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Abstract. In this work, we consider generating functions which are generalized tribonacci polynomials 7, (x) and
generalized tricobsthal polynomials J,, (x) which are defined in [7]. We derive generating functions for (m + n) — th order
of generalized tribonacci polynomials and generalized tricobsthal polynomials for m > 2. Furthermore, we obtain various
families of bilinear and bilateral generating functions and give their special cases for these polynomials. Also, we obtain the
summation formula of generalized tribonacci polynomials and generalized tricobsthal polynomials.
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1. Introduction

There are so many studies in the literature that concern about the special polynomials. In [10], they introduced
generalized Vieta-Jacobsthal and Vieta-Jacobsthal-Lucas polynomials and various families of multilinear and
multilateral generating functions for these polynomials are derived. In [11], authors derived various families
of multilinear and multilateral generating functions for generalized bivariate Fibonacci and Lucas polynomials.
In [13], Mansour and Shattuck investigated some properties of polynomials whose coefficients are generalized
tribonacci numbers. Recently, Kocer and Gedikce [12], has obtained some properties of the trivariate Fibonacci
and Lucas polynomials by using these properties they gave some results for the tribonacci numbers and tribonacci
polynomials. Also different types of polynomials are studied in [14], [15].

In [7], authors defined new kinds of polynomials called as generalized tribonacci polynomials and
generalized tricobsthal polynomials. For these classes of polynomials, they found various results including
recurrence relations and Binet’s formulas, which can be useful also related our problem. Because in our work,
we give the families of bilinear and bilateral generating functions which are generalized tribonacci polynomials
T, (x) and generalized tricobsthal polynomials J, (x) and are give their special cases. In addition to, we
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formulate the summation formula for these polynomials. Furthermore we give the exponential generating
functions for generalized tribonacci polynomials and generalized tricobsthal polynomials.
Tribonacci numbers [5] which are defined by,

Tn =dp-1+ Tn—2 + Tn—S for n > 47 (11)

with initial conditions 77 = 1, 75 = 1 and T3 = 2. In [5], they present tribonacci polynomials defined by
recurrence relation
to(z) = 2%t _1(x) + 2ty _o(zx) +t,_3(z) for n >4,

with initial conditions
ti(z) =1, to(x) = 22, t3(x) = 2* + 2 (1.2)

and property t,,(1) = T5,.

Definition 1.1. [7] Generalized tribonacci polynomials are defined by recurrence relation

To(x) = 2°Ty 1 (x) + 2T _o(x) + T_z(z) for n >4, (1.3)
with initial conditions
Tl(x) = a,
T2($) = b2!172 + blx =+ b(),
Ts(z) = caa* + c30® + cox® + 12 + ¢, (1.4)

where ba, c1, c4 positive integers and others parametres are nonnegative integers as initial conditions for
tribonacci polynomials.

Theorem 1.2. [7]The Binet formula for generalized tribonacci polynomials defined by (1.3) with initial
conditions (1.4) is
Ty (x) = Crral™t + Cop Bt + O pyiit (1.5)

where n is positive integer,

T3(x) — (yr + Br)Te(x) + yrBrTi(z)

Cur = (ar —~7)(ar — Br) ’

Cyp — 13@) = (r + ar)To(@) + yrorTi(z)
’ (Br —r)(Br — ar) ’

Cyp = T3(x) — (o + pr)Ta(x) + arBrTi(x)

)

(yr — ar)(yr — Br)

and o, Br, yr are different solutions of characteristic equation > — z2y*> — xy — 1 = 0 of (1.3).

22 91/3(_3p _ o4 5
ar =3 ( 3?<;T L+ 3.2?/3’ (1.0
2?2 (144V3)(=3z —2*) (1 —1iV3)ér
BT = ? + 3-22/35T - 6.21/3 ’
2 (1—iV3)(=3z—zY)  (1+iV3)ér
Yr = 3 + 3.22/35, - 6.21/3
with
5 = /27 + 028 + 245 4 3v/3y/27 + 142 1 345, (L7)
e
MJM
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In [7], tricobsthal polynomials are defined by recurrence formula
Jo(x) = Jp_1(z) + 2Jy_o(x) + 22T, _3(x) for n >4,
with initial conditions:
Ji(z) =1, Jo(x) =1and J5(z) =z + 1.

