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Abstract
In this paper, we study WI-ideal of residuated lattice Wajsberg algebraand investigate some of their properties.
Also, we announce the concept of implicative WI-ideal (IWI-ideal)of residuated lattice Wajsberg algebra. Further,
we inspect some of its characterizations and attain some properties of residuated lattice H-Wajsberg algebra.
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1. Introduction
Mordchaj Wajsberg [1] introduced the concept of Wajs-

berg algebras in 1935 and studied by Font, Rodriguez and
Torrens [2]. Residuated lattices were announced by Ward and
Dilworth [3]. Ibrahim and Shajitha Begum [4] and [5] intro-
duced the notions of Wajsberg implicative ideal (WI-ideal),
ideals and implicative WI-ideals of lattice Wajsberg algebras
and also investigated their properties with suitable llustrations.
The authors [6],[7] and [8] introduced the notion of Wajsberg
implicative ideal (WI-ideal) and Fuzzy Wajsberg Implicative
ideal (FWI-ideal) of residuated lattice Wajsberg algebras.

In this paper, we consider ideal of residuated lattice Wajsberg
algebra and investigate some related properties. Also, we in-
troduce the notion of IWI-ideal of residuated lattice Wajsberg
algebra. Further, we investigate some of its characterizations
and obtain some properties of residuated lattice H-Wajsberg
algebra.

2. Preliminaries
In this section, we recall some basic definitions and prop-

erties which are helpful to develop our main results.

Definition 2.1 ([2]). Let (R,→,∗,1) bean algebra with a
binary operation ′′→ ” and a quasi complement ′′∗′′ is called
a Wajsberg algebra. Then if it satisfied the following axioms
for all x,y,z ∈R,

(i) 1→ x = x

(ii) (x→ y)→ y = ((y→ z)→ (x→ z)) = 1

(iii) (x→ y)→ y = (y→ x)→ x

(iv) (x∗→ y∗)→ (y→ x) = 1.

Definition 2.2 ([2]). A Wajsberg algebra (R,→,∗,1) satis-
fied the following axioms for all x,y,z ∈R,

(i) x→ x = 1
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(ii) If (x→ y) = (y→ x) = 1 then x = y

(iii) x→ 1 = 1

(iv) (x→ (y→ x)) = 1

(v) If (x→ y) = (y→ z) = 1 then x→ z = 1

(vi) (x→ y)→ ((z→ x)→ (z→ y)) = 1

(vii) x→ (y→ z) = y→ (x→ z)

(viii) x→ 0 = x→ 1∗ = x∗

(ix) (x∗)∗ = x

(x) (x∗→ y∗) = y→ x.

Definition 2.3 ([2]). A Wajsberg algebra R is called a lattice
Wajsberg algebra, if it satisfied the following conditions for
all x,y ∈R,

(i) The partial ordering ”≤ ” on a lattice Wajsberg algebra,
such that x≤ y if and only if x→ y = 1

(ii) x∨ y = (x→ y)→ y

(iii) x∧ y = ((x∗→ y∗)→ y∗)∗.

Thus, (R,∨,∧,∗,0,1) is a lattice Wajsberg algebra with lower
bound 0 and upper bound 1.

Proposition 2.4 ([2]). Alattice Wajsberg algebra (R,→,∗,1)
satisfied the following axioms for all x,y,z ∈R,

(i) If x≤ y then x→ z≥ y→ z and z→ x≤ z→ y

(ii) x≤ y→ z if and only if y≤ x→ z

(iii) (x∨ y)∗ = (x∗∧ y∗)

(iv) (x∧ y)∗ = (x∗∨ y∗)

(v) (x∨ y)→ z = (x→ z)∧ (y→ z)

(vi) x→ (y∧ z) = (x→ y)∧ (x→ z)

(vii) (x→ y)∨ (y→ x) = 1

(viii) x→ (y∨ z) = (x→ y)∨ (x→ z)

(ix) (x∧ y)→ z = (x→ z)∨ (y→ z)

(x) (x∧ y)∨ z = (x∨ z)∧ (y∨ z)

(xi) (x∧ y)→ z = (x→ y)→ (x→ z).

Definition 2.5 ([3]). A residuated lattice (R,∨,∧,⊗,→,0,1)
satisfied the following conditions for all x,y,z ∈R,

(i) (R,∨,∧,0,1) is a bounded lattice

(ii) (R,⊗,1) is commutative monoid

(iii) x⊗y≤ z if and only if x≤ y→ z.

