
Malaya Journal of Matematik, Vol. 8, No. 4, 1653-1660, 2020

https://doi.org/10.26637/MJM0804/0055

Dominating function in intuitionistic fractional graph
M.G. Karunambigai1* and A. Sathishkumar2

Abstract
In this paper, definition of intuitionistic fractional star graph, intuitionistic fractional bistar graph and intuitionistic
fractional wheel graph has been introduced and we also define dominating function, minimal dominating function,
intuitionistic fractional domination number (γi f (G)) and upper intuitionistic fractional domination number (Γi f (G))
of an intuitionistic fuzzy graph(IFG). We derived these parameters for a path, cycle, star, bistar and wheel of an
intuitionistic fractional graph.
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1. Introduction
Let G=(V,E) be a graph. The open neighbourhood N(v)

and the closed neighbourhood N[v] of v are defined by N(v) =
{u ∈V : uv ∈ E}and N[v] = N(v)∪ v[3]. A dominating set S
is a subset of the vertices in a graph such that every vertex
in the graph either belongs to S or has a neighbour in S. An
excellent treatment of fundamentals of domination in graphs
and several advanced topics in domination are given in Haynes
et al. [5, 6].

In [5], a graph G = (V,E) and for a real-valued function
f : V → R, the weight of f is w( f ) =∑v∈V f (v), and for S⊆V
we define f (S) = ∑v∈S f (v), so w( f ) = f (V ). For a vertex
v ∈V , we denote f (N[v]) by f [v] for notational convenience.
Let f : V →{0,1} be a function which assigns to each vertex

of a graph an element of the set {0,1}. We say f is dominat-
ing function if for every v∈V , f [v]≥ 1. We say f is a minimal
dominating function if there does not exist a dominating func-
tion g : V → {0,1}, f 6= g, for which g(v) ≤ f (v) for every
v ∈V . That is equivalent to saying that a dominating function
f is minimal if for every v such that f (v)> 0, there exists a
vertex u ∈N[v] for which f [u] = 1. Then the domination num-
ber and upper domination number of a graph G can be defined
as γ(G) = min{w( f )| f is a dominating f unction o f G} and
Γ(G)=max{w( f )| f is a minimal dominting f unction on G}.

Fractional graph theory deals with the generalisation of
integer-valued graph theoretic concepts such that they take
on fractional values as their weights in the interval [0,1]. Let
a graph G = (V,E) and f : V → [0,1] be a function which
weights are assigns to each vertex of a graph in the interval
[0,1]. We say f is dominating function(DF) if f (N[v]) =
∑u∈N[v] f (u)≥ 1 for every v ∈V . We say a dominating func-
tion f is a minimal dominating function(MDF) if there does
not exist a dominating function f 6= g, for which g(v)≤ f (v)
for every v ∈ V . Equivalently f is an MDF if for every
v with f (v) > 0, there exist a vertex w ∈ N[v] such that
f (N[w]) or ∑u∈N[w] f (u) = 1. Then the fractional domina-
tion number and upper fractional dominating number of G
can be defined as γ f (G) = min{| f | : f is an MDF of G} and
Γ f (G) = max{| f | : f is an MDF of G} in [7]. To determine
the values of fractional parameter γ f (G) and Γ f (G) which has
one of the standard methods for converting a graph concept
from integer version to fractional version is to formulate the
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concept as an integer program and then to consider the linear
programming relaxation. That is, a linear program (LP) is
an optimization problem that can be expressed in the form
Maximize ctx subject to Ax≤ b and Minimize ctx subject to
Ax≥ b” where b is an m-vector, c is an n-vector, A is an m-
by-n matrix, and x varies over all n-vectors with nonnegative
entries. An integer program(IP) is an optimization problem
of the same form as a linear program except that the vector x
is subject to the additional constraint that all its entries must
be integers. In an LP or an IP, the expression ctx is called
the objective function, a vector x satisfying the constraints
Ax ≤ b,x ≥ 0 is called a feasible solution, and the optimum
of the objective function over all feasible solutions is called
the value of the program. It is natural to assign the value
−∞ to a maximization program with no feasible solutions
and the value +∞ if the objective function is unbounded on
feasible solutions.Many of the fractional invariants in [10] can
be defined by taking a definition of a standard graph invari-
ant verbatim and inserting the word fuzzy in an appropriate
place. Thus it is often appropriate to understand the subscript
f , which we use throughout to denote a fractional analogue, to
also stand for the word f uzzy. One can speculate what might
be meant by a fuzzy or fractional graph. This could mean a
pair (V,E) in which V is a finite set and E is a fuzzy set of
2-element subsets of V . Alternatively, one might allow V to
be a fuzzy set as well. A detailed study of fractional graph
theory and fractionalisation of various graph parameters are
given in Scheinerman and Ullman [10].

In fractional or fuzzy graph G = (V,E), where V be the
vertex set which determines only the degree of membership
and define fuzzy vertex set of a graph G. In this paper, we add
an additional component which determines the degree of non-
membership also and defining intuitionistic fuzzy vertex set of
a graph G. In fractional or fuzzy graph into intuitionistic frac-
tional (or) fuzzy graph(IFG) G = (V,E), where the vertex set
V be the fuzzy set into intuitionistic fuzzy set by way of taking
the non-membership values are also into consideration.The
same idea is extended to edge set also and we define a function
f : V → [0,1], we obtain the fractional dominating function,
minimal dominating function of an intuitionistic fuzzy graph.
Articles [4, 5, 8, 10] motivated us to analyze the fractional
dominating function parameters of intuitionistic fuzzy graphs.
In Section 2, we review some basic concepts and definitions.
Section 3, we introduce the definition of dominating function,
minimal dominating function of the intuitionistic fractional
graphs, intuitionistic fractional star graph, intuitionistic frac-
tional bistar graph and intuitionistic fractional wheel graph.
In Section 4, a linear programming algorithm for finding an
intuitionistic fractional parameters γi f , intuitionistic fractional
domination number and Γi f , upper intuitionistic fractional
domination number of an IFG G have been formulated. We
found γi f and Γi f for a path, a cycle, a star, a bistar and a
wheel of an IFG.