The choice of initial conditions is according to property J,,(1) = ¢,,(1) = T, is n — th tribonacci number, by
analogy to Jacobsthal and Fibonacci polynomials ( [5], [6]). Analogously they can define generalized tricobsthal
polynomials:

Definition 1.3. [7]Generalized tricobsthal polynomials are defined by recurrence relation

Jo(x) =, 1(z) + 23, _o(x) + 22T, _3(x) for n >4, (1.8)
with initial condition:
Ji(z) =a
Jo(z) =0
Js(z) = x4+ ¢ (1.9)

where parameters c1 is positive integers and a, b, co are non-negative integers.

Theorem 1.4. [7]The Binet formula for generalized tricobsthal polynomials defined by (1.8) with initial

conditions (1.9) is
Jo(z) = Craay ™ + CogBy ' + Ca gy, (1.10)

where n is positive integer, x # 0 and

J3(x) — (v + B3)J2(z) + 73 83T 1 (x)

Cra = (a3 —y3)(ag — Bs) ’
Coy = J3(2) — (3 + ag)da(z) + ya03d:1(2)
’ (B —73)(Bs — ag) ’
Co ot — Js(z) — (ag + B3)Ja2(z) + azf3di(x)
3,J —

(va —a3)(vs — Bs)
and a, By, vy are different solutions of characteristic equation > — y?> — xy — 2 = 0 of (1.8).
8(3z +1) 03 1

- T + 2,
YT 3Yas,; 392 3

8y — —(1+iV3)Bz+1)  (1-iV3)ds L1
J 3/40; 6.9/2 3’
—(1—-4iv3)(3z+1 1+iv3)6, 1
o TVBGEY) (rivB 1 W
3.v/40;5 6.v/2 3
and
5y = {’/27:1:2 4+ 3v3v/2724 + 1423 + 322 + 97 + 2.
Theorem 1.5. [7] Generating function for generalized tribonacci polynomials is given by formula
T T — 22T (T — 22T — T
G (y) — Do) (o) = T (x) £ (Ty(x) — 2°To(a) — 2T () )

1—yx? —y?zc—y3
and for generalized tricobsthal polynomials by

_ J1(@) +yJa(2) — I1(2)) +y°Ts(z) — Ja(@) — 2d1(2)) (1.13)
1—y—azy? —a?y? ' '

G1(y)
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Definition 1.6. Generalized tribonacci polynomials and generalized tricobsthal polynomials are defined for
generating function by respectively:

> T (@)t" = Gr(t) (1.14)
n=0
> Tn(@)t" = Gi(t) (1.15)
n=0

where G (t) in (1.12) and Gy (t) in (1.13) .

Note that for generalized tribonacci polynomials and generalized tricobsthal polynomials are

ar + Br +yr = 22 (1.16)
arBryr =1 (1.17)
ay+Bi+v =T
a3Bivs =K
with
23z +1)
T 1420200
/463
1

= %D (3/153 + 205 +8V2(1 + Sx))
J

x (48 +2V/2i(i + V3)(1 + 32) — 63 V(1 +1v3) )
x (4aJ —29/2i(—i + V3)(1 + 3x) — 62 VA1 — z'\/??)) .

2. Bilinear and Bilateral Generating Functions

In this section we will consider the families of bilinear and bilateral generating functions for generalized
tribonacci polynomials T,(z) and generalized tricobsthal polynomials J,, () which are generated by (1.14),
(1.15) and given explicitly by (1.12), (1.13) using the similar method considered in [1], [2], [3], [4], [8].

