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Abstract. In this work, we consider generating functions which are generalized tribonacci polynomials Tn(x) and
generalized tricobsthal polynomials Jn(x) which are defined in [7]. We derive generating functions for (m+ n)− th order
of generalized tribonacci polynomials and generalized tricobsthal polynomials for m ≥ 2. Furthermore, we obtain various
families of bilinear and bilateral generating functions and give their special cases for these polynomials. Also, we obtain the
summation formula of generalized tribonacci polynomials and generalized tricobsthal polynomials.
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1. Introduction

There are so many studies in the literature that concern about the special polynomials. In [10], they introduced
generalized Vieta-Jacobsthal and Vieta-Jacobsthal-Lucas polynomials and various families of multilinear and
multilateral generating functions for these polynomials are derived. In [11], authors derived various families
of multilinear and multilateral generating functions for generalized bivariate Fibonacci and Lucas polynomials.
In [13], Mansour and Shattuck investigated some properties of polynomials whose coefficients are generalized
tribonacci numbers. Recently, Kocer and Gedikce [12], has obtained some properties of the trivariate Fibonacci
and Lucas polynomials by using these properties they gave some results for the tribonacci numbers and tribonacci
polynomials. Also different types of polynomials are studied in [14], [15].

In [7], authors defined new kinds of polynomials called as generalized tribonacci polynomials and
generalized tricobsthal polynomials. For these classes of polynomials, they found various results including
recurrence relations and Binet’s formulas, which can be useful also related our problem. Because in our work,
we give the families of bilinear and bilateral generating functions which are generalized tribonacci polynomials
Tn(x) and generalized tricobsthal polynomials Jn(x) and are give their special cases. In addition to, we
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formulate the summation formula for these polynomials. Furthermore we give the exponential generating
functions for generalized tribonacci polynomials and generalized tricobsthal polynomials.

Tribonacci numbers [5] which are defined by,

Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 4, (1.1)

with initial conditions T1 = 1, T2 = 1 and T3 = 2. In [5], they present tribonacci polynomials defined by
recurrence relation

tn(x) = x2tn−1(x) + xtn−2(x) + tn−3(x) for n ≥ 4,

with initial conditions
t1(x) = 1, t2(x) = x2, t3(x) = x4 + x (1.2)

and property tn(1) = Tn.

Definition 1.1. [7] Generalized tribonacci polynomials are defined by recurrence relation

Tn(x) = x2Tn−1(x) + xTn−2(x) + Tn−3(x) for n ≥ 4, (1.3)

with initial conditions

T1(x) = a,

T2(x) = b2x
2 + b1x+ b0,

T3(x) = c4x
4 + c3x

3 + c2x
2 + c1x+ c0, (1.4)

where b2, c1, c4 positive integers and others parametres are nonnegative integers as initial conditions for
tribonacci polynomials.

Theorem 1.2. [7]The Binet formula for generalized tribonacci polynomials defined by (1.3) with initial
conditions (1.4) is

Tn(x) = C1,Tα
n−1
T + C2,Tβ

n−1
T + C3,T γ

n−1
T (1.5)

where n is positive integer,

C1,T =
T3(x)− (γT + βT )T2(x) + γTβTT1(x)

(αT − γT )(αT − βT )
,

C2,T =
T3(x)− (γT + αT )T2(x) + γTαTT1(x)

(βT − γT )(βT − αT )
,

C3,T =
T3(x)− (αT + βT )T2(x) + αTβTT1(x)

(γT − αT )(γT − βT )

and αT , βT , γT are different solutions of characteristic equation y3 − x2y2 − xy − 1 = 0 of (1.3).

