

https://doi.org/10.26637/MJM0804/0057

Ideals and IWI-ideals of residuated lattice Wajsberg algebras

A. Ibrahim¹ and R. Shanmugapriya^{2*}

Abstract

In this paper, we study WI-ideal of residuated lattice Wajsberg algebraand investigate some of their properties. Also, we announce the concept of implicative WI-ideal (IWI-ideal)of residuated lattice Wajsberg algebra. Further, we inspect some of its characterizations and attain some properties of residuated lattice H-Wajsberg algebra.

Keywords

Wajsberg algebra; Lattice Wajsberg algebra; Residuated lattice Wajsberg algebra; Residuated lattice H-Wajsberg algebra; WI-ideal; Lattice ideal; Ideal; Implicative WI-ideal.

AMS Subject Classification

03B60, 06B10, 06B20.

^{1,2} PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai– 622001, Tamil Nadu, India.

² Research Scholar, PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai–622 001, Tamil Nadu, India.

^{1,2} Affiliated to Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India. *Corresponding author: ibrahimaadhil@yahoo.com; ²priyasanmu@gmail.com

Article History: Received 11 July 2020; Accepted 25 September 2020

©2020 MJM.

Contents

 1
 Introduction
 1665

 2
 Preliminaries
 1665

 3
 Main Results
 1667

 3.1
 Properties of ideals of residuated lattice Wajsberg algebras
 1667

 3.2
 Properties of *IW1* -ideal of residuated lattice Wajsberg algebras
 1667

 3.4
 Conclusion
 1669

 References
 1669

1. Introduction

Mordchaj Wajsberg [1] introduced the concept of Wajsberg algebras in 1935 and studied by Font, Rodriguez and Torrens [2]. Residuated lattices were announced by Ward and Dilworth [3]. Ibrahim and Shajitha Begum [4] and [5] introduced the notions of Wajsberg implicative ideal (WI-ideal), ideals and implicative WI-ideals of lattice Wajsberg algebras and also investigated their properties with suitable llustrations. The authors [6],[7] and [8] introduced the notion of Wajsberg implicative ideal (WI-ideal) and Fuzzy Wajsberg Implicative ideal (FWI-ideal) of residuated lattice Wajsberg algebras. In this paper, we consider ideal of residuated lattice Wajsberg algebra and investigate some related properties. Also, we introduce the notion of IWI-ideal of residuated lattice Wajsberg algebra. Further, we investigate some of its characterizations and obtain some properties of residuated lattice H-Wajsberg algebra.

2. Preliminaries

In this section, we recall some basic definitions and properties which are helpful to develop our main results.

Definition 2.1 ([2]). Let $(\mathcal{R}, \rightarrow, *, 1)$ bean algebra with a binary operation " \rightarrow " and a quasi complement "*" is called a Wajsberg algebra. Then if it satisfied the following axioms for all $x, y, z \in \mathcal{R}$,

- (i) $1 \rightarrow x = x$
- (*ii*) $(x \rightarrow y) \rightarrow y = ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$
- (*iii*) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$
- (iv) $(x^* \rightarrow y^*) \rightarrow (y \rightarrow x) = 1.$

Definition 2.2 ([2]). A Wajsberg algebra $(\mathcal{R}, \rightarrow, *, 1)$ satisfied the following axioms for all $x, y, z \in \mathcal{R}$,

(*i*)
$$x \rightarrow x = 1$$

(*ii*) If
$$(x \to y) = (y \to x) = 1$$
 then $x = y$

(*iii*)
$$x \rightarrow 1 = 1$$

$$(iv) \ (x \to (y \to x)) = 1$$

(v) If
$$(x \to y) = (y \to z) = 1$$
 then $x \to z = 1$

$$(vi) \ (x \to y) \to ((z \to x) \to (z \to y)) = 1$$

(vii)
$$x \to (y \to z) = y \to (x \to z)$$

(viii)
$$x \rightarrow 0 = x \rightarrow 1^* = x^*$$

$$(ix) (x^*)^* = x$$

$$(x) \ (x^* \to y^*) = y \to x.$$

Definition 2.3 ([2]). A Wajsberg algebra \mathcal{R} is called a lattice Wajsberg algebra, if it satisfied the following conditions for all $x, y \in \mathcal{R}$,

(i) The partial ordering " \leq " on a lattice Wajsberg algebra, such that $x \leq y$ if and only if $x \rightarrow y = 1$

(*ii*)
$$x \lor y = (x \to y) \to y$$

(iii) $x \wedge y = ((x^* \rightarrow y^*) \rightarrow y^*)^*$.