2. Preliminaries
In this section, some basic definitions and observation

which are used in constructing the algorithm relating to IFGs
are given.

Definition 2.1. [8] An Intuitionistic Fuzzy Graph (IFG) is of
the form G = (V,E), where
(i) V = {v1,v2, . . .vn} such that µ1 : V → [0,1] and
ν1 : V → [0,1] denote the degrees of membership and non -
membership of the element vi ∈V respectively and
0≤ µ1(vi)+ν1(vi)≤ 1, for every vi ∈V (i = 1,2, . . . ,n).
(ii) E ⊆V ×V where µ2 : V ×V → [0,1] and
ν2 : V ×V → [0,1] are such that

µ2(vi,v j)≤ min[µ1(vi),µ1(v j)]
ν2(vi,v j)≤ max[ν1(vi),ν1(v j)]

and 0≤ µ2(vi,v j)+ν2(vi,v j)≤ 1
for every (vi,v j) ∈ E,(i, j = 1,2, . . . ,n)

Definition 2.2. [9] Let G = 〈V,E〉 be an IFG.The neighbour-
hood of any vertex v is defined as
N(v) = (Nµ(v),Nν(v)) where
Nµ(v) = {w ∈V ; µ2(v,w) = µ1(v)

∧
µ1(w)} and

Nν(v) = {w ∈V ;ν2(v,w) = ν1(v)
∨

ν1(w)} and
N[V ] = N(v)∪{v} is called the closed neighbourhood of v.

Definition 2.3. [9] The neighbourhood degree of a vertex
in an IFG G, is defined as dN(v) = (dNµ

(v),dNν
(v)) where

dNµ
(v) = ∑

w∈N(v)
µ1(w) and dNν

(v) = ∑
w∈N(v)

ν1(w).

Definition 2.4. [9] The closed neighbourhood degree of a ver-
tex v in an IFG G, is defined as dN [v] = (dNµ

[v],dNν
[v]) where

dNµ
[v] = ∑

u∈N(v)
µ1(u)+µ1(v) and dNν

[v] = ∑
u∈N(v)

ν1(u)+ν1(v).

That is

dNµ1
[v] = ∑

u∈N(v)
µ1(u)+µ1(v) = ∑

u∈Nµ1 [v]
µ1(u)

dNν1
[v] = ∑

u∈N(v)
ν1(u)+ν1(v) = ∑

u∈Nν1 [v]
ν1(u)

Definition 2.5. [8] A path Pn in IFG is a sequence of distinct
vertices v1,v2, . . . ,vn such that either one of the following
conditions is satisfied:

µ2i j > 0 and ν2i j = 0 for some i and j,
µ2i j = 0 and ν2i j > 0 for some i and j,
µ2i j > 0 and ν2i j > 0 for some i and j (i, j = 1,2, . . . ,n).

Definition 2.6. [8] The length of a path P= v1,v2, . . . ,vn+1(n>
0) is n.

Definition 2.7. [8] A path P = v1,v2, . . . ,vn+1 is called a
cycle if v1 = vn+1, and n≥ 3.

Definition 2.8. [7] The problem of finding the fractional dom-
ination number (γ f ) and upper fractional domination number
(Γ f ) is equivalent to finding the optimal solution of the fol-
lowing linear programming problem.
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Minimize z = ∑v∈V (G) f (v) , Subject to ∑x∈N[v] f (x) ≥ 1 and
0≤ f (v)≤ 1 for all v ∈V (G) and
Maximize z = ∑v∈V (G) f (v), Subject to ∑x∈N[v] f (x) ≤ 1 and
0≤ f (v)≤ 1 for all v ∈V (G)

Definition 2.9. [1] A fuzzy star graph consists of two vertex
sets V and U with |V |= 1 and |U |> 1 such that µ(v,ui)> 0
and µ(ui,ui+1) = 0 for 1≤ i≤ n.

Definition 2.10. [11] The bistar B1,n,n is graph obtained by
joining the center(apex) vertices of two copies of K1,n by an
edge.

3. Dominating Function in Intuitionistic
Fractional Graph

Intuitionistic Fuzzy Graph theory was introduced by Kras-
simir T Atanassov in [2]. In [8], M.G. Karunambigai and R.
Parvathi introduced intuitionistic fuzzy graph as a special case
of Atanassov’s IFG. In intuitionistic fuzzy graph or intuition-
istic fractional graph(IFG), G has a pair (V,E) in which V is a
finite set and E is a intuitionistic fuzzy set of 2-element subsets
of V . Alternatively, one might allow V to be an intuitionistic
fuzzy set as well. In this section, we introduced the definition
of intuitionistic fractional star graph, intuitionistic fractional
bistar graph, intuitionistic fractional wheel graph, dominating
function and minimal dominating function of an intuitionistic
fractional graph.