Proposition 2.6 ([3]). Let(R,∨,∧,⊗,→,0,1) be a residu-
ated lattice. Then the following are satisfied for all x,y,z ∈R,

(i) (x⊗ y)→ z = x→ (y→ z)

(ii) (x⊗ y)⊗ z = x⊗ (y⊗ z)

(iii) x⊗ y = y⊗ x.

Definition 2.7 ([2]). Let(R,∨,∧,∗,→,1) be a lattice Wajs-
berg algebra. If a binary operation”⊗” on R satisfied x⊗y=
(x→ y∗)∗ for all x,y ∈ R. Then (R,∨,∧,⊗,→,∗,0,1) is
called a residuated lattice Wajsberg algebra.

Definition 2.8 ([5]). The lattice Wajsberg algebra R is called
a lattice H - Wajsberg algebra, if it satisfied x∨y∨ ((x∧y)→
z) = 1 for all x,y,z ∈R.
In a lattice H-Wajsberg algebra R, the following are hold:

(i) x→ (x→ y) = (x→ y)

(ii) x→ (y→ z) = (x→ y)→ (x→ z).

Definition 2.9 ([7]). The residuated lattice Wajsberg algebra
R is called a residuated lattice H-Wajsberg algebra if it satis-
fied x∨ y∨ ((x∧ y)→ z) = 1 for all x,y,z ∈R.
In a residuated lattice H -Wajsberg algebra R, the following
are hold:

(i) x⊗ y ∈R

(ii) x⊗ (x⊗ y) = (x⊗ y);x→ (x→ y) = (x→ y)

(iii) x⊗(y⊗z)= (x⊗y)⊗(x⊗z);x→ (y→ z)= (x→ y)→
(x→ z), for all x,y,z ∈R.

Proposition 2.10 ([5]). Let R is a lattice H -Wajsberg alge-
bra, then the following equality are hold

(x→ y)∗→ z = (x→ z)∗→ (y→ z)∗ for all x,y,z ∈R.

Definition 2.11 ([2]). Let I be a non-empty subset of a lat-
tice Wajsberg algebra R. Then I is called a WI -ideal R, if
satisfied for all x,y ∈R,

(i) 0 ∈ I

(ii) (x→ y)∗ ∈ I and y ∈ I imply x ∈ I.

Definition 2.12 ([6]). Let I be a non-empty subset of a residu-
ated lattice Wajsberg algebras R. Then I is called a WI -ideal
R, if it satisfied the following for all x,y ∈R,

(i) 0 ∈ I

(ii) x⊗ y ∈ I and y ∈ I imply x ∈ I

(iii) (x→ y)∗ ∈ I and y ∈ I imply x ∈ I.

Definition 2.13 ([2]). Let R be a lattice. An ideal I of R is a
nonempty subset of R is called a lattice ideal, if it satisfied
the following axioms for all x,y ∈R,
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(i) x ∈ I,y ∈ L and y≤ x imply y ∈ I

(ii) x,y ∈ I implies x∨ y ∈ I.

Definition 2.14 ([4]). A non-empty subset I of a Wajsberg
algebra R is an ideal, if it satisfied the following axioms for
all x,y ∈R,

(i) 0 ∈ I

(ii) x ∈ I and y≤ x imply y ∈ I.

Definition 2.15 ([2]). A non-empty subset of T of a residu-
ated lattic R is called an implicative filter if it satisfied the
following axioms for all x,y ∈R,

(i) 1 ∈ T

(ii) x ∈ T,x→ y ∈ T implies y ∈ T.

3. Main Results

3.1 Properties of ideals of residuated lattice Wajs-
berg algebras

In this section, we consider ideal of residuated lattice Wajs-
berg algebra and explore some properties of ideal.

Proposition 3.1. Intersection of any two ideals of residuated
lattice Wajsberg algebra R is an ideal.

Proof. Let K1 and K2 be two ideals of residuated lattice Wajs-
berg algebra R.

Since, from (i) of Definition 2.14, 0∈K1 and 0∈K2 imply
0 ∈ K1∩K2.

Therefore K1∩K2 is non-empty, if x ∈ K1∩K2 and y≤ x.
Then, from (ii) of Definition 2.14 we have, x ∈ K1 and y≤ x.

Also, from (ii) of Definition 2.14, x ∈ K2 and y≤ x.

Since, from (ii) of Definition 2.14, K1 and K2 are ideals
of R imply y ∈ K1 and y ∈ K2. Then, y ∈ K1∩K2 imply

x∗⊗ y ∈ K1∩K2,x∗→ y ∈ K1∩K2.

Hence, the intersection of two ideals of residuated lattice
Wajsberg algebra R is an ideal.

Remark 3.2. Union of any two ideals of residuated lattice
Wajsberg algebra R need not be an ideal of R.