Using the polynomials mentioned above, we derived the following results:

Theorem 2.1. Corresponding to an identically non-vanishing function Q,,(y1, ...,yr ) of v complex variables
Y1y, Yr (r € N) and of complex order p, let

0
Aﬂﬂl)(yla e Yrs t) = Z a/kQu,-i-’Lbk(yh seey y’r)tk
k=0

where ay, 0, u, 1 € C and

[n/pl
en,p,,u,w (SL’; Y1y -y Yss 5) = Z aanJrlfpk (x)Q;H»wk (yla ceey yr)gk
k=0

Then, for n, p € N; we have

oo

} : M\
en,P,H,i/)(x? Y1y -+, Ys; tfP)t = gT(t)Alh’l/J(yla ey Yrs 77) (21)
n=0
S
(V=]
MJM
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Proof. For convenience, let S' denote the first member of the assertion (2.1) of Theorem 2.1. Then,

o [n/p] k
n"
S=> " axTnp1-pk(@)Qupyi(v1, o Yr) it
n=0 k=0

Replacing n by n + pk and then using relation (1.14) we may write

Z Z Toyi1(z)ar Quyypr (Y1, s yr)nkt”

S =
n=0 k=0
n=0 k=0
- gT(t)A#ﬂl’(yla ey Yrs 77)
which completes the proof. |

By using a similar idea, we also get the next result immediately.

Theorem 2.2. Let

[n/p]
9%:? ((E; Y1y ooy Yrs f) = Z akJnfpk+1(x)Qp‘+wk(yla ceey y'r‘)gk‘ (22)
k=0

If

oo
AW, Ui €) 7= @k (Y1, oons )
k=0

then, for every nonnegative integer [, we have

> ey (x;yh oo Yrs tﬁp) " = GOy (Y1, - yri M) (23)
n=0

Proof. If we denote the left-hand side of (2.3) by T" and use (2.2), then we obtain

oo [n/p]
T= Z kT n—pet 1 (2) Qb (Y15 woos Yr ) Qput ol (Y14 ooy Y )t PE
n=0 k=0
Replacing n by n + pk,
T = Z Z ag Jn+1($)Qu+wk(yl7 ceny yr)nktn
n=0 k=0
= Z Jn+1(x)tn Z akQ;L—ku(yla ey Z/r)ﬂk
n=0 k=0
- gJ (t)AMﬂ/)(ylv cey Yrs 77)
which completes the proof. |

We derive generating functions for the (m + n) — th order of generalized tribonacci polynomials and
generalized tricobsthal polynomials for m > 2.
S

[V =)
MM
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Theorem 2.3. The following generating functions holds true for generalized tribonacci polynomials and
generalized tricobsthal polynomials defined by (1.3) and (1.8) respectively:

Ton(2) + t (Ting1(2) — 22T (2)) + 2T ()

g7.m(@:) = 1= ta® — ot — 13 y m22 @4
(e, = DO I @) ST 4 B a(0) -, @5)
where
D Toim(@)t" = grm(x,), (2.6)
n=0
ZJn+m(x)t” = gy m(z,1t). 2.7
n=0

Proof. From Binet formulas for generalized tribonacci polynomials and equation (1.16) and (1.17), we obtained

0 o
Z Tn+m(x)tn = Z (Cl,TOégj_m_l + CQ7T/B;—,+m_1 + 03’T7?+M—1> g
n=0 n=0

o] o]
n=0 n=0
o0
+ (7;”‘1031 > 75515”)

n=0
a0y aBP T Cor T O
= + +
1—art 1— 6.t 1—pt
(Cr1raf ™+ Cor R+ Ca ™)
—t(Cy rof (2% — 1%) + C2,TB7T"_1(31?2 — Br) + C3,T77Tn1_1($2 - 7))
+t2(Cyrali ™ Bryr + Cor B aryr + Cs oy ™ arBr)

{ 1 —t(ar + Br + 1) + t*(arBr + aryr + BryT) }

—t3(arBryr)
T () + t (Tt (z) — 22T (@) + 2T —1(2)
1—tx2 — a2 — 3

The other cases for generalized tricobsthal polynomials can be done similarly. |

For Ty, () and J,, 4, (), similar theorems will be found.

