : [0,∞)→ [0,∞) with Φ(0) = 0, such that for all
x ∈ K, p ∈ F(T ), there exists j(x− p) ∈ J(x− p) such
that the following inequality holds:

〈T x− p, j(x− p)〉 ≤ ‖x− p‖2−Φ(‖x− p‖);(1.6)

Clearly, the class of generalized Φ-hemicontractive
mappings includes the class of generalized Φ-pseudo
contractive mappings in which the fixed points set F(T )
is nonempty.

(6) Asymptotically generalized Φ-pseudocontractive (Kim
et al. [20]) with sequence {hn}⊂ [1,∞) and lim

n→∞
hn = 1,

if for each x,y ∈ K, there exist a strictly increasing
function Φ : [0,∞)→ [0,∞) satisfying

〈T nx−T ny, j(x− y)〉 ≤ hn‖x− y‖2−Φ(‖x− y‖).(1.7)

The class of asymptotically generalized Φ-pseudocontractive
mappings is a generalization of the class of strongly
pseudocontractive maps and the class of φ -strongly
peudocontractive maps. The class of asymptotically
generalized Φ-pseudocontractive mappings was intro-
duced by Kim et al. [20] in 2009.

(7) asymptotically generalized Φ–hemicontractive with se-
quence {hn} ⊂ [1,∞) and lim

n→∞
hn = 1 if there exist a

strictly increasing function Φ : [0,∞) → [0,∞) with
Φ(0) = 0, such that for each x ∈ K, p ∈ F(T ), there
exists j(x− p) ∈ J(x− p) such that the following in-
equality holds:

〈T n− p, j(x− p)〉 ≤ hn‖xn− p‖2−Φ(‖x− p‖).(1.8)

Clearly, every asymptotically generalized Φ–pseudo
contractive mapping with a nonempty fixed point set

is an asymptotically generalized Φ–hemicontractive
mapping. It follows that the class of asymptotically gen-
eralized Φ–hemicontractive mapping is most general
of all the class of mappings mentioned above.

On the other hand, the class of asymptotically generalized
Φ-hemicontractive has been studied by several Authors (see
for example, [3–5, 13, 14, 19, 22, 28, 32]).

The Mann iteration process is defined by the sequence
{xn}, {

x1 ∈ K,
xn+1 = (1−αn)xn +αnT xn,

∀n≥ 1, (1.9)

where {αn} is a sequence in [0,1].
Further, the Ishikawa iteration process is defined by the

sequence {xn} x1 ∈ K,
xn+1 = (1−αn)xn +αnTyn,
yn = (1−βn)xn +βnT xn

∀n≥ 1, (1.10)

where {αn} and {βn} are sequences in [0,1]. This iteration
process reduces to Mann iteration when βn = 0 for all n≥ 1.

In 2007, Argawal et al. [2] introduced the following itera-
tion process: x1 ∈ K,

xn+1 = (1−αn)T xn +αnTyn,
yn = (1−βn)xn +βnT xn

∀n≥ 1, (1.11)

where {αn} and {βn} are the sequences in [0,1]. They showed
that their iteration process is independent of Mann and Ishikawa
and converges faster than both for contractions.

In 2007, Sahu et al. [24], [25] introduced the following
S-iteration process: x1 ∈ K,

xn+1 = Tyn,
yn = (1−βn)xn +βnT xn

∀n≥ 1, (1.12)

where {βn} is the sequence in [0,1].
In 1991, Schu [29] considered the modified Mann iteration

process which is a generalization of the Mann iteration process
as follows:{

x1 ∈ K,
xn+1 = (1−αn)xn +αnT nxn,

∀n≥ 1, (1.13)

where {αn} is a sequence in [0,1].
In 1994, Tan and Xu [30] studied the modified Ishikawa

iteration process which is a generalization of the Ishikawa
iteration process as follows: x1 ∈ K,

xn+1 = (1−αn)xn +αnT nyn,
yn = (1−βn)xn +βnT nxn

∀n≥ 1, (1.14)

where {αn} and {βn} are sequences in [0,1].
Again, in 2007 Argawal et al. [2] introduced the modified
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Argawal iteration process as follows: x1 ∈ K,
xn+1 = (1−αn)T nxn +αnT nyn,
yn = (1−βn)xn +βnT nxn

∀n≥ 1, (1.15)

The above processes deal with one mapping only. The
case of two mappings in iterative processes has also remained
under study since Das and Debata [7] gave and studied a two
mappings process. Also see, for example, [16] and [27]. The
problem of approximating common fixed points of finitely
many mappings plays an important role in applied mathemat-
ics, especially in the theory of evolution equations and the
minimization problems; see [8], [9], [10], [26], for example.

