
Malaya Journal of Matematik, Vol. 8, No. 4, 1675-1680, 2020

https://doi.org/10.26637/MJM0804/0059
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Abstract
In this work, we extend Minty’s type lemma for a class of generalized vector quasi-equilibrium problems in
Hausdorff topological vector spaces and establish some results on existence of solutions both under compact
and noncompact assumption by using 1- person game theorems.
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1. Introduction and Formulation
Suppose K be a nonempty subset of real t.v.s X and Y

be any real t.v.s. Suppose C : K→ Y is a closed convex and
solid cone in Y. Suppose f : K×K→ Y be a vector-valued
bifunction, then vector equilibrium problem (for short, VEP)
is the problem of finding u0 ∈ K such that

f (u0,v) 6∈ −intC, for all v ∈ K, (1.1)

where intC denotes the interior of C. Problem (1.1) is a math-
ematical model of many problems such as, Nash equilibria,
variational inequalities, optimization problems, fixed point
problems, vector saddle point problems and complementarity
problems, see [2–4, 9, 12, 14, 21]. Also the solution for vari-
ous kind of equilibrium problems have been considered and
extensively studied by numerous authors, for detail, we refer
to [2, 10, 12, 17, 20].

As a generalization of VEP many authors studied the
quasi- version of VEP which include Nash equilibria, quasi-

complementarity problems, vector optimization problems,
vector quasi saddle point problems, vector quasi-variational
inequality problems as a special cases, see for example [5,
6, 15, 16, 19, 22, 23]. For more generalized form of VEP,
many authors studied generalized quasi-equilibrium prob-
lems and obtained existence results for solution in Haus-
dorff t.v.s under both compact and noncompact settings, see
[1, 11, 13, 15, 16, 18].

Motivated and inspired by the aforesaid research work, we
obtain the existence of solutions to generalized version of vec-
tor quasi equilibrium problems in compact and noncompact
settings by using 1- person game theorems.

From now unless, otherwise stated:
Suppose K be a nonempty convex subset of Hausdorff

t.v.s X and Y be an ordered Hausdorff t.v.s. Suppose the
multifunction C : K→ 2Y is a closed convex and solid cone
that is, intC(u) 6= φ , for each u ∈ K. Define partial order
relation ≤C(u) on Y as follows:

v≤C(u) w⇔ w− v ∈C(u).

If the ordering is strict, then v <C(u) w⇔w−v∈ intC(u). Let
P :=

⋂
u∈K C(u).

Suppose the multifunction A : K→ 2K be given continuous
and let M,N : K×K → 2Y be any two multifunctions, then
the generalized vector quasi-equilibrium problem(for short,
GVQEP) is the problem of finding u0 ∈ K such that u0 ∈
clX A(u0) and

M(u0,v)+N(u0,v) 6⊆ −intYC(u0),∀y ∈ A(u0). (1.2)



Existence results for generalized vector quasi-equilibrium problems — 1676/1680

In section 2, we shall recall some results and elementary
definitions which will be used in latter sections. Results on
existence of solutions of problem (1.2) both under compact
and noncompact assumptions are presented in section 3 and 4,
respectively.

2. Preliminaries
Now we shall recall the following:

Definition 2.1. We shall denote dom f , the domain of a func-
tion f : X → R and is defined as

dom f = {u ∈ X : f (u) ∈ R} .

Also f is said to be:

(i) upper semicontinuous (u.s.c) at u0 ∈ dom f iff, ∃ a
neighborhood N around u0 satisfying

f (u)≤ f (u0)+ ε, ∀u ∈N ,ε > 0,

(ii) lower semicontinuous (l.s.c) at u0 ∈ dom f iff ∃ a neigh-
borhood N around u0 such that

f (u)≥ f (u0)− ε < ∀u ∈ , ε > 0.

Definition 2.2. For any two topological spaces X and Y, the
multifunction T : X → 2Y is said to be:

(i) u.s.c on X if for each u ∈ X and for each open set N2
in Y containing T (u), ∃ an open neighborhood N1 of
u in X such that T (v)⊆N2, ∀v ∈N1,

(ii) l.s.c on X if for each u ∈ X and each open set N2 in Y
with T (u)∩N2 6= φ , ∃ an open neighborhood N1 of u
in X such that T (v)∩N2 6= φ , ∀v ∈N1.

