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Abstract. In this paper, the notions of symmetric continuity, weak continuity, and weak symmetric continuity were
introduced in [P. Pongsriiam and T.Thongsiri, Weakly symmetrically continuous function, Chamchuri Journal of
Mathematics, vol 8(2016),49-65 ] are generalized by using natural density defined on N. Among the others, some basic
properties of a generalized form of symmetrically continuity is investigated with several useful examples.
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1. Introduction

The conception of continuity is one of the essential notions of mathematical analysis. Let X be a nonempty
subset of R and ϕ : X → R be a function. Continuity of the function ϕ at a point ξ0 ∈ X can be checked in two
ways:

(I) For all ϵ > 0, there is a δ > 0 such that

| ϕ(ξ)− ϕ(ξ0) |< ϵ

holds for all ξ which is satisfying | ξ − ξ0 |< δ.

(II) If ϕ(ξn) tends to ϕ(ξ0) when n→ ∞ holds for all sequence (ξn) tends to ξ0 when (n→ ∞).

The statement given in (I) is known as the Cauchy definition of continuity and (II) as the Heine definition of
continuity. It is well known that definitions (I) and (II) are equivalent on the space, which has a countable basis.

It is more important to classify the discontinuity at that point rather than investigate the continuity of the
function. There are three discontinuity types at a point: removable discontinuity, jump discontinuity, and
infinite discontinuity. In 1958, Pervin and Levine [20] showed that a function with a removable discontinuity is
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continuous under certain conditions. In addition, in 1960, Halfer [12] proved, with minor modification, given by
Pervin and Levine [20] that the continuity and the removable discontinuity are equivalent under certain conditions.

In recent years, a characterization of symmetrical continuous functions at points of removable discontinuity
has been intensively studied. The symmetric continuity of functions emerged as an application of trigonometric
series theory. Mazurkiewicz [15] first gave symmetric continuity of functions [15] in 1919. Afterward, many
studies have been done in this direction [2, 4, 11, 13, 19, 21, 24, 25, 30]. Afterwards, many studies have been
done on this direction [2, 4, 11, 13, 19, 21, 24, 25, 30].

Let X be a nonempty subset of R. A function ϕ : X → R is called at a point ξ0 ∈ X

(I) symmetrically continuous if for all ϵ > 0 there exists δ > 0 such that

|ϕ(ξ0 + λ)− ϕ(ξ0 − λ)| < ϵ

holds, for every |λ| < δ. This can be also checked as limλ→0 ϕ(ξ0 + λ)− ϕ(ξ0 − λ) = 0.

(II) weakly continuous if there are sequence ξn ↗ ξ0 and sequence ηn ↘ ξ0 so that

lim
n→∞

ϕ(ξn) = lim
n→∞

ϕ(ηn) = ϕ(ξ0)

(III) weakly symmetrically continuous if there is a sequence (λn) ⊂ R+ with (λn) → 0, n→ ∞ such that

lim
n→∞

(ϕ(ξ0 + λn)− ϕ(ξ0 − λn)) = 0.

In addition to symmetric continuity of functions, there are many studies on weak continuity [18, 22] and weak
symmetric continuity of functions [23, 29]. To ensure coordination between published studies, we will stick to
the notations used in the study [23]; SC for the set of symmetrically continuous functions, WC for the set of
weakly continuous functions and WSC for the set of weakly symmetrically continuous functions.

With the help of the definition of natural density given below, these spaces will be expanded and larger spaces
will be obtained. The smallness of a subset of natural numbers depends on its natural density. Natural density of
a subset A of natural numbers is determined by (if limit exists)

δ(A) := lim
n→∞

1

n
|{k ∈ A : k ≤ n}|

where |{k ∈ A : k ≤ n}| denotes the number of elements of A.
Considering the definition of natural density, it can be say that a number sequence (ξk) is statistical convergent

ξ ∈ R if for every ϵ > 0,

lim
n→∞

1

n
|{k ≤ n: | ξk − ξ |≥ ϵ}| = 0.