αT =
x2

3
− 21/3(−3x− x4)

3δT
+

δT
3.21/3

, (1.6)

βT =
x2

3
+

(1 + i
√

3)(−3x− x4)

3.22/3δT
− (1− i

√
3)δT

6.21/3
,

γT =
x2

3
+

(1− i
√

3)(−3x− x4)

3.22/3δT
− (1 + i

√
3)δT

6.21/3

with

δT =
3

√
27 + 9x3 + 2x6 + 3

√
3
√

27 + 14x3 + 3x6. (1.7)
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In [7], tricobsthal polynomials are defined by recurrence formula

Jn(x) = Jn−1(x) + xJn−2(x) + x2Jn−3(x) for n ≥ 4,

with initial conditions:
J1(x) = 1, J2(x) = 1 and J3(x) = x+ 1.

The choice of initial conditions is according to property Jn(1) = tn(1) = Tn is n− th tribonacci number, by
analogy to Jacobsthal and Fibonacci polynomials ( [5], [6]). Analogously they can define generalized tricobsthal
polynomials:

Definition 1.3. [7]Generalized tricobsthal polynomials are defined by recurrence relation

Jn(x) = Jn−1(x) + xJn−2(x) + x2Jn−3(x) for n ≥ 4, (1.8)

with initial condition:

J1(x) = a

J2(x) = b

J3(x) = c1x+ c0 (1.9)

where parameters c1 is positive integers and a, b, c0 are non-negative integers.

Theorem 1.4. [7]The Binet formula for generalized tricobsthal polynomials defined by (1.8) with initial
conditions (1.9) is

Jn(x) = C1,Jα
n−1
J + C2,Jβ

n−1
J + C3,Jγ

n−1
J , (1.10)

where n is positive integer, x 6= 0 and

C1,J =
J3(x)− (γJ + βJ)J2(x) + γJβJJ1(x)

(αJ − γJ)(αJ − βJ)
,

C2,J =
J3(x)− (γJ + αJ)J2(x) + γJαJJ1(x)

(βJ − γJ)(βJ − αJ)
,

C3,J =
J3(x)− (αJ + βJ)J2(x) + αJβJJ1(x)

(γJ − αJ)(γJ − βJ)

and αJ, βJ, γJ are different solutions of characteristic equation y3 − y2 − xy − x2 = 0 of (1.8).

αJ =
8(3x+ 1)

3 3
√

4δJ
+

δJ

3 3
√

2
+

1

3
,

βJ =
−(1 + i

√
3)(3x+ 1)

3 3
√

4δJ
− (1− i

√
3)δJ

6. 3
√

2
+

1

3
,

γJ =
−(1− i

√
3)(3x+ 1)

3. 3
√

4δJ
− (1 + i

√
3)δJ

6. 3
√

2
+

1

3
(1.11)

and

δJ =
3

√
27x2 + 3

√
3
√

27x4 + 14x3 + 3x2 + 9x+ 2.

Theorem 1.5. [7] Generating function for generalized tribonacci polynomials is given by formula

GT (y) =
T1(x) + y(T2(x)− x2T1(x)) + y2(T3(x)− x2T2(x)− xT1(x))

1− yx2 − y2x− y3
(1.12)

and for generalized tricobsthal polynomials by

GJ(y) =
J1(x) + y(J2(x)− J1(x)) + y2(J3(x)− J2(x)− xJ1(x))

1− y − xy2 − x2y3
. (1.13)
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Nejla Özmen and Arzu Özkoç Öztürk

Definition 1.6. Generalized tribonacci polynomials and generalized tricobsthal polynomials are defined for
generating function by respectively:

∞∑
n=0

Tn+1(x)tn = GT (t) (1.14)

∞∑
n=0

Jn+1(x)tn = GJ(t) (1.15)

where GT (t) in (1.12) and GJ(t) in (1.13) .

Note that for generalized tribonacci polynomials and generalized tricobsthal polynomials are

αT + βT + γT = x2 (1.16)

αTβT γT = 1 (1.17)

αJ + βJ + γJ = T
αJβJγJ = K

with

T = 1 +
2(3x+ 1)

3
√

4δJ

K =
1

864δJ

(
3
√

4δ2J + 2δJ + 8
3
√

2(1 + 3x)
)

×
(

4δJ + 2
3
√

2i(i+
√

3)(1 + 3x)− δ2J
3
√

4(1 + i
√

3)
)

×
(

4δJ − 2
3
√

2i(−i+
√

3)(1 + 3x)− δ2J
3
√

4(1− i
√

3)
)
.