Definition 3.1. A Star S1,n in an intuitionistic fractional graph
is a sequence of distinct vertices u,v1,v2, . . . ,vn such that the
following conditions are holds

(i) µ2(u,vi)> 0,ν2(u,vi)≥ 0 for some u,vi ;
(ii)µ2(vi,v j) = 0,ν2(vi,v j) = 0 for some vi,v j
when µ2(vi,v j) = ν2(vi,v j) = 0 for some vi,v j, there is no
edge between vi and v j. Otherwise there exists an edge
between u and vi where i = 1,2, . . . ,n.
Note:If S1,n be the Star graph, then consider its vertex set V
as with V = {u,v1,v2, . . . ,vn} and edge set E as
E = {uv1,uv2, . . . ,uvn}.

Definition 3.2. The bistar B1,n,n in an intuitionistic fractional
graph is a graph obtained by joining the center vertices of
two copies of S1,n(intuitionistic fractional star) by an edge.

Definition 3.3. A intuitionistic fractional wheel Wn, is a graph
formed by connecting a single universal vertex to all vertices
of a intuitionistic fuzzy cycle Cn, where V (Wn)= {v,v1,v2, . . . ,vn}
and edges E(Wn) = {x = vvi : 1≤ i≤ n−1}∪{ei = vivi+1 :
1≤ i≤ n−2}∪{en−1 = vn−1v1} for n≥ 4, such that either
one of the following conditions is satisfied:

µ2i j > 0 and ν2i j = 0 for some i and j,
µ2i j = 0 and ν2i j > 0 for some i and j,
µ2i j > 0 and ν2i j > 0 for some i and j (i, j = 1,2, . . . ,n).

Definition 3.4. A function fµ1 : V → [0,1] is called a µ-
dominating function of G(V,E) if the closed neighborhood de-
gree of a vertex v∈V such that f (dNµ1

[v]) = ∑
u∈Nµ1 [v]

µ1(u)≥ 1

for every v ∈V .

Definition 3.5. A function fν1 : V → [0,1] is called a ν-
dominating function of G(V,E) if the closed neighborhood de-
gree of a vertex v∈V such that f (dNν1

[v]) = ∑
u∈Nν1 [v]

ν1(u)< 1

for every v ∈V .

Definition 3.6. A function fµ1,ν1 : V → [0,1] is called a dom-
inating function (DF) if it is µ-dominating and ν-dominating
function of G with 0 ≤ fµ1(v)+ fν1(v) ≤ 1 for each v ∈ V
or A function f = fµ1,ν1 : V → [0,1] is called a dominating
function (DF) of G = (V,E) in which V is a intuitionistic fuzzy
set and E is a 2-element subsets of V if the closed neighbor-
hood degree of a vertex v∈V where µ1(v)≥ 0,ν1(v) 6= 1 such
that ∑

u∈Nµ1 [v]
µ1(u)≥ 1, ∑

u∈Nν1 [v]
ν1(u)< 1 for every v ∈V with

0≤ fµ1(v)+ fν1(v)≤ 1 for each v ∈V .

Example 3.7. Consider an IFG, G = (V,E), such that
V = {v1,v2,v3,v4} and E = {(v1,v2),(v2,v3),(v3,v4),(v1,v4)}.
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Here N[v1] = {v1,v2,v4},N[v2] = {v1,v2,v3},
N[v3] = {v2,v3,v4},N[v4] = {v1,v3,v4}
The closed neighborhood degree of a vertex v1 is v1(1.5,0.9),
v2 is v2(1.05,0.9),v3 is v3(1.55,0.8),v4 is v4(1.3,0.7).
Therefore a function f : V → [0,1] of an IFG, G is a dominat-
ing function. Since
f (dNµ1

[v]) = ∑
u∈Nµ1 [v]

µ1(u)≥ 1 and

f (dNν1
[v]) = ∑

u∈Nν1 [v]
ν1(u)< 1 for every v ∈V .

Definition 3.8. A dominating function f = fµ1,ν1 of G is
called a minimal dominating function (MDF), if for every
v ∈V , where ν1(v) 6= 1 such that

∑
u∈Nµ1 [v]

µ1(u) = 1, ∑
u∈Nν1 [v]

ν1(u)< 1 for any u ∈ N[v].

Definition 3.9. The intuitionistic fractional domination num-
ber of G, denoted by γi f (G) is defined as,
γi f (G) = min{| f | : f is an MDF o f IFG} where
| f |= ∑v∈V f (v) = (∑v∈V fµ1(v),∑v∈V fν1(v)).
or γi f (G)= (γi fµ1

(G),γi fν1
(G)) where γi fµ1

is a fµ1 -intuitionistic
fractional domination number and γi fν1

is a fν1 -intuitionistic
fractional domination number of G.

Definition 3.10. The upper intuitionistic fractional domina-
tion number of G, denoted by Γi f (G) is defined as,
Γi f (G) = max{| f | : f is an MDF o f IFG} where
| f |= ∑v∈V f (v) = (∑v∈V fµ1(v),∑v∈V fν1(v)).
or Γi f (G) = (Γi fµ1

(G),Γi fν1
(G)) where Γi fµ1

is a fµ1-upper
intuitionistic fractional domination number and Γi fν1

is a
fν1 -upper intuitionistic fractional domination number of G.