Thus, $(\mathscr{R}, \lor, \land, *, 0, 1)$ is a lattice Wajsberg algebra with lower bound 0 and upper bound 1.

Proposition 2.4 ([2]). Alattice Wajsberg algebra $(\mathcal{R}, \rightarrow, *, 1)$ satisfied the following axioms for all $x, y, z \in \mathcal{R}$,

- (*i*) If $x \le y$ then $x \to z \ge y \to z$ and $z \to x \le z \to y$
- (*ii*) $x \le y \to z$ *if and only if* $y \le x \to z$

(*iii*)
$$(x \lor y)^* = (x^* \land y^*)$$

(*iv*)
$$(x \land y)^* = (x^* \lor y^*)$$

(v)
$$(x \lor y) \to z = (x \to z) \land (y \to z)$$

(vi)
$$x \to (y \land z) = (x \to y) \land (x \to z)$$

- (vii) $(x \rightarrow y) \lor (y \rightarrow x) = 1$
- (viii) $x \to (y \lor z) = (x \to y) \lor (x \to z)$

$$(ix) (x \land y) \to z = (x \to z) \lor (y \to z)$$

$$(x) (x \land y) \lor z = (x \lor z) \land (y \lor z)$$

(xi) $(x \land y) \rightarrow z = (x \rightarrow y) \rightarrow (x \rightarrow z).$

Definition 2.5 ([3]). A residuated lattice $(\mathcal{R}, \lor, \land, \otimes, \rightarrow, 0, 1)$ satisfied the following conditions for all $x, y, z \in \mathcal{R}$,

- (i) $(\mathcal{R}, \lor, \land, 0, 1)$ is a bounded lattice
- (ii) $(\mathcal{R}, \otimes, 1)$ is commutative monoid
- (*iii*) $x \otimes y \leq z$ *if and only if* $x \leq y \rightarrow z$.

Proposition 2.6 ([3]). Let($\mathscr{R}, \lor, \land, \otimes, \rightarrow, 0, 1$) be a residuated lattice. Then the following are satisfied for all $x, y, z \in \mathscr{R}$,

- (i) $(x \otimes y) \rightarrow z = x \rightarrow (y \rightarrow z)$
- (*ii*) $(x \otimes y) \otimes z = x \otimes (y \otimes z)$
- (*iii*) $x \otimes y = y \otimes x$.

Definition 2.7 ([2]). Let($\mathscr{R}, \lor, \land, \ast, \rightarrow, 1$) be a lattice Wajsberg algebra. If a binary operation" \otimes " on \mathscr{R} satisfied $x \otimes y = (x \rightarrow y^*)^*$ for all $x, y \in \mathscr{R}$. Then $(\mathscr{R}, \lor, \land, \otimes, \rightarrow, \ast, 0, 1)$ is called a residuated lattice Wajsberg algebra.

Definition 2.8 ([5]). *The lattice Wajsberg algebra* \mathscr{R} *is called a lattice* H - *Wajsberg algebra, if it satisfied* $x \lor y \lor ((x \land y) \rightarrow z) = 1$ *for all* $x, y, z \in \mathscr{R}$.