It is denoted by the symbol st− lim ξk = ξ.
Statistical convergence was first defined by Fast [8] and Steinhaus [28] in 1951. Later, in 1959, Schoenberg

[27] statistical convergence was reintroduced. In [9], Fridy gave specific results on statistical convergence. Last
ten decades, in literature there are several studies in different directions on statistical convergence [1, 3, 5, 7, 10,
14, 16, 17, 26].

The aim of this paper by using natural density to give the statistical version of continuous function, weakly
continuous function, weakly symmetrically continuous function, and strong weakly symmetrically continuous
function. Then, investigate the relationship between these new type continuities regarding inclusion with some
counterexamples.

Throughout this paper, we will consider X as a nonempty subset of R.
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Definition 1.1. [6] The function ϕ : X → R is called to be statistical continuous at a point ξ0 if for all sequence
(ξn) in R such that limn→∞ ξn = ξ0 implies that ∀ϵ > 0,

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0

holds.

Let
Lξ0(X) := {(ξn) ⊂ X : (ξn) strictly increasing and lim

n→∞
ξn = ξ0}

Uξ0(X) := {(ηn) ⊂ X : (ηn) strictly decreasing and lim
n→∞

ηn = ξ0}.

Definition 1.2. The function ϕ : X → R is called to be statistical weakly continuous at a point ξ0 if the
undermentioned statements hold:

1. if Lξ0(X) ̸= ∅, then there exists (ξn) ∈ Lξ0(X) such that ∀ϵ > 0,

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0,

holds,

2. if Uξ0(X) ̸= ∅, then there exists (ηn) ∈ Uξ0(X) such that ∀ϵ > 0,

δ({n: |ϕ(ηn)− ϕ(ξ0)| ≥ ϵ}) = 0.

holds.

Let
Sξ0(X) := {(λn) ⊂ R+ : lim

n→∞
λn = 0 and ξ0 + λn, ξ0 − λn ∈ X}.

Definition 1.3. The function ϕ : X → R is said to be statistical weakly symmetrically continuous at ξ0 if
Sξ0(X) ̸= ∅, then there exists a sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

holds.

Definition 1.4. The function ϕ : X → R is said to be statistical strong weakly symmetrically continuous at the
point ξ0 if for all real valued sequence (λn) with ξ0 + λn, ξ0 − λn ∈ X and limn→∞ λn = 0 such that ∀ϵ > 0,

δ({n: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

holds.

Symbolically C st, W C st, W S C st and S W S C st will be used for the set of statistical continuous
functions, statistical weakly continuous functions, statistical weakly symmetrically continuous functions and
statistical strong weakly symmetrically continuous functions, respectively.

Lemma 1.5. Let ϕ : X → R be a function and ξ0 ∈ X . The undermentioned statements are true:

(i) ϕ ∈ W S C st if and only if there exists such a set

T = {t1 < t2 < ... < tn < ...}

that δ(T ) = 1 and limn→∞(ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)) = 0.
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(ii) ϕ ∈ S W S C st if and only if there exists such a set

T = {t1 < t2 < ... < tn < ...}

that δ(T ) = 1 and limn→∞(ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)) = 0.

(iii) ϕ ∈ W C st if and only if there exists such a set

T = {t1 < t2 < ... < tn < ...}

that δ(T ) = 1 and limn→∞ ϕ(ξtn) = limn→∞ ϕ(ηtn) = ϕ(ξ0).

Proof. We are going to bestow upon only the proof of (i). Statements (ii) and (iii) can be proved by following
the same steps given in (i).

Assume that Sξ0(X) ̸= ∅ and ∃(λt) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({t ∈ N: |ϕ(ξ0 + λt)− ϕ(ξ0 − λt)| ≥ ϵ}) = 0

holds. Put a set for j = 1, 2, ...,

Tj := {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| <
1

j
}.