Observation 3.1. The problem of finding the intuitionistic
fractional domination number γi f (G) and upper intuitionis-
tic fractional domination number Γi f (G) of an IFG which
is equivalent to finding the optimal solution of the following
linear programming problem.
For f = fµ1,ν1 : V (G)→ [0,1], let Xi f be the µ-dominating
and ν-dominating function value of the column vector
[ fµ1(v1), fµ1(v2), . . . , fµ1(vn)]

t and
[ fν1(v1), fν1(v2), . . . , fν1(vn)]

t and 1 which denotes the col-
umn vector of all 1’s. Then f is a dominating function if and
only if N.Xi f ≥~1 and N.Xi f ≤~1 for the closed neighborhood
of µ-dominating and ν-dominating function value of the ma-
trix N and all~1 = [1,1, . . . ,1]t . Hence

γi f (G) = Min


∑vi∈V (G) fµ1 (vi) = cXi f i f

N.Xi f ≥~1 i f 0≤ fµ1 (vi)≤ 1 ∀vi ∈V
∑vi∈(G) fν1 (vi) = cXi f i f

N.Xi f ≥~1 i f 0≤ fν1 (vi)≤ 1 ∀vi ∈V

or

γi f (G) = Min{| f | : f is an MDF of IFG } where

| f |= ∑vi∈V f (vi) = (∑vi∈V (G) fµ1 (vi),∑vi∈V (G) fν1 (vi))

and

Γi f (G) = Max


∑vi∈V (G) fµ1 (vi) = cXi f i f

N.Xi f ≤~1 i f 0≤ fµ1 (vi)≤ 1 ∀vi ∈V
∑vi∈V (G) fν1 (vi) = cXi f i f

N.Xi f ≤~1 i f 0≤ fν1 (vi)≤ 1 ∀vi ∈V

or

Γi f (G) = Max{| f | : f is an MDF o f IFG} where

| f |= ∑vi∈V f (v) = (∑vi∈V (G) fµ1 (vi),∑v∈V (G) fµ1 (vi)), and

c = ~1n = [1,1, ...,1].

The problem of finding the µ1-dominating intuitionistic
fractional domination number γi fµ1

is equivalent to finding the
optimal solution of the following linear programming prob-
lem.
Minimize Z = ∑vi∈V (G) fµ1(vi) Subject to ∑x∈N[vi] fµ1(x) ≥ 1
and 0≤ fµ1(vi)≤ 1 ∀vi ∈V (G)
The problem of finding the µ1-dominating upper intuitionistic
fractional domination number Γi fµ1

is equivalent to finding
the optimal solution of the following linear programming prob-
lem.
Maximize Z = ∑vi∈V (G) fµ1(vi) Subject to ∑x∈N[vi] fµ1(x)≤ 1
and 0≤ fµ1(vi)≤ 1 ∀vi ∈V (G)
The problem of finding the ν1-dominating intuitionistic frac-
tional domination number γi fν1

is equivalent to finding the
optimal solution of the following linear programming prob-
lem.
Minimize Z = ∑vi∈V (G) fν1(vi) Subject to ∑x∈N[vi] fν1(x) ≥ 1
and 0≤ fν1(vi)≤ 1 ∀vi ∈V (G)
The problem of finding the ν1-dominating upper intuitionistic
fractional domination number Γi fν1

is equivalent to finding the
optimal solution of the following linear programming prob-
lem.
Maximize Z = ∑vi∈V (G) fν1(vi) Subject to ∑x∈N[vi] fν1(x)≤ 1
and 0≤ fν1(vi)≤ 1 ∀vi ∈V (G)

Theorem 3.11. In any IFG G, the non membership value of
intuitionistic fractional domination number γi fν1

(G) is always
zero.

Proof. Follows from the definition 3.8 and observation 3.1.

Theorem 3.12. In any IFG G, the membership value of intu-
itionistic fractional domination number γi fµ1

(G) and the non
membership value of upper intuitionistic fractional domina-
tion number Γi fν1

(G) is always equal. That is
γi fµ1

(G) = Γi fν1
(G).

Proof. Follows from the observation 3.1. and use the follow-
ing linear programming algorithm.
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4. A Linear Programming Algorithm for
finding out γi f (G) and Γi f (G) of an IFG

using LiPS(Linear Program Solver
software):

Step 1: By Observation 3.1, first we formulate the L.P.P. for
an intuitionistic fractional graph G.
Step 2: Next we define a number of variables(vertex), number
of constraints and number of objective function for an intu-
itionistic fractional graph G.
Step 3: In Lips, go to File→ New→ TableModel. Now the
Model parameters window is open and here we input the Step
2 values and also select Minimization or Maximization in
Optimization direction box and click ok.
Step 4: Now the LiPS Model1 window is open. Enter the
values of c,N and 1, if the objective function is minimize click
>= symbol or maximize click <= for all the constraints.
Step 5: Finally to press the solve active model icon, we
get optimum solution report window for intuitionistic frac-
tional domination number γi f (G) or upper intuitionistic frac-
tional domination number Γi f (G) of an intuitionistic frac-
tional graph.

Theorem 4.1. The dominating function fµ1,ν1 : V → [0,1] of
Cn(n≥ 3) is ( 1

q ,
1
s ) where q and s are integers (q 6= 0,s 6= 0)

such that 0 < 1
q +

1
s ≤ 1 and 1 < q≤ 3,s≥ 4.

Proof. Case 1: Let us take q=2 and s=4. Then fµ1,ν1(vi) =

( 1
2 ,

1
4 ) for all vi ∈V . It can be easily verified that ∑

u∈N[vi]
fµ1(u)≥

1 and ∑
u∈N[vi]

fν1(u) < 1 for every vi ∈ V and 0 < 1
2 +

1
4 ≤ 1.