Theorem 2.4. Corresponding to an identically non-vanishing function Q,,(y1, ..., y, ) of © complex variables
Y1, ..., Yr (r € N) and of complex order p, let

oo
A (@3 Y15 s Yri t) = Z kT4 pk (2) Qg (Y1, -, yr)tk
k=0

where ar, 0, p, ¥ € C and

[n/p]

Hﬁbﬂll(yla cey yT7€) = Z a‘kQM+1/Jk(y17 -"ay’r')gk'
k=0

e
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Then, for n,m € N; we have

o0
Z T ()00, (Y15 ooy Urs )" = Ny s (2, 6591, -y s 287). (2.8)
n=0
Proof. For convenience, let H denote the first member of the assertion (2.8) of Theorem 2.4. Then,
oo [n/p]
H = Z Z kT () Qb (Y15 <oy Y ) 2587
n=0 k=0
Replacing n by n + pk and then using relation (1.14) we may write
H=Y"> Tormipk(@)ar Qupyr (Y1, ., yr) 25" P
n=0 k=0
= (Z ax (Z Tn+m+pk<x>t"> rur (v, ...,yn(ztp)’“)
k=0 n=0
= > argrmapk () Qg gk (U1, s yr) (287"
=0
= A (T, 8 Y1, o, Y 28P).
[

which completes the proof.

Theorem 2.5. Corresponding to an identically non-vanishing function Q,,(y1, ...,y ) of v complex variables
Y1, -, Yr (r € N) and of complex order pu, let

o0
Am,u,w(x; Y1y Yrs t) = Z akJm+pk(x)Q#+wk(yla ceey yr)tk
k=0

where ar, 0, p, ¥ € C and

[n/p]
9##‘/’(?‘/1’ ceey y'r‘ag) = Z aka,+wk(y17 -~-73/r)fk~
k=0
Then, for n,m € N; we have
Z T (@)0,0 (Y1, s Yr; 2D = Ay (T, 85 41, oo, Y 28P). (2.9)
n=0

Proof. For convenience, let S denote the first member of the assertion (2.9) of Theorem 2.5. Then,

oo [n/p

]
S = Z Z Ao (2) Qg (Y1, oy Y ) 25

n=0 k=0

e
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Replacing n by n + pk and then using relation (2.4) we may write

oo o0
S=>" Tnimipr(@)ar Quyyr(yr, . ) 25
n=0 k=0
o0 o0
= <Z ax <Z Jn+m+pk<x>t”) Dt (U1, - yr><ztp>’“>
k=0 n=0
oo
=3 g3 (D (U1, ) (287
k=0
= Am,u,w ($, ta Yty ey Yrs th)
which completes the proof. u

3. Special Cases

We formulate the sum of the first n terms of generalized tribonacci polynomials and generalized tricobsthal
polynomials respectively.

Theorem 3.1. The sum of the first n—terms of generalized tribonacci polynomials and generalized tricobsthal
polynomials are given by

{ Tois(@) + (1 — 22)Thra(@) + (1 — a2 — 2) Ty (2) }

S gy = L Z0 D) + @ - W) D) S
Zn:Jj(x) _ Inia(@) *anjngJ)r;Js(x) + 231 (2)

respectively.
Proof. Note that, applying T}, (z) = 22T}, _1 () + 2T}, _o(x) + T),_3(z), we deduce that

n =4 = Ty(z) = 2°T3(x) + 2Tz(z) + T1(2)
n="5= Ts(x) = 2°Ty(x) + 2T3(x) + Ta(2)

3.1
n=n+2=T,a(z) =2°Th1(z) + 2Ty (x) + Th1 ()
n=n+3=Th3(x)=2°Th2(z) + 2Thi1(z) + Tn(z).