The following Ishikawa-type iteration process for two
mappings has aslo been studied by many authors including
[7], [16], [27], [28]. x1 ∈ K,

xn+1 = (1−αn)xn +αnT nyn,
yn = (1−βn)xn +βnSnxn

∀n≥ 1, (1.16)

where {αn} and {βn} are sequences in [0,1].
In 2009, Khan et al. [18] modified the Argawal iteration

process (1.15) to the case of two mappings as follows: x1 ∈ K,
xn+1 = (1−αn)T nxn +αnSnyn,
yn = (1−βn)xn +βnT nxn

∀n≥ 1, (1.17)

{αn} and {βn} are two sequences in [0,1].
In 2013, Kang et al. [15] considered the following itera-

tion process: x1 ∈ K,
xn+1 = Syn,
yn = (1−βn)xn +βnT xn

∀n≥ 1, (1.18)

where {βn} is the sequence in [0,1]. They proved the follow-
ing results.

Theorem 1.2 (see [15]). Let K be a nonempty closed convex
subset of a real Banach space E, let S : K→ K be a nonex-
pansive mapping, and let T : K→ K be a Lipschitz strongly
pseudocontractive mapping such that p∈F(S)

⋂
F(T )= {x∈

K : Sx = T x = x} and

‖x−Sy‖ ≤ ‖Sx−Sy‖, ‖x−Ty‖ ≤ ‖T x−Ty‖ (1.19)

for all x,y ∈ K. Let {βn} be sequence in [0,1] satisfying

(i)
∞

∑
n=1

βn = ∞;

(ii) lim
n→∞

βn = 0.

For arbitrary x1 ∈ K, the iteration process defined by (1.18)
converges strongly to a fixed point p of S and T .

In 2016, Gopinath et al. [11] considered the following
modified S-iteration process: x1 ∈ K,

xn+1 = Syn,
yn = (1−βn)xn +βnT nxn

∀n≥ 1, (1.20)

where {β} is the sequence in [0,1]. They proved the following
result.

Theorem 1.3 (see [11]). Let K be a nonempty closed con-
vex subset of a real Banach space E, let S : K → K be a
nonexpansive mapping, and let T : K → K be a uniform L-
Lipschitzian, asymptotically demicontractive mapping with
sequence {hn} ∈ [0,1), lim

n→∞
hn = 1 such that

‖x−Sy‖ ≤ ‖Sx−Sy‖, x,y ∈ K (1.21)

‖x−Ty‖ ≤ ‖T x−Ty‖, x,y ∈ K. (1.22)

Assume that F(S)
⋂

F(T ) = {x ∈ K : Sx = T x = x} 6= /0. Let
p ∈ F(S)

⋂
F(T ) and {βn} be sequences in [0,1] satisfying

(i)
∞

∑
n=1

βn = ∞;

(ii) lim
n→∞

βn = 0.

For arbitrary x1 ∈ K, the iteration process defined by (1.20)
converges strongly to a fixed point p of S and T .

In 2014, Khan [17] proved the following result:

Theorem 1.4 (see [17]). Let K be a nonempty closed convex
subset of a real Banach space E, let S : K→ K be a nonex-
pansive mapping, and let T : K→ K be a Lipschitz strongly
pseudocontractive mapping such that p∈F(S)

⋂
F(T )= {x∈

K : Sx = T x = x} and

‖x−Sy‖ ≤ ‖Sx−Sy‖, ‖x−Ty‖ ≤ ‖T x−Ty‖ (1.23)

for all x,y ∈ K. Let {βn} be a sequence in [0,1] satisfying

(i)
∞

∑
n=1

βn = ∞;

(ii) lim
n→∞

βn = 0.

For arbitrary x0 ∈ K, the iteration process defined by{
xn = Syn,
yn = (1−βn)xn−1 +βnT xn

∀n≥ 1, (1.24)

converges strongly to a fixed point p of S and T .