2. Bilinear and Bilateral Generating Functions

In this section we will consider the families of bilinear and bilateral generating functions for generalized
tribonacci polynomials Tn(x) and generalized tricobsthal polynomials Jn(x) which are generated by (1.14),
(1.15) and given explicitly by (1.12), (1.13) using the similar method considered in [1], [2], [3], [4], [8].

Using the polynomials mentioned above, we derived the following results:

Theorem 2.1. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables
y1, ..., yr (r ∈ N) and of complex order µ, let

Λµ,ψ(y1, ..., yr; t) :=

∞∑
k=0

akΩµ+ψk(y1, ..., yr)t
k

where ak 6= 0 , µ, ψ ∈ C and

θn,p,µ,ψ(x; y1, ..., ys; ξ) :=

[n/p]∑
k=0

akTn+1−pk(x)Ωµ+ψk(y1, ..., yr)ξ
k.

Then, for n, p ∈ N; we have

∞∑
n=0

θn,p,µ,ψ(x; y1, ..., ys;
η

tp
)tn = GT (t)Λµ,ψ(y1, ..., yr; η). (2.1)

270



Generalized tribonacci and generalized tricobsthal polynomials

Proof. For convenience, let S denote the first member of the assertion (2.1) of Theorem 2.1. Then,

S =

∞∑
n=0

[n/p]∑
k=0

akTn+1−pk(x)Ωµ+ψk(y1, ..., yr)
ηk

tpk
tn.

Replacing n by n+ pk and then using relation (1.14) we may write

S =

∞∑
n=0

∞∑
k=0

Tn+1(x)ak Ωµ+ψk(y1, ..., yr)η
ktn

=

( ∞∑
n=0

Tn+1(x)tn

)( ∞∑
k=0

akΩµ+ψk(y1, ..., yr)η
k

)
= GT(t)Λµ,ψ(y1, ..., yr; η)

which completes the proof. �

By using a similar idea, we also get the next result immediately.

Theorem 2.2. Let

Θµ,ψ
n,p (x; y1, ..., yr; ξ) :=

[n/p]∑
k=0

akJn−pk+1(x)Ωµ+ψk(y1, ..., yr)ξ
k. (2.2)

If

Λµ,ψ(y1, ..., yr; ζ) :=

∞∑
k=0

akΩµ+ψk(y1, ..., yr)ζ
k

then, for every nonnegative integer µ, we have

∞∑
n=0

Θµ,ψ
n,p

(
x; y1, ..., yr;

η

tp

)
tn = GJ(t)Λµ,ψ(y1, ..., yr; η). (2.3)

Proof. If we denote the left-hand side of (2.3) by T and use (2.2), then we obtain

T =

∞∑
n=0

[n/p]∑
k=0

akJn−pk+1(x)Ωµ+ψk(y1, ..., yr)Ωµ+ψk(y1, ..., yr)η
ktn−pk.

Replacing n by n+ pk,

T =

∞∑
n=0

∞∑
k=0

ak Jn+1(x)Ωµ+ψk(y1, ..., yr)η
ktn

=

∞∑
n=0

Jn+1(x)tn
∞∑
k=0

akΩµ+ψk(y1, ..., yr)η
k

= GJ(t)Λµ,ψ(y1, ..., yr; η)

which completes the proof. �

We derive generating functions for the (m + n) − th order of generalized tribonacci polynomials and
generalized tricobsthal polynomials for m ≥ 2.
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Theorem 2.3. The following generating functions holds true for generalized tribonacci polynomials and
generalized tricobsthal polynomials defined by (1.3) and (1.8) respectively:

gT,m(x, t) =
Tm(x) + t

(
Tm+1(x)− x2Tm(x)

)
+ t2Tm−1(x)

1− tx2 − xt2 − t3
, m ≥ 2 (2.4)

gJ,m(x, t) =
Jm(x) + t (Jm+1(x)− T Jm(x)) + t2KJm−1(x)