If we sum of both sides of (3.1), then we obtain
Ty(z) +Ts5(x) + -+ This(z) = aTa(x) (3.2)
n+1
+ (@ +2) Y Ti(a) | + 2’ Tuya()
j=3

e
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If we make necessary regulations, (3.2) becomes

n (1 = a®)Tng2(2) + Tnas(z) — (a2 + 2)T3(x)
2’ +x) Yy Tix) = —aTy(x) + (1 — 2% — 2)Thp1(2)
: —(1=2® —2)(Ti(z) + Ta(z) + T1(z))

Therefore
{Tn—&-S(I) + (1= 2*)Thso(z) + (1 — 2% — 2)Tppa () }
n —(1 =2 —2)T1(2) + (2 — V) Ta(z) — T3(z)
> Tj(x) = P
j=1
as we claimed. The other cases for generalized tricobsthal polynomials can be done similarly. |

Theorem 3.2. The exponential generating function of generalized tribonacci polynomials and generalized
tricobsthal polynomials are given by

i T (x) m BryrCire®™t + aryrCo relTt + arfrCs pet

' )
= n arBryr
i Jn(z) o= 5.17.1017.16&‘]1‘/ + OZJ’VJCZJe,BJt + OéJBJC&Je’YJt
— nl 3373

respectively.

Proof. Assuming that the exponential generating function of the generalized tribonacci polynomials, we obtain

LS T, > . t"
Zﬂtn = (Crrap ™ + Confp T 4 Carip )

n!
n=0 n=0

Ci1 o= (apt)”  Corp — )" Cyr ~— DK
D D D D DR

ap = nl B = nl o mpon!
_ BryrCire?™t + aryrCe re’rt + arBrCs relT?

arBryr

The other cases for generalized tricobsthal polynomials can be done similarly. |

We can give many applications of our teorems obtained in the previous section with help of appropriate
choices of the multivariable functions €4k (y1,...,¥r), & € No, r € N, is expressed in terms of simpler
functions of one and more variables, then we can give further applications of the above theorems.

If we set
s=1 and Quyk(y) = g0, (A y)

in Theorem 2.1. Recall that, by ggf) (A, z) we denote the generalized Cesaro polynomials (see, e.g. [3]) generated

by
Zg<3> M)t =1 -t 1 —at)? (3.3)

where [t| < min {1, ‘Z|71} . Then, from Teorem 2.1, we get a family of the bilateral generating functions for
the generalized Cesaro polynomials and the generalized tribonacci polynomials.

e

[V =)
MM
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Corollary 3.3. If

Mw()‘ Y; C Zakg#+wk()\ y)C
k=0

(Clk?éo, M,¢€C)

then, we have
oo [n/p]

Z Z agTny1- pk Q#erk()\ y) Fgn—rk = gT(t>Au,w(/\ay§77)
n=0 k=0

Remark 3.4. Using the generating relation (1.14) for generalized tribonacci polynomials and ap, = 1, p = 0,
1 = 1 in Corollary 3.3, we find that

o] ’Vl/
SN T (@)g” Nyt = Gr () (1= )T (1 =)

n=0

=

b
I
o

We first set
Q,u+'¢)k(y17 cey Yr ) = ‘I),(i;_)w(yl» sy yr)

in Theorem 2.2, where the multivariable polynomials <I>Efi) ok (1, ...,z) [1], generated by

Z@ (21,0 )2 = (1 — my2) " * @2t Far)z (3.4)

where |z| < |z, 7"
The following results which provides a class of bilateral generating functions for generalized tribonacci
polynomials and the family of multivariable polynomials given explicitly by (3.4).

Corollary 3.5. If

A/»Ml’(ylv "'7yT;C) = Zak@/&o—tx—)wk(yla "'ay’f‘)ck
k=0

(ak: 7& 0, Mal/} € (C)
then, we have

oo [n/p]

Z > arTn1—pp (@) Y1y ) T = Gy (A (Y1, s i) 3.5)
n=0 k=0

provided that each member of (3.5) exists.