Recently, Gopinath et al. [12] proved the following re-
sults:

Theorem 1.5 (see [12]). Let K be a nonempty closed con-
vex subset of a real Banach space E, let S : K → K be a
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nonexpansive mapping, and let T : K → K be a uniform L-
Lipschitzian, asymptotically demicontractive mappin with se-
quence {an} ∈ [0,1), lim

n→∞
an = 1 such that

‖x−Sy‖ ≤ ‖Sx−Sy‖, x,y ∈ K (1.25)

‖x−Ty‖ ≤ ‖T x−Ty‖, x,y ∈ K. (1.26)

Assume that F(S)
⋂

F(T ) = {x ∈ K : Sx = T x = x} 6= /0. Let
p ∈ F(S)

⋂
F(T ) and {βn} be sequences in [0,1] satisfying

(i)
∞

∑
n=1

βn = ∞;

(ii) lim
n→∞

βn = 0.

For arbitrary x0 ∈ K, the iteration process defined by{
xn = Syn,
yn = (1−βn)xn−1 +βnT nxn

∀n≥ 1, (1.27)

converges strongly to a fixed point p of S and T .

In [15], Kang et al. introduced the following condition.

Remark 1.6. Let S,T : K→ K be two mappings. The map-
pings S and T are said to satisfy condition (C3) if

‖x−Sy‖ ≤ ‖Sx−Sy‖, ‖x−Ty‖ ≤ ‖T x−Ty‖ (1.28)

for all x,y ∈ K.

Inspired and motivated by the above results, we modify
(1.20) for finite families of nonexpansive and asymptotically
generalized Φ-hemicontractive mappings in Banach spaces.
The result in this paper can be view as generalization and
extension of the corresponding results of Kang et al. [15],
Gopinath et al. [11] and several others in the literature.

Definition 1.7. Let {Si}N
i=1 : K→ K be finite family of non-

expansive mappings and {Ti}N
i=1 : K→ K be finite family of

asymptotically generalized Φ–hemicontractive mappings. De-
fine the sequence {xn} as follows:

x0 ∈ K,
xn = Si(n)yn,

yn = (1−αn)xn−1 +αnT k(n)
i(n) xn

∀n≥ 1, (1.29)

where {αn} is a sequence in [0,1] and n = (k−1)N + i, i =
i(n)∈ {1,2, ...,N}, k = k(n)≥ 1 is some positive integers and
k(n)→ ∞ as n→ ∞.

Remark 1.8. If we take N = 1, then (1.29) reduces to (1.20).
Again, if we take N = 1 and T n = T for all n≥ 1, then (1.29)
reduces to (1.18).

The purpose of this paper is to study the strong conver-
gence of the new modified implicit hybrid S-iteration process
(1.29) for the finite families of nonexpansive and asymptot-
ically generalized Φ-hemicontractive mappings in Banach
space.

2. Preliminaries
In order to prove our main results, we also need the fol-

lowing lemmas.

Lemma 2.1 ([3]). Let J : E→ 2E∗ be the normalized duality
mapping. Then for any x,y ∈ E, one has

‖x+ y‖2 ≤ ‖x‖2 +2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x+ y).(2.1)

Lemma 2.2 ([31]). Let {ρn} and {θn} be nonnegative se-
quences satisfying

ρn+1 ≤ (1−θn)ρn +ωn (2.2)

where θn ∈ [0,1], ∑n≥1 θn =∞ and ωn = o(θn). Then lim
n→∞

ρn =

0.

3. Main Results
Theorem 3.1. Let K be a nonempty closed convex subset
of a real Banach space E. Let {Si}N

i=1 : K → K be finite
family of nonexpansive mappings and let {Ti}N

i=1 : K→ K be
finite family of asymptotically generalized Φ–hemicontractive
mappings with {Ti(K)}N

i=1 bounded and the sequence {hin} ⊂
[1,∞), where lim

n→∞
hin = 1 for each 1 ≤ i ≤ N. Furthermore,

let {Ti}N
i=1 be uniformly continuous. Assume that

p ∈ F =
N⋂

i=1

F(Si)
⋂ N⋂

i=1

F(Ti) = {x ∈ K : Six = Tix = x} 6= /0,

for each 1≤ i≤ N such that for all x,y ∈ K

‖x−Siy‖ ≤ ‖Six−Siy‖, for each 1≤ i≤ N. (3.1)

Let hn = max{hin : 1 ≤ i ≤ N} and {αn} be a sequence in
[0,1] satisfying the following conditions:

(i)
∞

∑
n=1

αn = ∞,

(ii) lim
n→∞

αn = 0.

