

https://doi.org/10.26637/MJM0804/0054

On cartesian product of commutative, self-distributive and transitive BE-algebra

Kulajit Pathak^{1*} and Pulak Sabhapandit²

Abstract

In this paper we develop the idea of cartesian product of BE- algebras. Furthermore we introduced the cartesian product on commutative, self-distributive and transitive BE-algebras.

Keywords

BE-algebra, commutative BE-algebra, self-distributive BE-algebra, transitive BE-algebra.

AMS Subject Classification

06F35, 03G25, 08A30, 03B52.

¹*Department of Mathematics, B.H. College, Howly-781316, Assam, India.*

²*Department of Mathematics, Biswanath College, Biswanath Chariali-784176, Assam, India.*

***Corresponding author**: ¹kulajitpathak79@gmail.com; ²pulaksabhapandit@gmail.com

Article History: Received **04** July **2020**; Accepted **24** September **2020** c 2020 MJM.

1. Introduction

After the introduction of the concepts of BCK and BCI algebras ([4,5]) by K. Iseki in 1966, some more systems of similar type have been introduced and discussed by a number of authors in the last two twenty years. K. H. Kim and Y.H. Yon studied dual BCK algebra and M.V. algebra in 2007 ([6]). It is known that BCK-algebras is a proper subclass of BCIalgebras. There are so many generalizations of BCK/BCIalgebras, such as BCH-algebras ([9]), dual BCK-algebras ([6]), d-algebras ([3]), etc. In ([2]), H. S. Kim and Y. H. Kim introduced the concept of BE-algebra as a generalization dual BCK-algebra. A. Walendziak ([1]) introduced the notion of commutative BE-algebras and discussed some of its properties.

2. preliminaries

Definition 2.1. *Let* (A;∗,1) *be a system of type* (2,0) *consisting of a non-empty set* A, a *binary operation* " ∗ " *and a fixed element* 1. *The system* (A;∗,1) *is called a* BE− *algebra* ([2,7,8]) *if the following conditions are satisfied:*

 (i) $a * a = 1$ $(ii) a * 1 = 1$ (iii) 1 $*$ a = a (iv) $a * (b * c) = b * (a * c), \forall a, b, c \in A.$

Note 2.2. *In any BE-algebra we can define a binary relation* " ≤ " *as a* ≤ *b if and only if a* $*$ *b* = 1, \forall *a*, *b*, ∈ *A*.

Lemma 2.3. *In a BE-algebra the following identities are true [2]:*

1.
$$
a*(b*a) = 1
$$

2. $a*((a*b)*b) = 1$.

Definition 2.4. *Let* (A;∗,1) *be a* BE *-algebra. An element a* \in A *is said to commute with* $\mathbf{b} \in$ A *if* $(a * \mathbf{b}) * \mathbf{b} = (\mathbf{b} * \mathbf{a}) * a$. *If this condition is true for all a,* $b \in A$ *, then* $(A;*,1)$ *is called a commutative BE-algebra [1].*

Definition 2.5. *A BE-algebra* (*A*;∗,1) *is said to be self distributive if* $a * (b * c) = (a * b) * (a * c), \forall a, b, c \in A$

Definition 2.6. *A BE- algebra* (*A*;∗,1) *is said to be transitive [10] if for any* $a, b, c \in A$ *,*

$$
b * c \leq (a * b) * (a * c).
$$

3. Cartesian Product of BE-algebras

In this section we study the properties of Cartesian product of BE-algebras.

Theorem 3.1. *Let* (*A*;∗,1) *be a system consisting of a nonempty set A, a binary operation* " ∗ " *and a distinct element* 1. *Let B* = *A* × *A* = { (a_1, a_2) : $a_1, a_2 \in A$ }. *For* $u, v \in B$ *with* $u = (a_1, a_2), v = (b_1, b_2),$ *we define an operation* $* \odot$ " *in* B *as*

$$
u\odot v=(a_1*b_1,a_2*b_2).
$$

Then $(B, \bigcirc, (1,1))$ *is a BE-algebra iff* $(A;*,1)$ *is a BE-algebra.*

Proof. Suppose that $(B, \odot, (1,1))$ be a BE-algebra. Let $a \in A$ and we choose $u = (a, 1) \in B$. Then

(1)
$$
u \odot u = (1, 1) \Rightarrow (a * a, 1 * 1) = (1, 1)
$$

 $\Rightarrow a * a = 1$, since $1 * 1 = 1$.

(2)
$$
u \odot (1,1) = (1,1) \Rightarrow (a * 1, 1 * 1) = (1,1)
$$

 $\Rightarrow a * 1 = 1.$

(3)
$$
(1,1)\odot u = u \Rightarrow (1*a, 1*1) = (a, 1)
$$

 $\Rightarrow 1*a = a.$

(4) Let a, b, c \in A and we choose $u = (a, 1), v = (b, 1),$ and $w = (c, 1)$. Then

$$
u \odot (v \odot w) = v \odot (u \odot w)
$$

\n
$$
\Rightarrow (a * (b * c), 1 * (1 * 1)) = (b * (a * c), 1 * (1 * 1))
$$

\n
$$
\Rightarrow a * (b * c) = b * (a * c).
$$

This proves that $(A;*,1)$ is a BE-algebra.