Hence fµ1,ν1 is an DF and not MDF.
Case 2: Let us take q=2 and s> 4. Then fµ1,ν1(vi) = ( 1

2 ,
1
s ) for

all vi ∈V . It can be easily verified that ∑
u∈N[vi]

fµ1(u)≥ 1 and

∑
u∈N[vi]

fν1(u)< 1 for every vi ∈V and 0 < 1
2 +

1
s ≤ 1. Hence

fµ1,ν1 is an DF and not MDF.
Case 3: Let us take q=3 and s=4. Then fµ1,ν1(vi) = ( 1

3 ,
1
4 ) for

all vi ∈V . It can be easily verified that ∑
u∈N[vi]

fµ1(u) = 1 and

∑
u∈N[vi]

fν1(u)< 1 for every vi ∈V and 0 < 1
3 +

1
4 ≤ 1. Hence

fµ1,ν1 is an DF and also MDF.
Case 4: Let us take q=3 and s> 4. Then fµ1,ν1(vi) = ( 1

3 ,
1
s ) for

all vi ∈V . It can be easily verified that ∑
u∈N[vi]

fµ1(u) = 1 and

∑
u∈N[vi]

fν1(u)< 1 for every vi ∈V and 0 < 1
3 +

1
s ≤ 1. Hence

fµ1,ν1 is an DF and also MDF.

Theorem 4.2. If Cn has n vertices where n≥ 3, then
γi f (Cn) = (γi fµ1

(Cn),γi fν1
(Cn)) = ( n

3 ,0) and
Γi f (Cn) = (Γi fµ1

(Cn),Γi fν1
(Cn)) = ( n

3 ,
n
3 ).

Proof. Follows from Theorem 4.1, by using the observation
3.1 and a linear programming algorithm, to finding out intu-

itionistic fractional domination number Γi f and upper intu-
itionistic fractional domination number Γi f of Cn.

Theorem 4.3. The dominating function fµ1,ν1 : V → [0,1] of
Pn(n≥ 4) is ( p

q ,
1
s ) where p,q and s are integers (q 6= 0,s 6= 0)

such that 0 < p
q +

1
s ≤ 1 and p≤ 2,1 < q≤ 3,s≥ 4.

Proof. A path Pn is an alternating sequence of vertices and
edges v1,e1,v2,e2, . . . ,en−2,vn−1,en−1 and vn.
Case 1: Let us take p=1, q=2 and s=4. Then fµ1,ν1(vi) = ( 1

2 ,
1
4 )

for all vi ∈ V where i = 1,2, . . . ,n. It can be easily verified
that ∑

u∈N[vi]
fµ1(u)≥ 1 and ∑

u∈N[vi]
fν1(u)< 1 and 0< 1

2 +
1
4 ≤ 1.

Hence fµ1,ν1 is an DF and not MDF.
Case 2: Let us take p=1, q=2 and s > 4. Then fµ1,ν1(vi) =

( 1
2 ,

1
s ) for all vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u) ≥ 1 and ∑
u∈N[vi]

fν1(u) < 1 and 0 <

1
2 +

1
s ≤ 1. Hence fµ1,ν1 is an DF and not MDF.

Case 3: Let us take p=1, q=3 and s=4. Then fµ1,ν1(vi) = ( 1
3 ,

1
4 )

for all vi ∈ V where i = 1,2, . . . ,n. It can be easily verified
that ∑

u∈N[vi]
fµ1(u)� 1 and ∑

u∈N[vi]
fν1(u)< 1 and 0< 1

3 +
1
4 ≤ 1.

Hence fµ1,ν1 is not a DF and MDF.
In particular p=1 ∀vi ∈V where i = 2,3, . . . ,n−2 and p=2 for
vi ∈ V where i = 1,n− 1,q = 3 and s=4. Then fµ1,ν1(vi) =

( 1
3 ,

1
4 ) for all vi ∈V where i = 2,3, . . . ,n−1. It can be easily

verified that ∑
u∈N[vi]

fµ1(u) ≥ 1 and ∑
u∈N[vi]

fν1(u) < 1∀vi ∈ V

and 0 < p
3 +

1
4 ≤ 1. Hence fµ1,ν1 is a DF and MDF.

Let us take p=1, q=3 and s > 4. Then fµ1,ν1(vi) = ( 1
3 ,

1
s ) for

all vi ∈ V where i = 1,2, . . . ,n. It can be easily verified that
∑

u∈N[vi]
fµ1(u) � 1 and ∑

u∈N[vi]
fν1(u) < 1 and 0 < 1

3 +
1
s ≤ 1.

Hence fµ1,ν1 is not a DF and MDF.
In particular p=1 ∀vi ∈ V where i = 2,3, . . . ,n− 1 and p=2
for vi ∈V where i = 1,n,q = 3 and s > 4. Then fµ1,ν1(vi) =

( 1
3 ,

1
s )∀vi ∈V where i = 2,3, . . . ,n−1 and fµ1,ν1(vi) = ( 2

3 ,
1
s )

for some vi ∈ V where i=1,n. It can be easily verified that
∑

u∈N[vi]
fµ1(u) ≥ 1 and ∑

u∈N[vi]
fν1(u) < 1∀vi ∈ V and 0 < p

q +

1
s ≤ 1. Hence fµ1,ν1 is an DF and MDF.
Case 4: Let us take p=2, q=2 and s=4. Then fµ1,ν1(vi) = (1, 1