1− tx2 − xt2 − t3
, m ≥ 2 (2.5)

where
∞∑
n=0

Tn+m(x)tn = gT,m(x, t), (2.6)

∞∑
n=0

Jn+m(x)tn = gJ,m(x, t). (2.7)

Proof. From Binet formulas for generalized tribonacci polynomials and equation (1.16) and (1.17), we obtained

∞∑
n=0

Tn+m(x)tn =

∞∑
n=0

(
C1,Tα

n+m−1
T + C2,Tβ

n+m−1
T + C3,T γ

n+m−1
T

)
tn

=

(
αm−1T C1,T

∞∑
n=0

αnT t
n

)
+

(
βm−1T C2,T

∞∑
n=0

βnT t
n

)

+

(
γm−1T C3,T

∞∑
n=0

γnT t
n

)

=
αm−1T C1,T

1− αT t
+
αβm−1T C2,T

1− βT t
+
γm−1T C3,T

1− γT t

=


(C1,Tα

m−1
T + C2,Tβ

m−1
T + C3,T γ

m−1
T )

−t(C1,Tα
m−1
T (x2 − αT ) + C2,Tβ

m−1
T (x2 − βT ) + C3,T γ

m−1
T (x2 − γT ))

+t2(C1,Tα
m−1
T βT γT + C2,Tβ

m−1
T αT γT + C3,T γ

m−1
T αTβT )

{
1− t(αT + βT + γT ) + t2(αTβT + αT γT + βT γT )

−t3(αTβT γT )

}
=
Tm(x) + t

(
Tm+1(x)− x2Tm(x)

)
+ t2Tm−1(x)

1− tx2 − xt2 − t3
.

The other cases for generalized tricobsthal polynomials can be done similarly. �

For Tn+m(x) and Jn+m(x), similar theorems will be found.

Theorem 2.4. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables
y1, ..., yr (r ∈ N) and of complex order µ, let

Λm,µ,ψ(x; y1, ..., yr; t) :=

∞∑
k=0

akTm+pk(x)Ωµ+ψk(y1, ..., yr)t
k

where ak 6= 0 , µ, ψ ∈ C and

θµ,ψ(y1, ..., yr; ξ) :=

[n/p]∑
k=0

akΩµ+ψk(y1, ..., yr)ξ
k.
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Then, for n,m ∈ N; we have

∞∑
n=0

Tn+m(x)θµ,ψ(y1, ..., yr; z)t
n = Λm,µ,ψ(x, t; y1, ..., yr; zt

p). (2.8)

Proof. For convenience, let H denote the first member of the assertion (2.8) of Theorem 2.4. Then,

H =

∞∑
n=0

[n/p]∑
k=0

akTn+m(x)Ωµ+ψk(y1, ..., yr)z
ktn.

Replacing n by n+ pk and then using relation (1.14) we may write

H =

∞∑
n=0

∞∑
k=0

Tn+m+pk(x)ak Ωµ+ψk(y1, ..., yr)z
ktn+pk

=

( ∞∑
k=0

ak

( ∞∑
n=0

Tn+m+pk(x)tn

)
Ωµ+ψk(y1, ..., yr)(zt

p)k

)

=

∞∑
k=0

akgT,m+pk(x, t)Ωµ+ψk(y1, ..., yr)(zt
p)k

= Λm,µ,ψ(x, t; y1, ..., yr; zt
p).

which completes the proof. �

Theorem 2.5. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables
y1, ..., yr (r ∈ N) and of complex order µ, let

Λm,µ,ψ(x; y1, ..., yr; t) :=

∞∑
k=0

akJm+pk(x)Ωµ+ψk(y1, ..., yr)t
k

where ak 6= 0 , µ, ψ ∈ C and

θµ,ψ(y1, ..., yr; ξ) :=

[n/p]∑
k=0

akΩµ+ψk(y1, ..., yr)ξ
k.