Definition 2.3. Suppose M,N : K→ 2K be the multifunction,
then for each u∈K, we define the multifunctions clM, coM, M∩
N : K→ 2X as (clM)(u) = clM(u), (coM)(u) = coM(u) and
(M∩N)(u) = M(u)∩N(u).

Definition 2.4. The graph of the multifunction N : K→ 2Y is
denoted by Gr(N) and is defined by

Gr(N) = {(u,v) ∈ X×Y : u ∈ X ,v ∈ N(u)} .

Then inverse of N, denoted by N−1 is a multifunction
N−1 : Ran(N)→ X and is defined by

u ∈ N−1(v) ⇔ v ∈ N(u).

Definition 2.5. Suppose K be a convex subset of t.v.s X and
P ⊂ Y be a convex cone. Suppose M : K×K → 2Y and N :
K→ 2Y be two multifunctions, then

(i) M is P-monotone if,

M(u,v)+M(v,u)⊂−P, ∀u,v ∈ K.

(ii) N is P-convex if,

N(αu+(1−α)v))⊂ αN(u)+(1−α)N(v)−P,

∀u,v ∈ Kand α ∈ [0,1].

Definition 2.6. [15] Suppose K be a subset of t.v.s X such
that K =

⋃
∞
p=1 Kp, where {Kp}p∈N is expanding sequence of

nonempty compact sets in the perception that Kp⊆Kp+1,∀p∈
N. Then a sequence {up}p∈N in K is said to be escaping
sequence from K (relative to {Kp}p∈N) if for each l, ∃M such
that l ≥M, up 6∈ Kp.

Following 1-person game theorems are particular case of
[7, Theorem 2] and [8, Theorem 2], respectively.

Theorem 2.7. Supose X be a Hausdorff t.v.s and K ⊂ X is
compact and convex. Suppose P,A,clX A : K→ 2K are multi-
functions such that A(u) is convex set, for each u ∈ K. Both
A−1(v) and P−1(v) are open in K, for each v ∈ K. clX A is
u.s.c, u 6∈ coP(u), for each u ∈ K. Then ∃u0 ∈ K such that
u0 ∈ clX A(u0) and A(u0)∩P(u0) = φ .

Theorem 2.8. Suppose X locally convex Hausdorff t.v.s and
K ⊂ X , and D ⊂ K. Suppose that A,P : K → 2D and clX A :
K → 2K are multifunctions such that A(u) is a nonempty
convex set, for each u ∈ K. Both A−1(v) and P−1(v) are open
sets in K, for each v ∈ D. clxA is u.s.c, for each u ∈ K, u 6∈
coP(u). Then ∃u0 ∈ K such that u0 ∈ clX A(u0) and A(u0)∩
P(u0) = φ .

3. Solutions in Compact Setting
First of all, we prove Minty’s type lemma to obtain the

solutions of GVQEP in compact setting. Let P :=
⋂

u∈K C(u).

Lemma 3.1. Suppose φ 6= K ⊆ X is closed compact and
convex set. Consider the multifunctions A : K → 2K ,M,N :
K×K→ 2Y with nonempty convex values. Assume that

(i) M(u,u) = {0} ,N(u,u) = {0} , ∀u ∈ K,

(ii) M is P-monotone,

(iii) Gr(W ) is closed in X ×Y, where W : K→ 2Y is multi-
function given by W (u) := Y \−intYC(u),

(iv) the map α ∈ [0,1] 7→ M(αv+ (1−α)u,) is u.s.c at
α = 0+, ∀u,v ∈ K,

(v) M(u, .),N(u, .) : K→ 2Y be P−convex, ∀u ∈ K.

Then the following are equivalent:

(I) ∃u0 ∈ K such that u0 ∈ clKA(u0) and

M(v,u0)−N(u0,h) 6⊆ intYC(u0),∀v ∈ A(u0).

(II) ∃u0 ∈ K such that u0 ∈ clKA(u0) and

M(u0,v)+N(u0,h) 6⊆ −intYC(u0),∀v ∈ A(u0).
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Proof. Suppose ∃u0 ∈ K such that u0 ∈ clKA(u0) and

M(v,u0)−N(u0,v) 6⊆ intYC(u0),∀v ∈ A(u0).