Proposition 3.3. Every ideal of residuated lattice Wajsberg
algebra R is a lattice ideal.

Proof. Let T be an ideal of R. From (ii) of Definition
2.15 shows that T satisfies (i) of Definition 2.13. Now,

(x∨ y)∗⊗ y = [(((x→ y)→ y)∗→ y∗)∗]

[ From (ii) of Definition 2.3]
=[y→ ((x→ y)→ y)]∗[ From (ii) of Definition 2.2]
=[y→ ((y→ x)→ x)]∗[ From (ii) of Definition 2.1]
=[y→ (y∨ x)]∗[ From (ii) of Definition 2.3]
=[(y→ y)v(y→ x)]∗[ From (viii) of Proposition 2.4]
=[((y→ y)→ (y→ x))→ (y→ x)]∗

[ From (ii) of Definition 2.3]
=((y→ y)→ (y→ x))∗→ (y→ x)∗

=(y→ x)→ [(y→ y)→ (y→ x)]

[ From (x) of Definition 2.2]
=1 ∈ T[ From (iv) of Definition 2.2]

And

(x∨ y)∗→ y = (((x→ y)→ y)∗→ y)

[From (i) of Definition 2.3]
=((y∗→ (x→ y)∗)→ y)

=(y∗→ (y∗→ x∗))→ y

=((x∗→ (x∗→ y∗))→ y)[From (iii) of Definition 2.1]
=((x∧ y)∗→ y) [From (iii) of Definition 2.3]
=((x∗∨ y∗)→ y) [From (iv) of Proposition 2.4]
=(x∗→ y)∧ (y∗→ y) [From (v) of Proposition 2.4]
=x∗→ y ∈ T.

Thus, we get

(x∨ y)∗⊗ y = 1 ∈ T,(x∨ y)∗→ y = x∗→ y ∈ T.

Since T is an ideal,

(x∨ y)∗⊗ y ∈ T,(x∨ y)∗→ y ∈ T

imply x∨ y ∈ T and y ∈ T. From Definition 2.13, we have T
is a lattice ideal.

Example 3.4. Consider a set R = {0, p,q,r,x,y,z,1}. Define

Table 1. Complement
x x∗

0 1
p x
q y
r z
x p
y q
z r
1 0

a partial ordering ′′ ≤′′ on R, such that 0 ≤ a ≤ b ≤ c ≤

1667



Ideals and IWI-ideals of residuated lattice Wajsberg algebras — 1668/1670

Table 2. Implication
→ 0 p q r x y z 1
0 1 1 1 1 1 1 1 1
p x 1 p p z z z 1
q y 1 1 1 p z z 1
r z 1 1 1 1 z z 1
x p 1 1 1 1 1 1 1
y q 1 p p p 1 1 1
z r 1 p p p p 1 1
1 0 p q r x y z 1

d ≤ 1 with a binary operations ”⊗” and ”→” and a quasi
complement ”∗” on R as in the Tables 1 and 2. Define ∨ and
∧ operations on R as follows:

(x∨ y) =(x→ y)→ y

(x∧ y) =((x∗→ y∗)→ y∗)∗;x⊗ y = (x→ y∗)∗ for all x,y ∈R.

Then, R is a residutaed lattice Wajsberg algebra. It is easy to
verify that, I1 = {0,q} is an ideal of R and also lattice ideal
of R.

Proposition 3.5. Every lattice ideal of residuated lattice H-
Wajsberg algebra R is an ideal.

Proof. Let R be a residuated lattice H -Wajsberg algebra.

Let I be a lattice ideal of R for all x,y,z ∈ R. Then
x ∈ I,y ∈R and y ≤ x imply y ∈ I. [From (i) of Definition
2.13 ].

For x,y ∈ I imply x∨ y ∈ I [ From (ii) of Definition 2.13].

Since I is a lattice ideal, it satisfies (ii) of Definition 2.13.

And x,y ∈ I which imply x∗⊗ y ∈ I,x∗→ y ∈ I. Hence,
we get I is an ideal.

Proposition 3.6. Every ideal of residuated lattice H -Wajsberg
algebra R is a WI -ideal.

Proof. Let T be an ideal of residuated lattice Wajsberg alge-
bra R, then we have 0 ∈ T,x ∈ T and y≤ x imply y ∈ T and
x,y ∈ T imply x∗⊗ y ∈ T,x∗→ y ∈ T. Now,

((x⊗ y)→ y) = x→ (y→ y) [From (i) of Proposition 2.6].
= (x→ y)→ (x→ y) [ From (ii) of Definition 2.11].
And
((x→ y)∗→ y)= (y∗→ (x→ y)),[From (x) of Definition 2.2]
= (y∗→ x)→ (y∗→ y) [ From (ii) of Definition 2.11]
= (x∗→ y)→ (y∗→ y) [ From (x) of Definition 2.2].