Then, for n,m ∈ N; we have

∞∑
n=0

Jn+m(x)θµ,ψ(y1, ..., yr; z)t
n = Λm,µ,ψ(x, t; y1, ..., yr; zt

p). (2.9)

Proof. For convenience, let S denote the first member of the assertion (2.9) of Theorem 2.5. Then,

S =

∞∑
n=0

[n/p]∑
k=0

akJn+m(x)Ωµ+ψk(y1, ..., yr)z
ktn.
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Replacing n by n+ pk and then using relation (2.4) we may write

S =

∞∑
n=0

∞∑
k=0

Jn+m+pk(x)ak Ωµ+ψk(y1, ..., yr)z
ktn+pk

=

( ∞∑
k=0

ak

( ∞∑
n=0

Jn+m+pk(x)tn

)
Ωµ+ψk(y1, ..., yr)(zt

p)k

)

=

∞∑
k=0

akgJ,m+pk(x, t)Ωµ+ψk(y1, ..., yr)(zt
p)k

= Λm,µ,ψ(x, t; y1, ..., yr; zt
p).

which completes the proof. �

3. Special Cases

We formulate the sum of the first n terms of generalized tribonacci polynomials and generalized tricobsthal
polynomials respectively.

Theorem 3.1. The sum of the first n−terms of generalized tribonacci polynomials and generalized tricobsthal
polynomials are given by

n∑
j=1

Tj(x) =

{
Tn+3(x) + (1− x2)Tn+2(x) + (1− x2 − x)Tn+1(x)

−(1− x2 − x)T1(x) + (x2 − 1)T2(x)− T3(x)

}
x2 + x

,

n∑
j=0

Jj(x) =
Jn+3(x)− xJn+1(x)− J3(x) + xJ1(x)

x2 + x

respectively.

Proof. Note that, applying Tn(x) = x2Tn−1(x) + xTn−2(x) + Tn−3(x), we deduce that

n = 4⇒ T4(x) = x2T3(x) + xT2(x) + T1(x)

n = 5⇒ T5(x) = x2T4(x) + xT3(x) + T2(x)

· · · (3.1)

n = n+ 2⇒ Tn+2(x) = x2Tn+1(x) + xTn(x) + Tn−1(x)

n = n+ 3⇒ Tn+3(x) = x2Tn+2(x) + xTn+1(x) + Tn(x).

If we sum of both sides of (3.1), then we obtain

T4(x) + T5(x) + · · ·+ Tn+3(x) = xT2(x) (3.2)

+

(x2 + x)

n+1∑
j=3

Tj(x)

+ x2Tn+2(x)

+

n∑
j=1

Tj(x).
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If we make necessary regulations, (3.2) becomes

(x2 + x)

n∑
j=1

Tj(x) =


(1− x2)Tn+2(x) + Tn+3(x)− (x2 + x)T3(x)

−xT2(x) + (1− x2 − x)Tn+1(x)

−(1− x2 − x)(T1(x) + T1(x) + T1(x))

 .

Therefore

n∑
j=1

Tj(x) =

{
Tn+3(x) + (1− x2)Tn+2(x) + (1− x2 − x)Tn+1(x)

−(1− x2 − x)T1(x) + (x2 − 1)T2(x)− T3(x)

}
x2 + x

as we claimed. The other cases for generalized tricobsthal polynomials can be done similarly. �

Theorem 3.2. The exponential generating function of generalized tribonacci polynomials and generalized
tricobsthal polynomials are given by

∞∑
n=0

Tn(x)

n!
tn =

βT γTC1,T e
αT t + αT γTC2,T e

βT t + αTβTC3,T e
γT t

αTβT γT
,

∞∑
n=0

Jn(x)

n!
tn =

β
J
γ

J
C1,Je

α
J
t + α

J
γ

J
C2,Je

β
J
t + α

J
β

J
C3,Je

γ
J
t

αJβJγJ

respectively.

Proof. Assuming that the exponential generating function of the generalized tribonacci polynomials, we obtain

∞∑
n=0

Tn(x)

n!
tn =

∞∑
n=0

(
C1,Tα

n−1
T + C2,Tβ

n−1
T + C3,T γ

n−1
T

) tn
n!