In a lattice H-Wajsberg algebra \mathcal{R} , the following are hold:

(i)
$$x \to (x \to y) = (x \to y)$$

(ii)
$$x \to (y \to z) = (x \to y) \to (x \to z)$$

Definition 2.9 ([7]). *The residuated lattice Wajsberg algebra* \mathscr{R} *is called a residuated lattice H*-*Wajsberg algebra if it satisfied* $x \lor y \lor ((x \land y) \to z) = 1$ *for all* $x, y, z \in \mathscr{R}$. *In a residuated lattice H*-*Wajsberg algebra* \mathscr{R} , *the following*

In a residuated lattice H -Wajsberg algebra \mathscr{R} , the following are hold:

- (i) $x \otimes y \in \mathcal{R}$
- (ii) $x \otimes (x \otimes y) = (x \otimes y); x \to (x \to y) = (x \to y)$
- (iii) $x \otimes (y \otimes z) = (x \otimes y) \otimes (x \otimes z); x \to (y \to z) = (x \to y) \to (x \to z), \text{ for all } x, y, z \in \mathscr{R}.$

Proposition 2.10 ([5]). Let \mathscr{R} is a lattice H -Wajsberg algebra, then the following equality are hold

$$(x \to y)^* \to z = (x \to z)^* \to (y \to z)^*$$
 for all $x, y, z \in \mathscr{R}$.

Definition 2.11 ([2]). Let I be a non-empty subset of a lattice Wajsberg algebra \mathcal{R} . Then I is called a WI -ideal \mathcal{R} , if satisfied for all $x, y \in \mathcal{R}$,

- (*i*) $0 \in I$
- (*ii*) $(x \rightarrow y)^* \in I$ and $y \in I$ imply $x \in I$.

Definition 2.12 ([6]). Let I be a non-empty subset of a residuated lattice Wajsberg algebras \mathscr{R} . Then I is called a WI-ideal \mathscr{R} , if it satisfied the following for all $x, y \in \mathscr{R}$,

- (i) $0 \in I$
- (*ii*) $x \otimes y \in I$ and $y \in I$ imply $x \in I$
- (*iii*) $(x \rightarrow y)^* \in I$ and $y \in I$ imply $x \in I$.

Definition 2.13 ([2]). Let \mathscr{R} be a lattice. An ideal I of \mathscr{R} is a nonempty subset of \mathscr{R} is called a lattice ideal, if it satisfied the following axioms for all $x, y \in \mathscr{R}$,

(*i*) $x \in I, y \in L$ and $y \leq x$ imply $y \in I$

(*ii*) $x, y \in I$ *implies* $x \lor y \in I$.

Definition 2.14 ([4]). A non-empty subset I of a Wajsberg algebra \mathscr{R} is an ideal, if it satisfied the following axioms for all $x, y \in \mathscr{R}$,

(i) $0 \in I$

(*ii*) $x \in I$ and $y \leq x$ imply $y \in I$.

Definition 2.15 ([2]). A non-empty subset of T of a residuated lattic \mathscr{R} is called an implicative filter if it satisfied the following axioms for all $x, y \in \mathscr{R}$,

(i) $1 \in \mathbf{T}$

(*ii*) $x \in T, x \to y \in T$ *implies* $y \in T$.

3. Main Results

3.1 Properties of ideals of residuated lattice Wajsberg algebras

In this section, we consider ideal of residuated lattice Wajsberg algebra and explore some properties of ideal.

Proposition 3.1. Intersection of any two ideals of residuated lattice Wajsberg algebra \mathcal{R} is an ideal.

Proof. Let K_1 and K_2 be two ideals of residuated lattice Wajsberg algebra \mathcal{R} .

Since, from (i) of Definition 2.14, $0 \in K_1$ and $0 \in K_2$ imply $0 \in K_1 \cap K_2$.

Therefore $K_1 \cap K_2$ is non-empty, if $x \in K_1 \cap K_2$ and $y \le x$. Then, from (ii) of Definition 2.14 we have, $x \in K_1$ and $y \le x$.

Also, from (ii) of Definition 2.14, $x \in K_2$ and $y \le x$.

Since, from (ii) of Definition 2.14, K_1 and K_2 are ideals of \mathscr{R} imply $y \in K_1$ and $y \in K_2$. Then, $y \in K_1 \cap K_2$ imply

$$x^* \otimes y \in K_1 \cap K_2, x^* \to y \in K_1 \cap K_2.$$

Hence, the intersection of two ideals of residuated lattice Wajsberg algebra \mathscr{R} is an ideal.