Since T is an ideal x∗⊗ y ∈ T,x∗→ y ∈ T. We have

(x→ y)→ (x→ y) ∈ T,(x∗→ y)→ (y∗→ y) ∈ T

and
(x⊗ y)→ y ∈ T,(x→ y)∗→ y ∈ T.

Therefore, x⊗ y ∈ T,(x→ y)∗ ∈ T and y ∈ T imply x ∈ T.
Hence, we get T is a WI-ideal.

3.2 Properties of IWI -ideal of residuated lattice Wa-
jsberg algebras

In this section, we introduce the concept of implicative WI
-ideal (IWI -ideal ) of residuated lattice Wajsberg algebra and
we find some of its properties with illustrations.

Definition 3.7. Let I be a non-empty subset of residuated
lattice wajsberg algebra R. Then, I is said to be a IWI -
idealof R, if it satisfies the following axioms for all x,y ∈R

(i) 0 ∈ I

(ii) y⊗ z ∈ I and ((x⊗ y)⊗ z) ∈ I imply x⊗ z ∈ I

(iii) (y→ z)∗ ∈ I and ((x→ y)∗→ z∗) imply (x→ z)∗.

Proposition 3.8. If I is a IWI -idealof residuated lattice Wa-
jsberg algebra R then I is a WI -ideal of R.

Proof. Let I be a IWI-ideal of R, then 0 ∈ I,y⊗ z ∈
I,(y→ z)∗ ∈ I and (x⊗ y)⊗ z)∈ I,((x→ y)∗→ z∗)∈ I imply
x⊗ z ∈ I,(x→ z)∗ ∈ I.

If y ∈ I and x⊗ y ∈ I,(x→ y)∗ ∈ I for all x,y ∈R, we have
y⊗0=(y→ 0∗)∗=(y→ 1)∗=1∗=0 ∈ I

[ From Definition 2.8]
(y→ 0)∗ = (y∗)∗ = y ∈ I[ From(ii) of Definition 2.9].

Now, (x⊗ y)⊗ z =
(
(x→ y∗)∗→ 0∗

)∗
[ From Definition 2.8]

= ((x→ x)∗→ 1)∗ = (1∗→ 1)∗ = (0→ 1)∗ = 1∗ = 0 ∈ I

and

((x→ y)∗→ 0)∗ =
(
((x→ y)∗)∗

)∗
= (x→ y)∗ ∈ I

[ From(ii) of Definition 2.9].
Since I is a IWI -ideal of R. Which follows that
x = (x∗)∗ = x⊗0 = (x→ 0∗)∗ = (x→ 1)∗ = 1∗ = 0 ∈ I,
[ From Definition 2.8]
x = (x∗)∗ = (x→ 0)∗ = y∗ = x ∈ I.
[ From(ii) of Definition 2.9]
Hence, I is a WI -ideal of R.

Example 3.9. Consider a set R = {0, p,q,r,s, t,1}. Define
a partial ordering ′′ ≤′′ on R, such that 0 ≤ a ≤ b ≤ c ≤
d ≤ 1 with a binary operations” ⊗ ”and ”→ ”and a quasi
complement ” ∗ ”on R as in following tables 3 and 4.

Define ∨ and ∧ operations on R as follows:

(x∨ y) = (x→ y)→ y

(x∧ y) = (x∗→ y∗)→ y∗)∗ ;x⊗ y = (x→ y∗)∗

for all x,y ∈ R. Then, R is a residutaed lattice Wajsberg
algebra. It is easy to verify that, I2 = {0,q,s,1} is a IWI
-ideal of R.
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Table 3. Complement
x x∗

0 1
p s
q s
r q
s q
t 0
1 0

Table 4. Complement
→ 0 p q r s t 1
0 1 1 1 1 1 1 1
p s 1 1 s s 1 1
q s t 1 s s 1 1
r q q q 1 1 1 1
s q q q t 1 1 1
t 0 q q s s 1 1
1 0 p q r s t 1

Proposition 3.10. Every WI -ideal of a residuated lattice H
-Wajsberg algebra is a IWI -ideal of R.