For arbitrary x0 ∈ K, let {xn} be the sequence iteratively
defined by (1.29). Then the sequence {xn} converges strongly
at common fixed p of Si and Ti for each 1≤ i≤ N.

Proof. Let p ∈ F and since Ti(K) bounded, we set

M1 = ‖x0− p‖+ sup
n≥1
‖T k(n)

i(n) xn− p‖, 1≤ i≤ N.

It is clear that ‖x0− p‖ ≤M1. Let ‖xn−1− p‖ ≤M1. Next we
will prove that ‖xn− p‖ ≤M1. From (1.29), we have

‖xn− p‖ = ‖Sn(i)yn− p‖
= ‖Si(n)yn−Si(n)p‖
≤ ‖yn− p‖

= ‖(1−αn)xn−1 +αnT k(n)
i(n) xn− p‖

= ‖(1−αn)(xn−1− p)+αn(T
k(n)

i(n) xn− p)‖

≤ (1−αn)‖xn−1− p‖+αn‖T k(n)
i(n) xn− p‖

≤ (1−αn)M1 +αnM1 = M1.
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This implies that {‖xn− p‖} is bounded.
Let

M2 = sup
n≥1
‖xn− p‖+M1. (3.2)

From (1.29) and condition (ii), we obtain

‖xn−1− yn‖ = ‖xn−1− (1−αn)xn−1−αnT k(n)
i(n) xn‖

= αn‖xn−1−T k(n)
i(n) xn‖

≤ αn(‖xn−1− p‖+‖T k(n)
i(n) xn− p‖)

≤ αn(M2 +M1)→ 0 as n→ ∞, (3.3)

which implies that {‖xn−1− yn‖} is bounded.
Again, let

M3 = sup
n≥1
‖xn−1− yn‖+M2.

Since,

‖yn− p‖ = ‖yn− xn−1 + xn−1− p‖
≤ ‖yn− xn−1‖+‖xn−1− p‖
≤ M3

therefore, {‖yn− p‖} is bounded. Set

M4 = sup
n≥1
‖yn− p‖+ sup

n≥1
‖T k(n)

i(n) yn− p‖.

Denote

M = M1 +M2 +M3 +M4, obviously, M < ∞.

Now from (1.29) for all n≥ 1, we obtain

‖xn− p‖2 = ‖Si(n)yn− p‖2 = ‖Si(n)yn−Si(n)p‖2

≤ ‖yn− p‖2, (3.4)

thus by Lemma 2.1 and (1.8), we get

‖yn− p‖2

= ‖(1−αn)xn−1 +αnT k(n)
i(n) xn−1− p‖2 (3.5)

= ‖(1−αn)(xn−1− p)+αn(T
k(n)

i(n) xn− p)‖2

≤ (1−αn)
2‖xn−1− p‖2 +2αn〈T k(n)

i(n) xn− p, j(yn− p)〉

= (1−αn)
2‖xn−1− p‖2 +2αn〈T k(n)

i(n) xn−T k(n)
i(n) yn

+T k(n)
i(n) yn− p, j(yn− p)〉

= (1−αn)
2‖xn−1−p‖2+2αn〈T k(n)

i(n) xn−T k(n)
i(n) yn, j(yn−p)〉

+2αn〈T k(n)
i(n) yn− p, j(yn− p)〉

≤ (1−αn)
2‖xn−1− p‖2 +2αn‖T k(n)

i(n) xn

−T k(n)
i(n) yn‖‖yn− p‖+2αn{hn‖yn− p‖2−Φ(‖yn− p‖)}

= (1−αn)
2‖xn−1− p‖2 +2αnδin

+2αnhn‖yn− p‖2−2αnΦ(‖yn− p‖), (3.6)

where

δin = M‖T k(n)
i(n) xn−T k(n)

i(n) yn‖, (1≤ i≤ N).