It is clear that
T1 ⊃ T2 ⊃ ... ⊃ Tj ⊃ Tj+1 ⊃ ..., (1.1)

satisfies and for all j ∈ N
δ(Tj) = 1. (1.2)

Let an arbitrary element s1 ∈ T1. Considering (1.2) there exists s2 ∈ T2 satisfying s2 > s1 and for all n ≥ s2
we have T2(n)

n > 1
2 . Further, according to (1.2) there exists s3 ∈ T3 with s3 > s2, such that for all n ≥ s3, we

have
T3(n)

n
>

2

3
.

Thus, we obtain a sequence of positive integers

s1 < s2 < ... < sj < sj+1 < ...

that sj ∈ Tj (j = 1, 2, ...) and for all n ≥ sj

Tj(n)

n
>
j − 1

j
(1.3)

holds.
Let us consider the set T as follows: Each natural number of the interval (1, s1) belongs to T further, any

natural number of the interval (sj , sj+1) belongs to T if and only if it belongs to Tj (j = 1, 2, ...). According to
the equations (1.1) and (1.3) for each n, sj ≤ n < sj+1 we get

T (n)

n
≥ Tj(n)

n
>
j − 1

j

From this calculation it is apparent that δ(T ) = 1. Let ϵ > 0. There exists a natural number j such that 1
j < ϵ.

Let n ≥ sj , n ∈ T . Then, there exists such a number l ≥ j that sl ≤ n < sl+1. From the definition of T , we
have n ∈ Tl.
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Hence,

|ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| <
1

l
≤ 1

j
< ϵ

Therefore,
|ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| < ϵ

for each n ∈ T with n ≥ sj , i.e.,

lim
t→∞

(ϕ(ξ0 + λt)− ϕ(ξ0 − λt)) = 0.

For to prove converse implication, assume that there exists a set T = {t1 < t2 < ... < tn < ...} ⊂ N with
δ(T ) = 1 such that

lim
n→∞

(ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)) = 0

is satisfied. So, for any ϵ > 0, it can choose a number n0 ∈ N that for each n > n0 we have

|ϕ(ξ0 + λtn)− ϕ(ξ0 − λtn)| < ϵ. (1.4)

Put Aϵ = {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}. Then, from (1.4) we get

Aϵ ⊂ N− {tn0+1, tn0+2, ...}.

Therefore δ(Aϵ) = 0 and this completed the proof. ■

Theorem 1.6. Let ϕ : X → R be a function. If ϕ ∈ C st then ϕ ∈ W S C st.

Proof. Let ϕ be statistical continuous at ξ0. Then, for every sequence (ξn) in R for which ξn → ξ0 (n → ∞)

implies that ∀ϵ > 0,
δ({n ∈ N: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0. (1.5)

Since (1.5) is provided for every sequence (ξn) in R which is convergent to ξ0 then, we can choose (ξn) =

(ξ0 + λn) such that (λn) ∈ R+ and λn → 0. Therefore,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.6)

Similarly, we can choose (ξn) = (ξ0 − λn) such that (λn) ∈ R+ where λn → 0 and equation (1.5) implies that

δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.7)

So, Sξ0(X) ̸= ∅ and from (1.6) and (1.7) we have

{n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
} ∪ {n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
}

and related inequality

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) + δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
})

holds. This implies that
δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

Hence, ϕ is statistical weakly symmetrically continuous at ξ0. ■
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Theorem 1.7. Let ϕ : X → R be a function. If ϕ ∈ C st, then ϕ ∈ W C st.

Proof. If ϕ ∈ C st then, for every real valued sequence (ξn) in X for which ξn → ξ0 (n → ∞) implies that
∀ϵ > 0,

δ({n ∈ N: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0.

If Lξ0(X) and Uξ0(X) are not empty, then there are (ξn) ∈ Lξ0(X) and (ηn) ∈ Uξ0(X) such that ξn → ξ0 and
ηn → ξ0 holds. Since ϕ statistical continuous, then

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0

and
δ({n: |ϕ(ηn)− ϕ(ξ0)| ≥ ϵ}) = 0

are satisfied. This prove our assertion. ■

Theorem 1.8. Let ϕ : X → R be a function. If ϕ ∈ C st, then ϕ ∈ S W S C st.