Remark 3.2. Union of any two ideals of residuated lattice Wajsberg algebra \mathcal{R} need not be an ideal of \mathcal{R} .

Proposition 3.3. Every ideal of residuated lattice Wajsberg algebra \mathcal{R} is a lattice ideal.

Proof. Let *T* be an ideal of \mathscr{R} . From (ii) of Definition 2.15 shows that T satisfies (i) of Definition 2.13. Now,

And

$$(x \lor y)^* \to y = (((x \to y) \to y)^* \to y)$$

[From (i) of Definition 2.3]

$$= ((y^* \to (x \to y)^*) \to y)$$

$$= (y^* \to (y^* \to x^*)) \to y$$

$$= ((x^* \to (x^* \to y^*)) \to y)$$
[From (iii) of Definition 2.1]

$$= ((x \land y)^* \to y)$$
 [From (ii) of Definition 2.3]

$$= ((x^* \lor y^*) \to y)$$
 [From (iv) of Proposition 2.4]

$$= (x^* \to y) \land (y^* \to y)$$
 [From (v) of Proposition 2.4]

$$= x^* \to y \in T.$$

Thus, we get

$$(x \lor y)^* \otimes y = 1 \in \mathbf{T}, (x \lor y)^* \to y = x^* \to y \in \mathbf{T}.$$

Since T is an ideal,

$$(x \lor y)^* \otimes y \in \mathbf{T}, (x \lor y)^* \to y \in \mathbf{T}$$

imply $x \lor y \in T$ and $y \in T$. From Definition 2.13, we have *T* is a lattice ideal.

Example 3.4. Consider a set $\mathscr{R} = \{0, p, q, r, x, y, z, 1\}$. Define

Tab	le	1.	Compl	lement
-----	----	----	-------	--------

х	<i>x</i> *
0	1
р	Х
q	У
r	Z
Х	р
У	q
Z	r
1	0

a partial ordering " \leq " on \mathscr{R} , such that $0 \leq a \leq b \leq c \leq$

 Table 2. Implication

	-				-	-	_	_
\rightarrow	0	p	q	r	Х	У	z	1
0	1	1	1	1	1	1	1	1
р	X	1	p	p	Z	Z	Z	1
q	У	1	1	1	р	Z	Z	1
r	Z	1	1	1	1	Z	Z	1
X	p	1	1	1	1	1	1	1
У	q	1	р	р	р	1	1	1
Z	r	1	p	p	р	р	1	1
1	0	р	q	r	Х	y	z	1

 $d \leq 1$ with a binary operations " \otimes " and " \rightarrow " and a quasi complement "*" on \mathscr{R} as in the Tables 1 and 2. Define \lor and \land operations on \mathscr{R} as follows:

$$(x \lor y) = (x \to y) \to y$$

(x \wedge y) = ((x* \to y*) \to y*)*; x \vee y = (x \to y*)* for all x, y \in \mathcal{R}

Then, \mathscr{R} is a residutated lattice Wajsberg algebra. It is easy to verify that, $I_1 = \{0,q\}$ is an ideal of \mathscr{R} and also lattice ideal of \mathscr{R} .

Proposition 3.5. *Every lattice ideal of residuated lattice* H*-Wajsberg algebra* \mathcal{R} *is an ideal.*

Proof. Let \mathscr{R} be a residuated lattice H -Wajsberg algebra.

Let *I* be a lattice ideal of \mathscr{R} for all $x, y, z \in \mathscr{R}$. Then $x \in I, y \in \mathscr{R}$ and $y \leq x$ imply $y \in I$. [From (i) of Definition 2.13].

For $x, y \in I$ imply $x \lor y \in I$ [From (ii) of Definition 2.13].

Since *I* is a lattice ideal, it satisfies (ii) of Definition 2.13.

And $x, y \in I$ which imply $x^* \otimes y \in I, x^* \to y \in I$. Hence, we get *I* is an ideal.

Proposition 3.6. Every ideal of residuated lattice H-Wajsberg algebra \Re is a WI-ideal.