4 )
for all vi ∈V where i= 1,2, . . . ,n. It can be easily verified that

∑
u∈N[vi]

fµ1(u)≥ 1 and ∑
u∈N[vi]

fν1(u)< 1 but it does not satisfies

the inequality and 0 < p
q +

1
s ≤ 1. Hence fµ1,ν1 is not a DF

and MDF.
Let us take p=2, q=2 and s > 4. Then fµ1,ν1(vi) = (1, 1

s ) for
all vi ∈ V where i = 1,2, . . . ,n. It can be easily verified that

∑
u∈N[vi]

fµ1(u)≥ 1 and ∑
u∈N[vi]

fν1(u)< 1 but it does not satisfies

the inequality and 0 < p
q +

1
s ≤ 1. Hence fµ1,ν1 is not a DF

and MDF.
Case 5: Let us take p=2, q=3 and s=4. Then fµ1,ν1(vi) = ( 2

3 ,
1
4 )

for all vi ∈ V where i = 1,2, . . . ,n. It can be easily verified
that ∑

u∈N[vi]
fµ1(u)≥ 1 and ∑

u∈N[vi]
fν1(u)< 1 and 0< 2

3 +
1
4 ≤ 1.

1657



Dominating function in intuitionistic fractional graph — 1658/1660

Hence fµ1,ν1 is a DF and not MDF.
Let us take p=2, q=3 and s > 4. Then fµ1,ν1(vi) = ( 2

3 ,
1
s ) for

all vi ∈ V where i = 1,2, . . . ,n. It can be easily verified that
∑

u∈N[vi]
fµ1(u) ≥ 1 and ∑

u∈N[vi]
fν1(u) < 1 and 0 < 2

3 +
1
4 ≤ 1.

Hence fµ1,ν1 is a DF and not MDF.

Theorem 4.4. Let Pn be the intuitionistic fuzzy path on n
vertices for n≥ 3. Then
γi f (Pn) = (γi fµ1

(Pn),γi fν1
(Pn)) = (

⌈ n
3

⌉
,0) and

Γi f (Pn) = (Γi fµ1
(Pn),Γi fν1

(Pn)) = (
⌈ n

3

⌉
+1 or

⌊ n
3

⌋
+1,

⌈ n
3

⌉
).

In particular,

Γi fµ1
(Pn) =

{⌈ n
3

⌉
+1 for n = 3(m−2)+2 here m≥ 3⌊ n

3

⌋
+1 otherwise

Proof. Follows from Theorem 4.3, by using the observation
3.1 and using a linear programming algorithm, to finding out
intuitionistic fractional domination number (γi f ) and upper
intuitionistic fractional domination number (Γi f ) of Pn.

Theorem 4.5. The dominating function fµ1,ν1 : V → [0,1] of
S1,n(n≥ 2) is ( p

q ,
1
s ) where p,q and s are integers (q 6= 0,s 6=

0) such that 0 < p
q +

1
s ≤ 1 and p≤ 2,1 < q≤ 3,s≥ n+2.

Proof. Let G = S1,n be the intuitionistic fractional star graph.
It has n+ 1 vertices and n edges. Denote the vertices as,
V = {u,v1,v2, . . . ,vn} and edges E = {uv1,uv2, . . . ,uvn}.
Case 1: Let us take p= 1,q= 2 and s≥ n+2. Then fµ1,ν1(vi)=

( 1
2 ,

1
n+2 ) for all vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u) ≥ 1 and ∑
u∈N[vi]

fν1(u) < 1∀vi ∈ V

and 0 < 1
2 +

1
n+2 ≤ 1. Hence fµ1,ν1 is an DF and not MDF.

Case 2: Let us take p= 1,q= 3 and s≥ n+2. Then fµ1,ν1(vi)=

( 1
3 ,

1
n+2 ) for all vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u) � 1 and ∑
u∈N[vi]

fν1(u) < 1∀vi ∈ V

and 0 < 1
3 +

1
n+2 ≤ 1. Hence fµ1,ν1 is not a DF and MDF.

Case 3: Let us take p=2,q=3 and s≥ n+2. Then fµ1,ν1(vi) =

(1, 1
n+2 ) for all vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u) ≥ 1 and ∑
u∈N[vi]

fν1(u) < 1∀vi ∈ V

but it does not satisfies the inequality 0 < p
q +

1
s ≤ 1. Hence

fµ1,ν1 is not a DF and MDF.
Case 4: Let us take p=2,q=3 and s≥ n+2. Then fµ1,ν1(vi) =

( 2
3 ,

1
n+2 ) for all vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u) ≥ 1 and ∑
u∈N[vi]

fν1(u) < 1∀vi ∈ V

and 0 < 2
3 +

1
n+2 ≤ 1. Hence fµ1,ν1 is a DF and not MDF.

Case 5: Let us take p=2,q=3 for u ∈ V and p=1,q=3 where
vi ∈V, i = 1,2, . . . ,n and s≥ n+2. Then fµ1,ν1(u) = ( 2

3 ,
1

n+2 )

for u ∈ V and fµ1,ν1(vi) = ( 1
3 ,

1
n+2 ) for vi ∈ V where i =

1,2, . . . ,n. It can be easily verified that ∑
u∈N[vi]

fµ1(u)≥ 1 and

∑
u∈N[vi]

fν1(u)< 1∀u,vi ∈V and 0 < p
q +

1
s ≤ 1. Hence fµ1,ν1

is a DF and MDF.
In this same manner let us take p=1,q=3 for u∈V and p=2,q=3

where vi ∈V where i=1,2,. . . ,n and s≥ n+2. Then fµ1,ν1(u)=
( 1

3 ,
1

n+2 ) for u ∈V and fµ1,ν1(vi) = ( 2
3 ,

1
n+2 ) for vi ∈V where

i = 1,2, . . . ,n. It can be easily verified that ∑
u∈N[vi]

fµ1(u)≥ 1

and ∑
u∈N[vi]

fν1(u) < 1∀u,vi ∈ V and 0 < p
q + 1

s ≤ 1. Hence

fµ1,ν1 is a DF and MDF.