=
C1,T

αT

∞∑
n=0

(αT t)
n

n!
+
C2,T

βT

∞∑
n=0

(βT t)
n

n!
+
C3,T

γT

∞∑
n=0

(γT t)
n

n!

=
βT γTC1,T e

αT t + αT γTC2,T e
βT t + αTβTC3,T e

γT t

αTβT γT
.

The other cases for generalized tricobsthal polynomials can be done similarly. �

We can give many applications of our teorems obtained in the previous section with help of appropriate
choices of the multivariable functions Ωµ+ψk(y1, ..., yr) , k ∈ N0, r ∈ N, is expressed in terms of simpler
functions of one and more variables, then we can give further applications of the above theorems.

If we set
s = 1 and Ωµ+ψk(y) = g

(s)
µ+ψk(λ, y)

in Theorem 2.1. Recall that, by g(s)n (λ, x) we denote the generalized Cesáro polynomials (see, e.g. [3]) generated
by

∞∑
n=0

g(s)n (λ, x)tn = (1− t)−s−1(1− xt)−λ (3.3)

where |t| < min
{

1, |x|−1
}
. Then, from Teorem 2.1, we get a family of the bilateral generating functions for

the generalized Cesáro polynomials and the generalized tribonacci polynomials.
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Corollary 3.3. If

Λµ,ψ(λ, y; ζ) : =

∞∑
k=0

akg
(s)
µ+ψk(λ, y)ζk

(ak 6= 0 , µ, ψ ∈ C)

then, we have
∞∑
n=0

[n/p]∑
k=0

akTn+1−pk(x)g
(s)
µ+ψk(λ, y)ηktn−pk = GT (t)Λµ,ψ(λ, y; η)

Remark 3.4. Using the generating relation (1.14) for generalized tribonacci polynomials and ak = 1, µ = 0,

ψ = 1 in Corollary 3.3, we find that

∞∑
n=0

[n/p]∑
k=0

akTn+1−pk(x)g
(s)
k (λ, y)ηktn−pk = GT (t)(1− η)−s−1(1− yη)−λ.

We first set
Ωµ+ψk(y1, ..., yr ) = Φ

(α)
µ+ψk(y1, ..., yr)

in Theorem 2.2, where the multivariable polynomials Φ
(α)
µ+ψk(x1, ..., xr) [1], generated by

∞∑
n=0

Φ(α)
n (x1, ..., xr)z

n = (1− x1z)−α e(x2+...+xr)z (3.4)

where |z| < |x1|−1 .
The following results which provides a class of bilateral generating functions for generalized tribonacci

polynomials and the family of multivariable polynomials given explicitly by (3.4).

Corollary 3.5. If

Λµ,ψ(y1, ..., yr; ζ) : =

∞∑
k=0

akΦ
(α)
µ+ψk(y1, ..., yr)ζ

k

(ak 6= 0 , µ, ψ ∈ C)

then, we have

∞∑
n=0

[n/p]∑
k=0

akJn+1−pk(x)Φ
(α)
µ+ψk(y1, ..., yr)η

ktn−pk = GJ(t)Λµ,ψ(y1, ..., yr; η) (3.5)

provided that each member of (3.5) exists.

Remark 3.6. Using the generating relation (3.4) for the multivariable polynomials and getting ak = 1, µ = 0,

ψ = 1 in Corollary 3.1, we find that

∞∑
n=0

[n/p]∑
k=0

Jn+1−pk(x)Φ
(α)
k (y1, ..., yr)η

ktn−pk = GJ(t) (1− y1η)
−α

e(y2+...+yr)η,

(
|η| <

{
|y1|−1

})
.
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If we set s = 1

Ωµ+ψk(y ) = Jµ+ψk−1(y)

in Theorem 2.2.Then, from Teorem 2.2, we get a family of the bilinear generating functions for generalized
tricobsthal polynomials given explicitly by (1.8).