Proof. Let T be an ideal of residuated lattice Wajsberg algebra \mathscr{R} , then we have $0 \in T, x \in T$ and $y \le x$ imply $y \in T$ and $x, y \in T$ imply $x^* \otimes y \in T, x^* \to y \in T$. Now,

 $\begin{array}{l} ((x \otimes y) \to y) = x \to (y \to y) \text{ [From (i) of Proposition 2.6].} \\ = (x \to y) \to (x \to y) \text{ [From (ii) of Definition 2.11].} \\ \text{And} \\ ((x \to y)^* \to y) = (y^* \to (x \to y)), \text{[From (x) of Definition 2.2]} \\ = (y^* \to x) \to (y^* \to y) \text{ [From (ii) of Definition 2.11]} \\ = (x^* \to y) \to (y^* \to y) \text{ [From (x) of Definition 2.2].} \end{array}$

Since T is an ideal $x^* \otimes y \in T, x^* \to y \in T$. We have

$$(x \to y) \to (x \to y) \in \mathbf{T}, (x^* \to y) \to (y^* \to y) \in \mathbf{T}$$

and

$$(x \otimes y) \to y \in \mathbf{T}, (x \to y)^* \to y \in \mathbf{T}.$$

Therefore, $x \otimes y \in T$, $(x \to y)^* \in T$ and $y \in T$ imply $x \in T$. Hence, we get T is a *WI*-ideal.

3.2 Properties of *IWI* -ideal of residuated lattice Wajsberg algebras

In this section, we introduce the concept of implicative WI-ideal (*IWI*-ideal) of residuated lattice Wajsberg algebra and we find some of its properties with illustrations.

Definition 3.7. Let I be a non-empty subset of residuated lattice wajsberg algebra \mathcal{R} . Then, I is said to be a IWI - idealof \mathcal{R} , if it satisfies the following axioms for all $x, y \in \mathcal{R}$

(*i*) $0 \in I$

(*ii*) $y \otimes z \in I$ and $((x \otimes y) \otimes z) \in I$ imply $x \otimes z \in I$

 $P (iii) (y \to z)^* \in I \text{ and } ((x \to y)^* \to z^*) \text{ imply } (x \to z)^*.$

Proposition 3.8. If I is a IWI -idealof residuated lattice Wajsberg algebra \mathcal{R} then I is a WI -ideal of \mathcal{R} .

Proof. Let *I* be a IWI-ideal of \mathscr{R} , then $0 \in I, y \otimes z \in I, (y \to z)^* \in I$ and $(x \otimes y) \otimes z) \in I, ((x \to y)^* \to z^*) \in I$ imply $x \otimes z \in I, (x \to z)^* \in I$.

If $y \in I$ and $x \otimes y \in I$, $(x \to y)^* \in I$ for all $x, y \in \mathscr{R}$, we have $y \otimes 0 = (y \to 0^*)^* = (y \to 1)^* = 1^* = 0 \in I$

[From Definition 2.8]

 $(y \rightarrow 0)^* = (y^*)^* = y \in I[$ From(ii) of Definition 2.9].

Now,
$$(x \otimes y) \otimes z = ((x \to y^*)^* \to 0^*)^*$$
 [From Definition 2.8]
= $((x \to x)^* \to 1)^* = (1^* \to 1)^* = (0 \to 1)^* = 1^* = 0 \in I$

and

$$((x \to y)^* \to 0)^* = (((x \to y)^*)^*)^* = (x \to y)^* \in I$$

[From(ii) of Definition 2.9]. Since *I* is a *IWI* -ideal of \mathscr{R} . Which follows that $x = (x^*)^* = x \otimes 0 = (x \to 0^*)^* = (x \to 1)^* = 1^* = 0 \in I$, [From Definition 2.8] $x = (x^*)^* = (x \to 0)^* = y^* = x \in I$. [From(ii) of Definition 2.9] Hence, *I* is a *WI* -ideal of \mathscr{R} .