Theorem 4.6. If a intuitionistic fractional star S1,n has n
vertices then
γi f (S1,n) = (γi fµ1

(S1,n),γi fν1
(S1,n)) = (1,0) and

Γi f (S1,n) = (Γi fµ1
(S1,n),Γi fν1

(S1,n)) = (n,1), where n≥ 2.

Proof. Follows from Theorem 4.5, by using the observation
3.1 and using a linear programming algorithm, to finding out
intuitionistic fractional domination number (γi f ) and upper
intuitionistic fractional domination number (Γi f ) of S1,n

Corollary 4.7. If an intuitionistic fractional bistar B1,n,n has
2n vertices then
γi f (B1,n,n) = (γi fµ1

(B1,n,n),γi fν1
(B1,n,n)) = (2,0) and

Γi f (B1,n,n) = (Γi fµ1
(B1,n,n),Γi fν1

(B1,n,n)) = (2n,2)
where n≥ 2

Corollary 4.8.
Let the intuitionistic fractional bistar B1,n,m graph obtained
by joining the center(apex) vertices of two intuitionistic frac-
tional star graphs S1,n and S1,m by an edge where n 6=m. Then
γi f (B1,n,m) = (γi fµ1

(B1,n,m),γi fν1
(B1,n,m)) = (2,0) and

Γi f (B1,n,m)= (Γi fµ1
(B1,n,m),Γi fν1

(B1,n,m))= (n+m,2) where
n,m≥ 2

Theorem 4.9.
The dominating function fµ1,ν1 : V → [0,1] of Wn(n ≥ 4) is
( 1

p ,
1
q ) where p and q are integers (p 6= 0,q 6= 0) such that

0 < 1
p +

1
q ≤ 1 and 1 < p≤ 4,q≥ n+2.

Proof. Let G =Wn(V,E) be the intuitionistic fractional wheel
graph and the vertex set V (Wn) = {v,v1,v2, . . . ,vn} and the
edges set E(Wn) = {x = vvi : 1 ≤ i ≤ n− 1}∪{ei = vivi+1 :
1≤ i≤ n−2}∪{en−1 = vn−1v1}.
Case 1: Let us take p=2 and q ≥ n+ 2. Then fµ1,ν1(vi) =

( 1
2 ,

1
n+2 ) for all v,vi ∈V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u)≥ 1 and ∑
u∈N[vi]

fν1(u)< 1∀v,vi ∈V

and 0 < 1
2 +

1
n+2 ≤ 1. Hence fµ1,ν1 is an DF and not MDF.

Case 2: Let us take p=3 and q ≥ n+ 2. Then fµ1,ν1(vi) =

( 1
3 ,

1
q ) for all v,vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u)≥ 1 and ∑
u∈N[vi]

fν1(u)< 1∀v,vi ∈V

and 0 < 1
3 +

1
q ≤ 1. Hence fµ1,ν1 is an DF and not MDF.

Case 3: Let us take p=4 and q ≥ n+ 2. Then fµ1,ν1(vi) =

( 1
4 ,

1
q ) for all v,vi ∈ V where i = 1,2, . . . ,n. It can be easily

verified that ∑
u∈N[vi]

fµ1(u)≥ 1 and ∑
u∈N[vi]

fν1(u)< 1∀v,vi ∈V
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and 0 < 1
4 +

1
q ≤ 1. Hence fµ1,ν1 is an DF and MDF.

In particular p ≥ 5 and q ≥ n+ 2. Then fµ1,ν1(vi) = ( 1
p ,

1
q )

for all v,vi ∈ V where i = 1,2, . . . ,n. It can be easily veri-
fied that ∑

u∈N[vi]
fµ1(u)� 1 and ∑

u∈N[vi]
fν1(u)< 1∀v,vi ∈V and

0 < 1
3 +

1
q ≤ 1. Hence fµ1,ν1 is a not DF and MDF.

Theorem 4.10. If a intuitionistic fuzzy wheel Wn has n ver-
tices then γi f (Wn) = (γi fµ1

(Wn),γi fν1
(Wn)) = (1,0) and

Γi f (Wn) = (Γi fµ1
(Wn),Γi fν1

(Wn)) = ( n
3 ,1) where n≥ 4

Proof.
Follows from Theorem 4.9, by using the observation 3.1 and
using a linear programming algorithm, to finding out intuition-
istic fractional domination number γi f and upper intuitionistic
fractional domination number Γi f of Wn.