Conversely, suppose that $(A;*,1)$ is a BE-algebra. Let $u =$ $(a_1, a_2) \in B$. Then

(1)
$$
\mathbf{u} \odot \mathbf{u} = (a_1, a_2) \odot (a_1, a_2)
$$

= $(a_1 * a_1, a_2 * a_2)$
= $(1, 1)$.

(2)
$$
u \odot (1,1) = (a_1,a_2) \odot (1,1)
$$

$$
= (a_1 * 1, a_2 * 1)
$$

= (1, 1).

(3) (1,1)*u* = (1,1)(*a*1,*a*2) = (1 ∗ a1,1 ∗ a2) = (a1, a2) = u.

(4) Let $u = (a_1, a_2), v = (b_1, b_2),$ and $w = (c_1, c_2)$ be any three elements of B.

Then

$$
u \odot (v \odot w) = (a_1, a_2) \odot ((b_1, b_2) \odot (c_1, c_2))
$$

= (a_1, a_2) \odot (b_1 * c_1, b_2 * c_2)
= (a_1 * (b_1 * c_1), a_2 * (b_2 * c_2))
= (b_1 * (a_1 * c_1), b_2 * (a_2 * c_2))
= (b_1, b_2) \odot (a_1 * c_1, a_2 * c_2)
= (b_1, b_2) \odot ((a_1, a_2) \odot (c_1, c_2))
= v \odot (u \odot w).

Hence
$$
(B, \odot, (1, 1))
$$
 be a BE-algebra.

Corollary 3.2. *If* (A;∗,1) *and* (B; o, e) *are two* BE *-algebras, then* C = A×B *is also a* BE− *algebra under the operation defined as follows: For* $u = (a_1, b_1)$ *and* $v = (a_2, b_2)$ *in* C,

$$
u \odot v = (a_1 * a_2, b_1 o b_2)
$$

Here the distinct element of C *is* (1, e)*.*

Note 3.3. *The above result can be extended for finite number of BE-algebras.*

Theorem 3.4. *Let* $(A;*,1)$ *be a* BE *-algebra and* let B = A×A*. Then*

- *(a) B is commutative iff A is commutative.*
- *(b)* B *is self distributive iff* A *is self distributive.*

Proof. (a) First suppose that B is commutative. Let a and b be arbitrary elements of A. We choose $u = (a, 1)$ and $v = (b, 1)$. since *B* is commutative, we have

$$
(u\odot v)\odot v=(v\odot u)\odot u.
$$

This gives $((a * b) * b, 1) = ((b * a) * a, 1)$, which in turns imply that

$$
(a * b) * b = (b * a) * a.
$$

Hence A is commutative. Conversely suppose that A is commutative. Let $u = (a_1, a_2)$ and $v = (b_1, b_2)$ be any two arbitrary elements of B. Then

$$
(u \odot v) \odot v = ((a_1, a_2) \odot (b_1, b_2)) \odot (b_1, b_2)
$$

= $(a_1 * b_1, a_2 * b_2) \odot (b_1 * b_2)$
= $((a_1 * b_1) * b_1, (a_2 * b_2) * b_2)$
= $((b_1 * a_1) * a_1, (b_2 * a_2) * a_2)$
= $((b_1, b_2) \odot (a_1, a_2)) \odot (a_1, a_2)$
= $(v \odot u) \odot u$

Hence B is commutative.

(b) First suppose that B is self distributive. Let a, b and c be arbitrary elements of A. We choose $u = (a, 1), v = (b, 1)$ and $w = (c, 1)$. since B is self distributive, we have

$$
u \odot (v \odot w) = (u \odot v) \odot (u \odot w).
$$

 \Box

This gives $(a, 1) \odot (b * c, 1) = (a * b, 1) \odot (a * c, 1)$, which in turns imply that

$$
a * (b * c) = (a * b) * (a * c).
$$

Hence A is self distributive.

Conversely suppose that A is self distributive. Let $u = (a_1, a_2)$, $v = [6]$ (b_1, b_2) and $w = (c_1, c_2)$ be any three arbitrary elements of B. Then

$$
u \odot (v \odot w) = (a_1, a_2) \odot ((b_1, b_2) \odot (c_1, c_2))
$$

= (a₁ * a₂) \odot (b₁ * c₁, b₂ * c₂)
= (a₁ * (b₁ * c₁), a₂ * (b₂ * c₂))
= ((a₁ * b₁) * (a₁ * c₁), ((a₂ * b₂) * (a₂ * c₂))
= ((a₁ * b₁), (a₂ * b₂)) \odot ((a₁ * c₁), (a₂ * c₂))
= (u \odot v) \odot (u \odot w).

Hence B is self distributive.