Example 3.9. Consider a set $\Re = \{0, p, q, r, s, t, 1\}$. Define a partial ordering " \leq " on \Re , such that $0 \leq a \leq b \leq c \leq d \leq 1$ with a binary operations" \otimes "and" \rightarrow "and a quasi complement " * "on \Re as in following tables 3 and 4.

Define \lor *and* \land *operations on* \mathscr{R} *as follows:*

$$(x \lor y) = (x \to y) \to y$$

$$(x \land y) = (x^* \to y^*) \to y^*)^*; x \otimes y = (x \to y^*)^*$$

for all $x, y \in \mathcal{R}$. Then, \mathcal{R} is a residutaed lattice Wajsberg algebra. It is easy to verify that, $I_2 = \{0, q, s, 1\}$ is a IWI -ideal of \mathcal{R} .

Table 3. Complement

e	3 . C	ompi	c
	Х	<i>x</i> *	
	0	1	
	р	S	
	q	S	
	r	q	
	s	q	
	t	0	
	1	0	

Table 4.	Complement
----------	------------

\rightarrow	0	р	q	r	S	t	1
0	1	1	1	1	1	1	1
р	S	1	1	S	S	1	1
q	S	t	1	S	S	1	1
r	q	q	q	1	1	1	1
S	q	q	q	t	1	1	1
t	0	q	q	S	S	1	1
1	0	р	q	r	S	t	1

Proposition 3.10. Every WI -ideal of a residuated lattice H -Wajsberg algebra is a IWI -ideal of \mathcal{R} .

Proof. Let \mathscr{R} be a residuated lattice H -Wajsberg algebra and let I be a WI-ideal of \mathscr{R} for all $x, y, z \in \mathscr{R}$. Then we have

$$y \otimes z, (x \otimes y) \otimes z \in I, (y \to z)^*, ((x \to y)^* \to z)^* \in I$$

and

$$(x \otimes z) \otimes (y \otimes z) = ((x \otimes y) \otimes z) \in I$$
$$((x \to z)^* \to (y \to z)^*)^* = ((x \to y)^* \to z)^* \in I$$

[From Proposition 2.6]

Since *I* is a *WI*-ideal of $\mathscr{R}, (x \to z)^* \in I$ Hence, *I* is a *IWI*-ideal of \mathscr{R} .

Proposition 3.11. If \mathscr{R} is a residuated lattice H-Wajsberg algebra if and only if every WI-ideal of \mathscr{R} is a IWI-ideal of \mathscr{R} .

Proof. We can easily prove from Proposition 3.10. \Box

Proposition 3.12. Let \mathscr{R} be a residuated lattice Wajsberg algebra and I be a subset of A. Define $I^* = \{x^*/x \in I\}$ is a IWI -ideal of \mathscr{R} if and only if I^* is an implicative filter of \mathscr{R} .

Proof. Let *I* be a*IWI* -ideal of \mathscr{R} , then $1 = 0^* \in I^*$, since $0 \in I$ for all $x, y, z \in \mathscr{R}$. If $x \otimes y, x \to y$ and $x \otimes (y \otimes z), x \to (y \to z) \in I^*$, then we have

$$y^* \otimes x^* = x \otimes y \in I, y^* \to x^* = x \to y \in I$$

and

- $((z^* \otimes y^*) \otimes x^*) = (z \otimes x) \otimes y$
- $= (x \otimes z) \otimes y$, [From (ii) of Proposition 2.6]
- $= x \otimes (z \otimes y)$, [From (i) of Proposition 2.6]
- $= x \otimes (y \otimes z) \in I^*$, [From (ii) of Proposition 2.6]

 $(z^* \to y^*) \to x^* = (x \to (y \to z)) \in I^*$, which implies that $(y^* \otimes x^*)^* \in I, (y^* \otimes x^*)^* \in I, ((z^* \otimes y^*) \otimes x^*)^* \in I, ((z^* \otimes y^*) \to x^*)^* \in I.$ It follows that,

$$x \otimes z = (x \to z^*)^* \in I, (x \to z)^* = (z^* \to x^*)^* \in I.$$

Since *I* is a *IWI* -ideal of \mathscr{R} . Consequently, $(x \otimes z) \in I^*, x \rightarrow z \in I^*$. Thus, I^* is an implicative filter of \mathscr{R} .