We set uα := αv+(1−α)u0, α ∈ [0,1].
Clearly uα ∈ A(u0),∀α ∈ [0,1] and so, we have

u0 ∈ A(u0) and M(uα ,u0)−N(u0,uα) 6⊆ intYC(u0).

Using P−convexity of M(u, .), ∀u ∈ K, we have

αM(uα ,v)+(1−α)M(uα ,u0)⊆M(uα ,uα)+P⊆C(u0).

(3.1)

Now using P−convexity of N(u, .), ∀u ∈ K, we have

αN(u0,v)⊆ αN(u0,v)+(1−α)N(u0,u0)

⊆ N(u0,uα)+P

⊆ N(u0,uα)+C(u0). (3.2)

From (3.1) and (3.2), we have

αM(uα ,v)+α(1−α)N(u0,v)⊆−(1−α)M(uα ,u0)

+(1−α)N(u0,uα)+C(u0). (3.3)

We claim that

M(uα ,v)+(1−α)N(u0,v) 6⊆−intYC(u0),∀α ∈ (0,1]. (3.4)

Suppose that (3.4) is not true, then ∃α0 ∈ (0,1] such that

M(uα0 ,v)+(1−α0)N(u0,v)⊆−intYC(u0). (3.5)

By (3.3), we have

α0[M(uα0 ,v)+(1−α0)N(u0,v)]

⊆−(1−α0)[M(uα0 ,u0)−N(u0,uα0)]+C(u0)

⇒ (1−α0)[M(uα0 ,u0)−N(u0,uα0)]⊆
−α0[M(uα0 ,v)+(1−α0)N(u0,v)]+C(u0)

⊆ intYC(u0)+C(u0)⊂ intYC(u0),

a contradiction to (3.5).
Let k(α) := M(uα ,v)+(1−α)N(u0,v), then k(α) ∈ Y \

−intYC(u0),∀α ∈ (0,1]. Using hypothesis (iii) and hemicon-
tinuity of k(α) := G(uα ,v)+(1−α)N(u0,v), it follows that
k(0) ∈ Y \−intYC(u0) as α → 0+ i.e. ∃u0 ∈ K such that
u0 ∈ clKA(u0) and

M(u0,v)+N(u0,v) 6⊆ −intYC(u0),∀v ∈ A(u0).

Conversely, suppose that (II) holds i.e. ∃u0 ∈ K such that
u0 ∈ clKA(u0) and

M(u0,v)+N(x0,v) 6⊆ −intYC(u0),∀v ∈ A(u0).

If possible, let us assume that (I) does not hold. Then
∃v0 ∈ A(u0) such that

M(v0,u0)−N(u0,v0)⊆ intYC(u0).

Since M is P-monotone,

M(v0,u0)⊆−M(u0,v0)−P.

Now

M(v0,u0)−N(u0,v0)⊆−M(u0,v0)−N(u0,v0)−P

⇒−[M(u0,v0)+N(u0,v0)]⊆M(v0,u0)−N(u0,v0)+P

⊆ intYC(u0)+C(u0)

⊆ intYC(u0), (3.6)

a contradiction to (II). Therefore ∃u0 ∈ K such that u0 ∈
clKA(u0) and

M(v,u0)−N(u0,v) 6⊆ −intYC(u0),∀v ∈ A(u0).

Theorem 3.2. Suppose the multifunctions M,N : K×K →
2Y ,C : K→ 2Y and A : K→ 2K satisfying the following condi-
tions:

(i) M(u,u) = {0} ,N(u,u) = {0} ,∀u ∈ K,

(ii) M is P− monotone,

(iii) M(u, .) and N(u, .) be P− convex, ∀u ∈ K,

(iv) the function W : K → 2Y defined by W (u)
= Y \ (−intYC(u)), for all u ∈ K, has closed graph
in X×Y,

(v) A−1(v) is open ∀v∈K, and A(u) 6= φ is convex ∀u∈K.
Also clX A : K→ 2K is u.s.c.