Example 4.11. Consider a cycle C4 has 4 vertices, it also sat-
isfies the definition 3.6 and definition 3.8. Now we formulate
L.P.P. for the membership and non membership value of the
above graph,to finding the intuitionistic fractional domination
number γi f (C4) and upper intuitionistic fractional domina-
tion number Γi f (C4) of an intuitionistic fractional graph G,
which is equivalent to finding the optimal solution of the L.P.P.
which has been formulate for the above graph using Figure 4.1

Step 1:Consider the graph in figure 4.1, we formulate the
following L.P.P.
Minimize Z = ∑v∈V (G) fµ1(v)
Subject to
fµ1(v1)+ fµ1(v2)+ fµ1(v4)≥ 1
fµ1(v1)+ fµ1(v2)+ fµ1(v3)≥ 1
fµ1(v2)+ fµ1(v3)+ fµ1(v4)≥ 1
fµ1(v1)+ fµ1(v3)+ fµ1(v4)≥ 1
and 0≤ fµ1(v)≤ 1 for all v ∈V (G). It can be written as
Minimize Z = fµ1(v1)+ fµ1(v2)+ fµ1(v3)+ fµ1(v4)

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1




fµ1(v1)
fµ1(v2)
fµ1(v3)
fµ1(v4)

=


1
1
1
1



0≤ fµ1(v)≤ 1 for all v ∈V (G) where c = ~14 = [1,1,1,1],

N =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 ,

Xi f =


fµ1(v1)
fµ1(v2)
fµ1(v3)
fµ1(v4)

 ,~1 =


1
1
1
1

 be the column vector with respect

to the constraint part of the L.P.P. The above L.P.P. is to be
solved by Linear Program Solver software(LiPS).

Step 2: In Figure 4.1, number of variables is 4, number of
constraints is 4 and number of objective function is 1.
Step 3: In Lips, we input the Step 2 values in Step 3 and select
Minimization in Optimization direction box and click ok.
Step 4: Enter the values of c,Nand~1 in LiPS Model1 window
and also click >= symbol for all the constraints.
Step 5: Press the solve active model icon, we get optimum so-
lution report window for intuitionistic fractional domination
number γi fµ1

(C4) =
4
3 where fµ1(v1) =

1
3 , fµ1(v2) =

1
3 ,

fµ1(v3) =
1
3 , fµ1(v4) =

1
3

Similarly we have to find the upper intuitionistic fractional
domination function number Γi fµ1

(C4) =
4
3 and Γi fν1

(C4) =
4
3

which implies Γi f (C4) = (Γi fµ1
(C4),Γi fν1

(C4)) = ( 4
3 ,

4
3 ). That

is
Maximize Z = ∑v∈V (G) fµ1(v)
Subject to
fµ1(v1)+ fµ1(v2)+ fµ1(v4)≤ 1
fµ1(v1)+ fµ1(v2)+ fµ1(v3)≤ 1
fµ1(v2)+ fµ1(v3)+ fµ1(v4)≤ 1
fµ1(v1)+ fµ1(v3)+ fµ1(v4)≤ 1
and 0≤ fµ1(v)≤ 1 for all v ∈V (G). and
Maximize Z = ∑v∈V (G) fν1(v)
Subject to
fν1(v1)+ fν1(v2)+ fν1(v4)≤ 1
fν1(v1)+ fν1(v2)+ fν1(v3)≤ 1
fν1(v2)+ fν1(v3)+ fν1(v4)≤ 1
fν1(v1)+ fν1(v3)+ fν1(v4)≤ 1
and 0≤ fν1(v)≤ 1 for all v ∈V (G).
We get Γi fµ1

(C4) =
4
3 where fµ1(v1) =

1
3 , fµ1(v2) =

1
3 ,

fµ1(v3) =
1
3 , fµ1(v4) =

1
3 and Γi fν1

(C4) =
4
3 where

fν1(v1) =
1
3 , fν1(v2) =

1
3 , fν1(v3) =

1
3 , fν1(v4) =

1
3

In this similar manner we have to calculate the non member-
ship value of an intuitionistic fractional domination number
of an IFG and it is found to be γi fν1

(C4) = 0. Hence we get
γi f (C4) = (γi fµ1

(C4),γi fν1
(C4)) = ( 4

3 ,0) and
Γi f (C4) = (Γi fµ1

(C4),Γi fν1
(C4)) = ( 4

3 ,
4
3 ).

• γi fµ1
(C4) =

4
3 where fµ1(v1) =

1
3 , fµ1(v2) =

1
3 ,

fµ1(v3) =
1
3 , fµ1(v4) =

1
3 and

| f |= ∑v∈V f (v) = ∑v∈V (G) fµ1(v) =
4
3 .

• γi fν1
(C4) = 0 where fν1(v1) = 0, fν1(v2) = 0,
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fν1(v3) = 0, fν1(v4) = 0 and
| f |= ∑v∈V f (v) = ∑v∈V (G) fν1(v) = 0.

• Γi fµ1
(C4) =

4
3 where fµ1(v1) =

1
3 , fµ1(v2) =

1
3 ,

fµ1(v3) =
1
3 , fµ1(v4) =

1
3 and

| f |= ∑v∈V f (v) = ∑v∈V (G) fµ1(v) =
4
3 .

• Γi fν1
(C4) =

4
3 where fν1(v1) =

1
3 , fν1(v2) =

1
3 ,

fν1(v3) =
1
3 , fν1(v4) =

1
3 and

| f |= ∑v∈V f (v) = ∑v∈V (G) fν1(v) =
4
3 .

5. Conclusion
In this paper, we introduce the concept of intuitionistic

fractional domination number, upper intuitionistic fractional
domination number for a path, cycle, star, bistar and wheel
intuitionistic fractional graphs have been discussed and we
found these two parameters by using LiPS(Linear Program
Solver software).We further extended this study on some spe-
cial classes of graphs in future.
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