Conversely, I^* is an implicative filter of $I, 0 = I^* \in I$ since $1 \in I^*$ for all $x, y, z \in I$ If $y \otimes z, (y \to z)^*$ and $(x \otimes y) \otimes z \in I, ((x \to y)^* \to z)^* \in I$. Then we have

$$z^* \otimes y^* = (z^* \to (y^*)^*)^* = (z \to y^*) = (z \to y^*)$$
$$= (y \to z^*) \in I, [\text{ From Definition 2.8}]$$
$$(z^* \to y^*)^* = (y \to z)^* \in I, [\text{ From (x) of Definition 2.2 }]$$

And

$$(z^* \otimes (y^* \otimes x^*)) = (z^* \to (y^* \otimes x^*)^*)^*, [\text{ From Definition 2.8}]$$

= $(z^* \to ((y^* \to (x^*)^*)^*)^*, [\text{ From Definition 2.8}]$
= $(z^* \to (y^* \to x^*)^*)^*, [\text{ From (ix) of Definition 2.2}]$
= $(z^* \to (y^{**} \to x^{**}))^*, [\text{ From (ix) of Definition 2.2}]$
= $((y \to x)^* \to z)^* \in I, [\text{ From (ix) of Definition 2.2}]$
= $((y \to x)^* \to z)^* \in I, [\text{ From (ix) of Definition 2.2}]$
 $(z^* \to (y^* \to x^*))^* = ((x \to y)^* \to z)^* \in I$

Now, $z^* \to x^* \in I^*, z^* \to y^* \in I^*$ and $z^* \otimes (y^* \otimes x^*) \in I^*, z^* \to (y^* \to x^*) \in I^*$.

And from Definition 2.8 we have, $x \otimes z = (x \to z^*)^* = (x^* \to z) \in I^*$. Also, from (x) of Definition 2.2, $x \to z = (z^* \to x^*) \in I^*$.

Since I^* is an implicative filter of \mathscr{R} , equivalently $(x \otimes z) \in I$, $(x \to z)^* \in I$. Therefore, I is a *IWI* -ideal of \mathscr{R} .

4. Conclusion

In this paper, we have studied WI-ideal of residuated lattice Wajsberg algebra and investigated some of their properties. Also, we have announced the concept of implicative WI-ideal (IWI-ideal) of residuated lattice Wajsberg algebra. Further, we have inspected some of its characterizations and attained some properties of residuated lattice H-Wajsberg algebra.

References

- M.Wajsberg, Beitrage zum Metaaussagenkalkul, Monat. Mat.Phy, 42(1935), 221–242.
- [2] J.M. Font, A.J. Rodriguez and A. Torrens, Wajsberg algebras, STOCHASTICA, 8(1), (1984), 5–31.
- M. Word, R. P. Dilworth, Residuated lattices, *Transaction of the American Mathe matical Society*, 45(1939), 335–354.

- [4] A. Ibrahim and C. Shajitha Begum, On WI-Ideals of lattice Wajsberg algebras, *Global Journal of Pure and Applied Mathematics*, 13(10)(2017), 7237–7254.
- [5] A.Ibrahim and C.Shajitha Begum, Ideals and Implicative WI-Ideals of lattice Wajsberg algebras, *International Journal of Computer Science*, 6(4)(2018), 30–38.
- ^[6] A.Ibrahim and R.Shanmugapriya, WI-Ideals of residuated lattice Wajsberg algebras, *Journal of Applied Science and Computations*, 5(11)(2018), 792–798.
- [7] A.Ibrahim and R.Shanmugapriya, FWI-Ideals of residuated lattice Wajsberg algebras, *Journal of Computer and Mathematical Sciences*, 10(3)(2019), 491–501.
- [8] A.Ibrahim and R.Shanmugapriya, Anti FWI-Ideals of residuated lattice Wajsberg algebras, *Advances in Mathematics: A Scientific Journal*, 8(2019), 300–306.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