(vi) M(u, .) is u.s.c and N(.,v) is l.s.c, ∀u,v ∈ K,

(vii) the function α ∈ [0,1] 7→M(αv+(1−α)u,v) is u.s.c
at α = 0+,∀u,v ∈ K.

Then ∃u0 ∈ K such that u0 ∈ clX A(u0) and

M(u0,v)+N(u0,v) 6⊆ −intYC(u0),∀v ∈ A(x0).

Proof. Consider the multifunction P : K→ 2K defined by

P(u) = {v ∈ K : M(v,u)−N(u,v)⊆ intYC(u)} , ∀ u ∈ K.

Firstly, let us prove that u 6∈ coP(u),∀u∈K. If possible, let
us assume that ∃u0 ∈ K such that u0 ∈ coP(u0). This implies
that u0 can be expressed as

u0 =
n

∑
i=1

αivi, with αi ≥ 0,
n

∑
i=1

αi = 1,

where {v1,v2, ....,vn} be a finite subset of K. Since for each
i, vi ∈ P(u0), we have

M(vi,u0)−N(u0,vi)⊆ intYC(u0).
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⇒
n

∑
i=1

αi[M(vi,u0)−N(u0,vi)]⊆ intYC(u0). (3.7)

Since N(u, .) is P-convex, it follows that

n

∑
i=1

αiN(u0,vi)⊆ N(u0,u0)+P⊆C(u0)

⇒
n

∑
i=1

αiN(u0,vi)⊆C(u0). (3.8)

Also,M(u, .) is P-monotone in the first argument and
P-convex in second argument, we have

n

∑
i=1

αiM(vi,u0)⊆
n

∑
j,i=1

αiα jG(vi,v j)−P

⊆ 1
2

n

∑
i, j=1

αiα j(M(vi,v j)+M(v j,vi)))−P

⊆−P−P⊆−P⊆−C(u0). (3.9)

From (3.8) and (3.9), we have

n

∑
i=1

αi[M(vi,u0)−N(u0,vi)]⊆−C(u0). (3.10)

Thus, from (3.7) and (3.10), it follows that
n

∑
i=1

αi[M(vi,u0)−N(u0,vi)]⊆ intYC(u0)∩{−C(u0)}= φ ,

which is not possible. Thus, u ∈ coP(u),∀u ∈ K.
Now our aim is to show P−1(v),∀v ∈ K, is open in K. For

this, we need to show that [P−1(v)]′ = K \P−1(v) is closed in
K, we obtain

P−1(v) = {u ∈ K : M(v,u)−N(u,v)⊆ intYC(u)}

and

[P−1(v)]′ = {u ∈ K : M(v,u)−N(u,v) 6⊆ intYC(u)}

Let {ui}i∈N be a sequence in [P−1(v)]′ such that ui→ u. Then
we have M(v,ui)−N(ui,v) 6⊆ −intYC(ui), for each v ∈ K
i.e. M(v,ui)−N(ui,y) ⊆W (ui),∀i ∈ N. Using hypothesis
(iv) and upper semicontinuity of f (.,v) = G(v, .)−N(.,v), it
follows that f (ξ ,v)⊆W (ξ ) i.e f (ξ ,v) 6⊆ −intYC(ξ ). Hence
ξ ∈ [P−1(v)]′. This proves that P−1(v) is open in K. There-
fore, all the hypotheses of Theorem 2.7 are fulfilled. Thus
∃u0 ∈ K such that u0 ∈ clX A(u0) and

M(v,u0)−N(u0,v) 6⊆ intYC(u0),∀v ∈ A(u0).

Hence, by above Lemma 3.1, ∃u0 ∈ K such that u0 ∈
clKA(u0)and

M(u0,v)+N(x0,v) 6⊆ −intYC(u0),∀v ∈ A(u0).

This complete the proof.

4. Solutions in noncompact Setting.
In this section, we prove existence of solution in noncom-

pact setting.