 \Box

Theorem 3.5. *Let* $(A;*,1)$ *be* aBE *-algebra and let* $B = A \times$ A*. Then* B *is transitive iff* A *is transitive.*

Proof. Let $(A;*,1)$ be a BE-algebra and $u = (a_1,b_1), v =$ (a_2, b_2) , and $w = (a_3, b_3)$ be any three arbitrary elements of B. Then

$$
(\mathbf{v} \odot \mathbf{w}) \odot ((\mathbf{u} \odot \mathbf{v}) \odot (\mathbf{u} \odot \mathbf{w}))
$$

= $(\mathbf{v} \odot \mathbf{w}) \odot ((\mathbf{a}_1 * \mathbf{a}_2, \mathbf{b}_1 * \mathbf{b}_2) \odot (\mathbf{a}_1 * \mathbf{a}_3, \mathbf{b}_1 * \mathbf{b}_3))$
= $(\mathbf{v} \odot \mathbf{w}) \odot (((\mathbf{a}_1 * \mathbf{a}_2) * (\mathbf{a}_1 * \mathbf{a}_3)), ((\mathbf{b}_1 * \mathbf{b}_2) * (\mathbf{b}_1 * \mathbf{b}_3)))$
= $(\mathbf{a}_2 * \mathbf{a}_3, \mathbf{b}_2 * \mathbf{b}_3) \odot (((\mathbf{a}_1 * \mathbf{a}_2) * (\mathbf{a}_1 * \mathbf{a}_3)), ((\mathbf{b}_1 * \mathbf{b}_2) * (\mathbf{b}_1 * \mathbf{b}_3)))$
= $((\mathbf{a}_2 * \mathbf{a}_3) * ((\mathbf{a}_1 * \mathbf{a}_2) * (\mathbf{a}_1 * \mathbf{a}_3)), (\mathbf{b}_2 * \mathbf{b}_3) * ((\mathbf{b}_1 * \mathbf{b}_2) * (\mathbf{b}_1 * \mathbf{b}_3)))$
= $(1, 1).$

Therefore

$$
v \odot w \leq (u \odot v) \odot (u \odot w).
$$

So B is transitive. Conversely assume that B be transitive. Let a, b and c be three arbitrary elements of A. We consider the elements $u = (a, 1), v = (b, 1)$ and $w = (c, 1)$ of *B*. Since *B* is transitive, we have,

$$
\mathbf{v} \odot \mathbf{w} \leq (\mathbf{u} \odot \mathbf{v}) \odot (\mathbf{u} \odot \mathbf{w})
$$

\n
$$
\Rightarrow (\mathbf{v} \odot \mathbf{w}) \odot ((\mathbf{u} \odot \mathbf{v}) \odot (\mathbf{u} \odot \mathbf{w})) = (1,1)
$$

\n
$$
(\mathbf{b} \cdot \mathbf{c}) * ((\mathbf{a} \cdot \mathbf{b}) * (\mathbf{a} \cdot \mathbf{c})), 1) = (1,1)
$$

\n
$$
\Rightarrow (\mathbf{b} \cdot \mathbf{c}) * ((\mathbf{a} \cdot \mathbf{b}) * (\mathbf{a} \cdot \mathbf{c})) = 1
$$

\n
$$
\Rightarrow \mathbf{b} \cdot \mathbf{c} \leq (\mathbf{a} \cdot \mathbf{b}) * (\mathbf{a} \cdot \mathbf{c})
$$

Hence *A* is transitive.

 \Box

References

- [1] A. Walendziak, On commutative BE–algebras, *Sci. Math. Japon,* 2008, 585–588.
- [2] H. S. Kim and Y. H. Kim, On BE algebras, *Sci . Math. Jpn.,* 66(1)(2007), 113–116.
- [3] J. Negger and H. S. Kim, On *d*–algebras, *Math. Slovac.,* 40(1)(1999), 19–26.
- [4] K. Iseki and S. Tanaka, An introduction to the theory of BCK–algebras, *Math. Japonicae,* 23(1)(1978), 1–26.
- [5] K. Iseki, On BCI-algebras, *Math. Sem. Notes Kobe Univ.,* 8(1980), 125–130.
- K. H. Kim and Y. H. Yon, Dual BCK–algebra and M.V algebra, *Sci . Math. Japan,* 66(2007), 247–253.
- [7] K. Pathak and P. Sabhapandit, A particular poset and some special types of functions on BE-algebra, *Malaya Journal of Matematik*, 1(2020), 479–481.
- [8] P. Sabhapandit and K. Pathak, On dual multipliers in CIalgebras, *Advances in Mathematics: A Scientific Journal,* 9(4)(2020), 1819–1824.
- [9] Q. P. Hu and X. Li, On BCH-algebras, *Math. Seminar Notes*, 11(2)(1983), 313–320.
- [10] S.S. Ahn and K. S. So, On generalized upper sets in BE–algebras, *Bull. Korean. Math. Soc,* 46(2)(2009), 281– 287.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