Proof. Let ϕ be a statistical continuous function at ξ0. Then, for every sequence (ξn) in R for which ξn → ξ0
(n→ ∞) implies that ∀ϵ > 0,

δ({n: |ϕ(ξn)− ϕ(ξ0)| ≥ ϵ}) = 0. (1.8)

If we choose (ξn) = (ξ0 + λn) for λn → 0 when n→ ∞, then, (1.8) implies that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.9)

Similarly, if we choose (ξn) = (ξ0 − λn) for λn → 0 when n→ ∞, ∀ϵ > 0, from (1.8) we have

δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥
ϵ

2
}) = 0. (1.10)

Therefore, ∀ϵ > 0 we have

{n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
} ∪ {n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
}

and from (1.9), (1.10) following inequality

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0)| ≥
ϵ

2
}) + δ({n ∈ N: |ϕ(ξ0 − λn)− ϕ(ξ0)| ≥

ϵ

2
})

holds. Hence,
δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

Hence, ϕ is statistical strong weakly symmetrically continuous at ξ0. ■

Theorem 1.9. Let ϕ : X → R be a function. If ϕ ∈ S W S C st, then ϕ ∈ W S C st.

Proof. Suggesting that ϕ is statistical strong weakly symmetrically continuous at ξ0. Then, for sequence ∀(λn) ∈
R with ξ0 + λn, ξ0 − λn ∈ X satisfying limn→∞ λn = 0 such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

We can choose a subsequence (λnk
) of (λn) such that (λnk

) ∈ R+ with ξ0 + λnk
, ξ0 − λnk

∈ X satisfying
λnk

→ 0 (nk → ∞).
Therefore, ∀ϵ > 0

δ({n ∈ N: |ϕ(ξ0 + λnk
)− ϕ(ξ0 − λnk

)| ≥ ϵ}) = 0.

Thus, ϕ is statistical weakly symmetrically continuous at ξ0. ■
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Following examples are related to Theorem 1.6, Theorem 1.7, Theorem 1.8 and Theorem 1.9.

Example 1.10. Let K = { 1
n3 : n ∈ Z− {0}} ∪ {0} a set and define a ϕ : R → {−1, 0, 1} by

ϕ(ξ) :=


0, ξ ∈ K,

2, ξ > 0 ∧ ξ /∈ K,

−2, ξ < 0 ∧ ξ /∈ K.

If we consider (λn) as

λn :=

{
1
n3 , n ̸= k3,
1

n3+1 , n = k3,

then, it is clear that (λn) ∈ U0(R), (−λn) ∈ L0(R) and

|ϕ(λn)− ϕ(0)| =

{
0, n ̸= k3,

2, n = k3,

holds. This implies that for all ϵ > 0,

{n ∈ N: |ϕ(λn)− ϕ(0)| ≥ ϵ} ⊆ {k3 : k ∈ N}.

Therefore, δ({n ∈ N: |ϕ(λn)− ϕ(0)| ≥ ϵ}) = 0. Similarly, we have

|ϕ(−λn)− ϕ(0)| =

{
0, n ̸= k3,

2, n = k3,

and δ({n ∈ N: |ϕ(−λn)− ϕ(0)| ≥ ϵ}) = 0. Therefore, ϕ is statistical weakly continuous at 0. Now, let us
consider following sequence

λt :=

{
1
t3 , t ̸= k2,
1
t2 , t = k2.

It is clear that (λt) ∈ S0(R) and

|ϕ(0 + λt)− ϕ(0− λt)| =

{
0, t ̸= k2,

4, t = k2.

So, for any ϵ > 0 we have

{t ∈ N: |ϕ(0 + λt)− ϕ(0− λt)| ≥ ϵ} ⊆ {k2 : k ∈ N}

and this inclusion implies that

δ({t ∈ N: |ϕ(λt)− ϕ(−λt)| ≥ ϵ}) = 0.