Theorem 4.1. Suppose K =
∞⋃

p=1

Kp, where
{

Kp
}

p∈N is an

expanding sequence of nonempty compact and convex subsets
of K. Let M,N : K ×K → 2Y , C : K → 2Y A : K → 2K are
multifunctions satisfying the conditions (i)-(iv) of Theorem
3.2 and

(v)0 M(u, .),N(.,v), ∀u,v ∈ K are continuous,

(vi)0 A(u) ∀u ∈ K is nonempty convex and A−1(v) is open in
K for each v ∈ K. Also clX A : K→ 2K is u.s.c,

(vii)0 for any sequence
{

up
}

p∈N in K with up ∈ Kp,∀p ∈ N,
which is escaping from K relative to

{
Kp
}

p∈N ∃l ∈ N
and vl ∈ Kp∩A(ul) such that for each ul ∈ clKA(ul),

M(ul ,vl)+N(ul ,vl)⊆−intYC(ul).

Then ∃u0 ∈ K such that u0 ∈ clX A(u0) and

M(u0,v)+N(u0,v) 6⊆ −intYC(u0),∀v ∈ A(u0).

Proof. Since for each p ∈ N, Kp is compact and convex set
in X , Theorem 3.2 shows that for all p ∈ N,∃up ∈ Kp such
that up ∈ clKA(up) and

M(up,v)+N(up,v) 6⊆ −intYC(up),∀v ∈ A(up). (4.1)

Suppose that the sequence
{

up
}

p∈N is escaping from K rela-
tive to

{
Kp
}

p∈N . Then by assumption (vi)0, ∃l ∈N and wl ∈
Kl ∩ A(ul) such that for each ul ∈ clKA(ul), M(ul ,wl)
+N(ul ,wl)⊆−intYC(ul), which is a contradiction to (4.1).

Hence
{

up
}

p∈N is not an escaping sequence from K rela-
tive to

{
Kp
}

p∈N . Thus using similar argument to those used
by Qun [23,T heorem 2] , ∃r ∈ N and u0 ∈ Kr such that up→
u0 and M(v,u0)−N(u0,v)⊆W (u0). Since clKA : K→ 2K is
u.s.c with compact values. Hence, by Lemma 3.1, ∃u0 ∈ K
such that

u0 ∈ clKA(u0) and M(u0,v)+N(u0,v) 6⊆ −intYC(u0),∀v ∈ A(u0).

This complete the proof.

Theorem 4.2. Suppose K be a nonempty convex subset of a lo-
cally convex Hausdorff t.v.s X , and D⊂K be a nonempty com-
pact set. Suppose Y be an ordered Hausdorff t.v.s. Consider
the multifunctions M,N : K×K → 2Y , C : K → 2Y and A :
K→ 2D. Assume that the conditions (i)− (iv) of above theo-
rem are satisfied and

(v)0 M(u, .),N(.,v), ∀u,v ∈ K are continuous,

(vi)0 A(u) is nonempty convex for each u ∈ K and A−1(v) is
open in K for each v ∈ K. Also, clKA : K→ 2D is u.s.c.
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Then ∃u0 ∈ K such that

u0 ∈ clKA(u0) and M(u0,v)+N(u0,v) 6⊆ −intYC(u0),

for all u ∈ A(u0).

Proof. Consider the multifunction P : K→ 2D defined by

P(u) = {v ∈ D : M(v,u)−N(u,v)⊆ intYC(u)} ,∀u ∈ K.

Then by applying the similar argument which we have applied
in proving Theorem 3.2, it follows that u 6∈ coP(u), for each
u ∈ K and P−1(v) is open in D, Therefore, all the hypothesis
of Theorem 2.8 are satisfied. Thus ∃u0 ∈ K such that

u0 ∈ clKA(u0) and A(u0)∩P(u0) = φ .

Hence ∃u0 ∈ K such that

u0 ∈ clKA(u0) and M(v,u0)−N(u0,v) 6⊆ intYC(u0),

for all v ∈ A(u0).
Therefore by Lemma 3.1, ∃u0 ∈ K such that

u0 ∈ clKA(u0) and G(u0,v)+N(u0,v) 6⊆ −intYC(u0),

for all v ∈ A(u0).
The complete the proof.

5. Conclusion
In this study, we have considered generalized vector quasi-

equilibrium problems (GVQEP) in Hausdorff topological vec-
tor spaces. We have extended Minty’s type lemma to establish
existence of solutions of GVQEP both under compact and
noncompact setting by using 1- person game theorems.
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