Corollary 3.7. If

Λµ,ψ(y; ζ) : =

∞∑
k=0

akJµ+ψk−1(y)ζk

(ak 6= 0 , µ, ψ ∈ C)

then, we have
∞∑
n=0

[n/p]∑
k=0

akJn+1−pk(x)Jµ+ψk−1(y)ηktn−pk = G(t)Λµ,ψ(y; η) (3.6)

provided that each member of (3.6) exists.

Remark 3.8. Using the generating relation (1.15) for generalized tricobsthal polynomials and getting ak = 1,

µ = 0, ψ = 1 in Corollary 3.2, we find that

∞∑
n=0

[n/p]∑
k=0

Jn+1−pk(x)Jk−1(y)ηktn−pk = GJ(t)gJ(η)

If we set
Ωµ+ψk(y1, ..., yr) = h

(β1,...,βr)
µ+ψk (y1, ..., yr)

in Theorem 2.4. Recall that, by h
(α1,...,αr)
n (x1, ..., xr) we denote the multivariable Lagrange-Hermite

polynomials [8] generated by

∞∑
n=0

h(α1,...,αr)
n (x1, ..., xr)t

n =

r∏
j=1

{(
1− xjtj

)−αj
}

(3.7)

where |t| < min
{
|x1|−1 , ..., |xr|−1/r

}
. Then, from Teorem 2.4, we obtain the following result which is aclass

of bilateral generating functions for the multivariable Lagrange-Hermite polynomials and generalized tribonacci
polynomials.

Corollary 3.9. If

Λm,µ,ψ(x; y1, ..., yr; t) : =

∞∑
k=0

akTm+pk(x)h
(β1,...,βr)
µ+ψk (y1, ..., yr)t

k

(ak 6= 0 , µ, ψ ∈ C)

and

θµ,ψ(y1, ..., yr; ξ) :=

[n/p]∑
k=0

akh
(β1,...,βr)
µ+ψk (y1, ..., yr)ξ

k

then, we have

∞∑
n=0

[n/p]∑
k=0

akTn+m(x)h
(β1,...,βr)
µ+ψk (y1, ..., yr)z

ktn = Λm,µ,ψ(x.t; y1, ..., yr; zt
p).
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If we set
Ωµ+ψk(y1, ..., yr) = g

(β1,...,βr)
µ+ψk (y1, ..., yr)

in Theorem 2.5. Recall that, by g(α1,...,αr)
n (x1, ..., xr) we denote the Chan-Chyan-Srivastava polynomials [9]

generated by
∞∑
n=0

g(α1,...,αr)
n (x1, ..., xr)t

n =

r∏
j=1

{
(1− xjt)−αj

}
(3.8)

where |t| < min
{
|x1|−1 , ..., |xr|−1

}
. Then, from Teorem 2.5, we obtain the following result which is aclass of

bilateral generating functions for the Chan-Chyan-Srivastava polynomials and generalized tricobsthal
polynomials.

Corollary 3.10. If

Λm,µ,ψ(x; y1, ..., yr; t) : =

∞∑
k=0

akJm+pk(x)g
(β1,...,βr)
µ+ψk (y1, ..., yr)t

k

(ak 6= 0 , µ, ψ ∈ C)

and

θµ,ψ(y1, ..., yr; ξ) :=

[n/p]∑
k=0

akg
(β1,...,βr)
µ+ψk (y1, ..., yr)ξ

k

then, we have

∞∑
n=0

[n/p]∑
k=0

akJn+m(x)g
(β1,...,βr)
µ+ψk (y1, ..., yr)z

ktn = Λm,µ,ψ(x.t; y1, ..., yr; zt
p).

Notice that, for every suitable choice of the coefficients ak (k ∈ N0), if the multivariable functions
Ωµ+ψk(y1, ..., yr), r ∈ N, are expressed as an appropriate product of several simpler relatively functions, the
assertions of Theorem 2.1, 2.2, 2.4 and Theorem 2.5 can be applied to yield many different families of
multilinear and multilateral generating functions for generalized tribonacci polynomials and generalized
tricobsthal polynomials.
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