Therefore, ϕ is statistical weakly symmetrically continuous at 0.
Now, let define

λm :=

{
1
m3 , m ̸= 3k − 1,
1
m2 , m = 3k − 1.

such that λm → 0 (m→ ∞). Then,

|ϕ(0 + λm)− ϕ(0− λm)| =

{
0, m ̸= 3k − 1,

4, m = 3k − 1.
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Let S ⊂ N be a finite set and for any ϵ > 0, we have

{m ∈ N: |ϕ(0 + λm)− ϕ(0− λm)| ≥ ϵ} ⊇ {3k − 1 : k ∈ N}\S

and

δ({m ∈ N: |ϕ(λm)− ϕ(−λm)| ≥ ϵ}) ≥ 1

3
.

Hence, ϕ is not statistical strong weakly symmetrically continuous at 0.
Also, ϕ is not statistical continuous at 0. Because λm → 0 (m→ ∞) for ∀m ∈ N, we have

|ϕ(λm)− ϕ(0)| =

{
0, m ̸= 3k − 1,

2, m = 3k − 1.

There exists S ⊂ N finite set and for ∀ϵ > 0 such that

{m ∈ N: |ϕ(λm)− ϕ(0)| ≥ ϵ} ⊇ {3k − 1 : k ∈ N}\S

satisfies. So,

δ({m ∈ N: |ϕ(λm)| ≥ ϵ}) ≥ 1

3
̸= 0.

Example 1.11. Let K = { 1
n : n ∈ N}, L = {

√
2

n+
√
n
: n ∈ N}, M = {− 1

n : n ∈ N}, P = {−
√
2

n+
√
n
: n ∈ N}

and X = K ∪ L ∪M ∪ P ∪ {0}. Define a function ϕ : X → R by

ϕ(ξ) :=

{
1, ξ ∈ K ∪ P ∪ {0},
ξ, ξ ∈ L ∪M.

For all sequence (λn) ∈ S0(X), we have

|ϕ(0 + λn)− ϕ(0− λn)| =

{ ∣∣1 + 1
n

∣∣ , (λn) ∈ K,∣∣∣ √
2

n+
√
n
− 1

∣∣∣ , (λn) ∈ L.

So, for any ϵ > 0, there exists finite set S ⊂ N such that

{n ∈ N: |ϕ(0 + λn)− ϕ(0− λn)| ≥ ϵ} =

{
N, (λn) ∈ K,

N− S, (λn) ∈ L,

is true. Hence, we have

δ({n ∈ N: |ϕ(0 + λn)− ϕ(0− λn)| ≥ ϵ}) > 0.

Thus, ϕ is not statistical weakly symmetrically continuous at 0. Also, it is known from Theorem 1.9 that the
function ϕ is not statistical strong weakly symmetrically continuous at 0. Let ηt ∈ U0(X) and ξm ∈ L0(X) as
follows

ηt :=

{
1
t , t ̸= k2,

√
2

t+
√
t
, t = k2,

and ξm :=

{
−

√
2

m+
√
m
, m ̸= k2,

− 1
m , m = k2,

respectively. Then, we have

|ϕ(ηt)− ϕ(0)| =

{
0, t ̸= k2,∣∣∣ √

2
t+

√
t
− 1

∣∣∣ , t = k2,
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and

{t ∈ N: |ϕ(ηt)− ϕ(0)| ≥ ϵ} ⊆ {k2 : k ∈ N}

is satisfied for all ϵ > 0. Hence,

δ({t ∈ N: |ϕ(ηt)− ϕ(0)| ≥ ϵ}) = 0.

Similarly,

|ϕ(ξm)− ϕ(0)| =

{
0, m ̸= k2,∣∣ 1

m + 1
∣∣ , m = k2,

and

{m ∈ N: |ϕ(ξm)− ϕ(0)| ≥ ϵ} ⊆ {k2 : k ∈ N}

implies that

δ({m ∈ N: |ϕ(ξm)− ϕ(0)| ≥ ϵ}) = 0.

Therefore, ϕ is statistical weakly continuous at 0.