From (1.29), we have

‖xn− yn‖ = ‖xn− xn−1 + xn−1− yn‖
= ‖Si(n)yn− xn−1‖+‖xn−1− yn‖
≤ ‖Si(n)xn−1−Si(n)yn‖+‖xn−1− yn‖
≤ 2‖xn−1− yn‖

= 2αn‖xn−1−T k(n)
i(n) xn‖

≤ 2αn(‖xn−1− p‖+‖T k(n)
i(n) xn− p‖)

≤ 2αn(M2 +M1)

≤ 2αnM,

thus from (ii), we obtain

lim
n→∞
‖xn− yn‖= 0. (3.7)

From the uniform continuity of Ti ,(1≤ i≤ N) leads to

lim
n→∞
‖T k(n)

i(n) xn−T k(n)
i(n) yn‖= 0,

thus, we have

lim
n→∞

δin = 0.

Also,

‖yn− p‖2 = ‖(1−αn)xn−1 +αnT k(n)
i(n) xn− p‖2

= ‖(1−αn)(xn−1− p)+αn(T
k(n)

i(n) xn− p)‖2

≤ (1−αn)‖xn−1− p‖2 +αn‖T k(n)
i(n) xn− p‖2

≤ ‖xn−1− p‖2 +M2
αn, (3.8)

where the first inequality holds by the convexity of ‖·‖2. Now
substituting (3.8) into (3.6), we obtain

‖yn− p‖2

≤ (1−αn)
2‖xn−1− p‖2 +2αnδin

+2αnhn(‖xn−1− p‖2 +M2
αn)−2αnΦ(‖yn− p‖)

= (1−2αn +α
2
n )‖xn−1− p‖2 +2αnhn‖xn−1− p‖2

+2hnM2
α

2
n +2αnδin−2αnΦ(‖yn− p‖)

= (1−2αn)‖xn−1− p‖2 +(α2
n +2αnhn)‖xn−1− p‖2

+2hnM2
α

2
n +2αnδin−2αnΦ(‖yn− p‖)

≤ (1−2αn)‖xn−1− p‖2 +(α2
n +2αnhn)M2

+2hnM2
α

2
n +2αnδin−2αnΦ(‖yn− p‖)

≤ (1−2αn)‖xn−1− p‖2 +αn[M2(αn +2hn +2αnhn)

+2δin]. (3.9)

Hence, from (3.4) and (3.9) we obtain

‖xn− p‖2 ≤ (1−2αn)‖xn−1− p‖2

+αn[M2(αn +2hn +2αnhn)+δin].
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For all n≥ 1, put

ρn = ‖xn−1− p‖,
θn = 2αn,

ωn = αn[M2(αn +2hn +2αnhn)+δin],

then according to Lemma 2.2, we obtain that

lim
n→∞
‖xn− p‖= 0. (3.10)

Completing the proof of Theorem 3.1.

Corollary 3.2. Let K be a nonempty closed convex subset of
a real Banach space E. Let S : K → K be a nonexpansive
mapping and let T : K→ K be an asymptotically generalized
Φ–hemicontractive mappings with T (K) bounded and the
sequence {hn} ⊂ [1,∞), where lim

n→∞
hn = 1. Furthermore, let

T be uniformly continuous. Assume that

p ∈ F = F(S)
⋂

F(T ) = {x ∈ K : Sx = T x = x} 6= /0,

such that for all x,y ∈ K,

‖x−Sy‖ ≤ ‖Sx−Sy‖. (3.11)

Let {αn} be a sequence in [0,1] satisfying the following con-
ditions:

(i)
∞

∑
n=1

αn = ∞,

(ii) lim
n→∞

αn = 0.

For arbitrary x1 ∈K, let {xn} be a sequence iteratively defined
by  x0 ∈ K,

xn = Syn,
yn = (1−αn)xn−1 +αnT xn

∀n≥ 1. (3.12)

Then the sequence {xn} converges strongly at common fixed
p of S and T .

Proof. Taking N = 1 and T n = T in Theorem 3.1, the conclu-
sion can be obtained immediately.

Remark 3.3.

(i) Corollary 3.2 captures the result of Kang et al. [17]. It
follows that the result Kang et al. [17] is a special case
of our result. Hence, our result extends and improves
the results of Kang et al [17] and many others in the
literature.

(ii) In our result the necessity of applying condition (C3)
for the two classes of mappings (nonexpansive map-
pings and strongly pseudocontractive mappings) to
prove strong convergence as considered in [17] and
[12] is weaken by applying it to only one family of
mapping which is the nonexpansive mappings.

The above results are also valid for Lipschitz asymptoti-
cally generalized Φ-hemicontractive mappings.
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