Proof. Let R be a residuated lattice H -Wajsberg algebra and
let I be a WI-ideal of R for all x,y,z ∈R. Then we have

y⊗ z,(x⊗ y)⊗ z ∈ I,(y→ z)∗,((x→ y)∗→ z)∗ ∈ I

and
(x⊗ z)⊗ (y⊗ z) = ((x⊗ y)⊗ z) ∈ I

((x→ z)∗→ (y→ z)∗)∗ = ((x→ y)∗→ z)∗ ∈ I

[From Proposition 2.6]
Since I is a WI -ideal of R,(x→ z)∗ ∈ I Hence, I is a IWI

-ideal of R.

Proposition 3.11. If R is a residuated lattice H -Wajsberg
algebra if and only if every WI -ideal of R is a IWI -idealof
R.

Proof. We can easily prove from Proposition 3.10.

Proposition 3.12. Let R be a residuated lattice Wajsberg
algebra and I be a subset of A. Define I∗ = {x∗/x ∈ I} is a
IWI -ideal of R if and only if I∗ is an implicative filter of R.

Proof. Let I be a IWI -ideal of R, then 1 = 0∗ ∈ I∗, since
0 ∈ I for all x,y,z ∈ R. If x⊗ y,x→ y and x⊗ (y⊗ z),x→
(y→ z) ∈ I∗, then we have

y∗⊗ x∗ = x⊗ y ∈ I,y∗→ x∗ = x→ y ∈ I

and
((z∗⊗ y∗)⊗ x∗) = (z⊗ x)⊗ y
= (x⊗ z)⊗ y, [ From (ii) of Proposition 2.6]
= x⊗ (z⊗ y), [From (i) of Proposition 2.6]
= x⊗ (y⊗ z) ∈ I∗, [ From (ii) of Proposition 2.6]

(z∗→ y∗)→ x∗ = (x → (y→ z)) ∈ I∗, which implies that
(y∗⊗x∗)∗ ∈ I,(y∗⊗x∗)∗ ∈ I, ((z∗⊗y∗)⊗x∗)∗ ∈ I,
((z∗⊗ y∗)→ x∗)∗ ∈ I. It follows that,

x⊗ z = (x→ z∗)∗ ∈ I,(x→ z)∗ = (z∗→ x∗)∗ ∈ I.

Since I is a IWI -ideal of R. Consequently, (x⊗ z) ∈ I∗,x→
z ∈ I∗. Thus, I∗ is an implicative filter of R.

Conversely, I∗ is an implicative filter of I,0 = I∗ ∈ I since
1 ∈ I∗ for all x,y,z ∈ I If y⊗ z,(y→ z)∗ and (x⊗ y)⊗ z ∈
I,((x→ y)∗→ z)∗ ∈ I. Then we have

z∗⊗ y∗ =
(
z∗→ (y∗)∗

)∗
= (z→ y∗) = (z→ y∗)

= (y→ z∗) ∈ I, [ From Definition 2.8]
(z∗→ y∗)∗ = (y→ z)∗ ∈ I, [ From (x) of Definition 2.2 ]

And

(z∗⊗ (y∗⊗ x∗)) =
(
z∗→ (y∗⊗ x∗)∗

)∗
, [ From Definition 2.8]

=
(

z∗→
((

y∗→ (x∗)∗
)∗)∗

, [ From Definition 2.8]

=
(
z∗→ (y∗→ x∗)∗

)∗
, [ From (ix) of Definition 2.2]

= (z∗→ (y∗∗→ x∗∗))∗ , [ From (ix) of Definition 2.2]
= (z∗→ (y→ x))∗ , [ From (ix) of Definition 2.2]
= ((y→ x)∗→ z)∗ ∈ I, [ From (ix) of Definition 2.2]
(z∗→ (y∗→ x∗))∗ = ((x→ y)∗→ z)∗ ∈ I

Now, z∗ → x∗ ∈ I∗,z∗ → y∗ ∈ I∗ and z∗ ⊗ (y∗⊗ x∗) ∈
I∗,z∗→ (y∗→ x∗) ∈ I∗.

And from Definition 2.8 we have, x⊗ z = (x→ z∗)∗ =
(x∗→ z) ∈ I∗. Also, from (x) of Definition 2.2, x → z =
(z∗→ x∗) ∈ I∗.

Since I∗ is an implicative filter of R, equivalently (x⊗z)∈
I,(x→ z)∗ ∈ I. Therefore, I is a IWI -ideal of R.

4. Conclusion
In this paper, we have studied WI-ideal of residuated lat-

tice Wajsberg algebra and investigated some of their properties.
Also, we have announced the concept of implicative WI-ideal
(IWI-ideal) of residuated lattice Wajsberg algebra. Further,
we have inspected some of its characterizations and attained
some properties of residuated lattice H-Wajsberg algebra.
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