Example 1.12. Let K = { 1
n : n ∈ Z − {0}}, L = {

√
2

n+
√
n

: n ∈ N}, M = {−
√
2

n+
√
n

: n ∈ N} and
X = K ∪ L ∪M ∪ {0}. Define the function ϕ : X → R by

ϕ(ξ) :=

{
1, ξ ∈ K,

ξ, ξ ∈ X −K.

Let (λn) ∈ S0(X) as

λn :=

{
1
n , n ̸= k2,
√
2

n+
√
n
, n = k2.

So, we have

|ϕ(0 + λn)− ϕ(0− λn)| =

{
0, n ̸= k2,∣∣∣ 2
√
2

n+
√
n

∣∣∣ , n = k2,

and for every ϵ > 0,

{n ∈ N: |ϕ(0 + λn)− ϕ(0− λn)| ≥ ϵ} ⊆ {k2 : k ∈ N}

imply that

δ({n ∈ N: |ϕ(λn)− ϕ(−λn)| ≥ ϵ}) = 0.

Therefore, ϕ is statistical weakly symmetrically continuous at 0. For all (ηm) ∈ U0(X),

|ϕ(ηm)− ϕ(0)| =

{
1, ηm ∈ K,
√
2

m+
√
m
, ηm ∈ L.

Hence, for ∀ϵ > 0, there exists S ⊂ N finite set such that

{m ∈ N: |ϕ(ηm)− ϕ(0)| ≥ ϵ} =

{
N, ηm ∈ K,

N\S, ηm ∈ L.

Therefore,

δ({m ∈ N: |ϕ(ηm)− ϕ(0)| ≥ ϵ}) > 0.

Thus, ϕ is not statistical weakly continuous at 0.

189



Pelda Evirgen and Mehmet Küçükaslan

As a summary of the Theorems and Examples given above, we can provide the following inclusions:

(i) S W S C st ⊆ W S C st and W S C st ⊈ S W S C st

(ii) S W S C st ⊈ W C st and W C st ⊈ S W S C st

(iii) W C st ⊈ W S C st and W S C st ⊈ W C st

(iv) S W S C st ⊈ C st, W S C st ⊈ C st and W C st ⊈ C st

(v) C st ⊆ S W S C st, C st ⊆ W S C st and C st ⊆ W C st

2. Some algebraic properties of new continuities

This section examines the algebraic properties of the set of W S C st. The results concluded that the set W S C st

does not form a linear space over real numbers.

Theorem 2.1. Let ϕ : X → R be a function. If ϕ ∈ W S C st and c ∈ R then, |ϕ|, cϕ ∈ W S C st.

Proof. Suppose that Sξ0(X) ̸= ∅. Then, there exists a sequence (λn) ∈ Sξ0(X) such that

δ({n: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

holds for all ϵ > 0. So, the following inclusion

{n ∈ N: ||ϕ| (ξ0 + λn)− |ϕ| (ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}

implies that
δ({n ∈ N: ||ϕ| (ξ0 + λn)− |ϕ| (ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ})

is true. Then,
δ({n ∈ N: ||ϕ| (ξ0 + λn)− |ϕ| (ξ0 − λn)| ≥ ϵ}) = 0.

Therefore, |ϕ| is statistical weakly symmetrically continuous at ξ0.
Additionally, c ∈ R and ∀ϵ > 0 the following inclusion

{n ∈ N: |(cϕ)(ξ0 + λn)− (cϕ)(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

|c|
}

and related inequality
δ({n ∈ N: |(cϕ)(ξ0 + λn)− (cϕ)(ξ0 − λn)| ≥ ϵ}) ≤

≤ δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

|c|
})

hold.
So, we have

δ({n ∈ N: |(cϕ)(ξ0 + λn)− (cϕ)(ξ0 − λn)| ≥ ϵ}) = 0.