Remark 3.6. Using the generating relation (3.4) for the multivariable polynomials and getting ay, = 1, u = 0,
v =1 in Corollary 3.1, we find that

oo [n/p]

> Z Tt (@) (g1, sy ) PF = Gy (1) (1 = yam) ™ eweteoturn,

: (1nl < {1 ™'}) -

276
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Ifwesets =1
Qutypr(y) = Jprpr—1(y)

in Theorem 2.2.Then, from Teorem 2.2, we get a family of the bilinear generating functions for generalized
tricobsthal polynomials given explicitly by (1.8).

Corollary 3.7. If

Ay (y; Q) - ZakJu+wk 1(y)¢*

(ak # 07 ,U/7’¢ € C)
then, we have

oo [n/p]

S aduit (@) Tt W = G A (i) (3.6)
n=0 k=0

provided that each member of (3.6) exists.

Remark 3.8. Using the generating relation (1.15) for generalized tricobsthal polynomials and getting ay, = 1,
w=0,1% =1 in Corollary 3.2, we find that

oo [n/p]

DO T k(@)1 ()t PF = Gi(Hgs ()

n=0 k=0

If we set

Q/L+1,Z)k(y17 eeey yT) = h;ﬁf¢k’ﬂT)(y1, veny y'r‘>

in Theorem 2.4. Recall that, by h&““"a”(a:l, ..., z;) we denote the multivariable Lagrange-Hermite
polynomials [8] generated by

o

Z h%al"'"’ar)( tn — H { 1 _ .ﬁ]t] aj} (37)
n=0 7j=1
where |t| < min { lz1)7, o |xr|_1/r} . Then, from Teorem 2.4, we obtain the following result which is aclass

of bilateral generating functions for the multivariable Lagrange-Hermite polynomials and generalized tribonacci
polynomials.

Corollary 3.9. If

Am,,u,,w(x; Y1y ey Yrs t) L= Z akTerpk(x)hfﬁ:/;.k:’BT)(ylv eeey yr)tk

(ak#07 /L,’Q[JE(C)

and
[n/p]
9u,1/)(y17"'7y7'7 Z ak'hffﬁpk;”gr yla"'ayr)gk
then, we have
[n/p]
Z Z T /31, ,Bv)( kg _ A ¢ < o tP
k n+’m P«Jﬂl’k Z/17~-~7y7-)2 — ’H’L,M,’(/}(x' YLy e Yri 2 )
n=0 k=0

3

s
2
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If we set
Q,u,+'¢)k(y17 eeey y’l“) = gl(fi:q;;kyﬁr)(ylv ceey yr)
in Theorem 2.5. Recall that, by g%al"”’a")(a:l, ..., ) we denote the Chan-Chyan-Srivastava polynomials [9]
generated by
(o) T
Sgi e @yt = [T {0 - 2567 38)
n=0 j=1
where [t| < min { lz4] 7" |xr|71} . Then, from Teorem 2.5, we obtain the following result which is aclass of

bilateral generating functions for the Chan-Chyan-Srivastava polynomials and generalized tricobsthal
polynomials.

Corollary 3.10. If

oo
A (T3 Y15 o Yri ) 1 = Z%mek(x)gfﬁ;;};’ﬁr)(yl,~..7yr)t’“
k=0

(Gk?éo, M)¢€C)

and
[n/p]

O (W1, 03 €)= > ang o™ sy )€
k=0

then, we have

oo
Z ak-]n+m (m)gfﬁ}z’/ﬁ;ﬂ”(ylv ceey yr)zktn = Am,p,w(w~t§ Y1y Yrs th)'

Notice that, for every suitable choice of the coefficients ar (k € Ny), if the multivariable functions
Quiypr(y1,...,yr), 7 € N, are expressed as an appropriate product of several simpler relatively functions, the
assertions of Theorem 2.1, 2.2, 2.4 and Theorem 2.5 can be applied to yield many different families of
multilinear and multilateral generating functions for generalized tribonacci polynomials and generalized
tricobsthal polynomials.
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