Hence, cϕ is statistical weakly symmetrically continuous at ξ0. ■

Theorem 2.2. Let ϕ : X → R and ψ : X → R be functions. If ϕ ∈ W S C st and ψ ∈ S W S C st then, ϕ+ ψ,
ϕ− ψ, max{ϕ, ψ} and min{ϕ, ψ} ∈ W S C st.
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Proof. Suppose that ϕ is statistical weakly symmetrically continuous function at the point ξ0 and ψ is statistical
strong weakly symmetrically continuous function at the point ξ0. Then, Sξ0(X) ̸= ∅ implies that there exists a
sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0.

From Theorem 1.9, ψ is statistical weakly symmetrically continuous function at the point ξ0. Then,

δ({n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥ ϵ}) = 0.

holds. Therefore, following equality

{n ∈ N: |(ϕ+ ψ)(ξ0 + λn)− (ϕ+ ψ)(ξ0 − λn)| ≥ ϵ} =

= {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}∪

∪{n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}

implies that
δ({n ∈ N: |(ϕ+ ψ)(ξ0 + λn)− (ϕ+ ψ)(ξ0 − λn)| ≥ ϵ}) = 0.

Similarly, we have

δ({n ∈ N: |(ϕ− ψ)(ξ0 + λn)− (ϕ− ψ)(ξ0 − λn)| ≥ ϵ}) = 0.

Consequently, ϕ+ ψ and ϕ− ψ are statistical weakly symmetrically continuous at the point ξ0.
Now, the following inequality

|max{ϕ, ψ}(ξ0 + λn)−max{ϕ, ψ}(ξ0 − λn)| ≤

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|
2

+
|ψ(ξ0 + λn)− ψ(ξ0 − λn)|

2
+

+
||ϕ− ψ| (ξ0 + λn)− |ϕ− ψ| (ξ0 − λn)|

2
≤

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|
2

+
|ψ(ξ0 + λn)− ψ(ξ0 − λn)|

2
+

+
|(ϕ− ψ)(ξ0 + λn)− (ϕ− ψ)(ξ0 − λn)|

2
≤

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|+ |ψ(ξ0 + λn)− ψ(ξ0 − λn)|

implies that
{n ∈ N: |max{ϕ, ψ}(ξ0 + λn)−max{ϕ, ψ}(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}

∪{n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}

holds. So, we have

δ({n ∈ N: |max{ϕ, ψ}(ξ0 + λn)−max{ϕ, ψ}(ξ0 − λn)| ≥ ϵ}) = 0.

Similarly, the following inequality

|min{ϕ, ψ}(ξ0 + λn)−min{ϕ, ψ}(ξ0 − λn)| ≤

191



Pelda Evirgen and Mehmet Küçükaslan

≤ |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|+ |ψ(ξ0 + λn)− ψ(ξ0 − λn)|

implies that
{n ∈ N: |min{ϕ, ψ}(ξ0 + λn)−min{ϕ, ψ}(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}

∪{n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}

holds. Hence,

δ({n ∈ N: |min{ϕ, ψ}(ξ0 + λn)−min{ϕ, ψ}(ξ0 − λn)| ≥ ϵ}) = 0.

Thus, the functions max{ϕ, ψ} and min{ϕ, ψ} are statistical weakly symmetrically continuous at ξ0. ■

Example 2.3. (Exp.3.3. in [23]) Let A = { 1
n : n ∈ Z − {0}} and B = {

√
2
n : n ∈ Z − {0}}. Consider the

functions ϕ, ψ : R → R as follows:

ϕ(ξ) =


ξ, ξ ∈ A ∪ {0},
−1, ξ > 0 ∧ ξ /∈ A,

1, ξ < 0 ∧ ξ /∈ A,

and ψ(ξ) =


ξ, ξ ∈ B ∪ {0},
−2, ξ > 0 ∧ ξ /∈ B,

2, ξ < 0 ∧ ξ /∈ B.

The functions ϕ and ψ are weakly symmetrically continuous at 0 (see in [23]). By Lemma 1.5 the functions ϕ
and ψ are also statistical weakly symmetrically continuous at 0.

(ϕ+ ψ)(ξ) =



−3, ξ > 0 ∧ ξ /∈ A ∪B,
3, ξ < 0 ∧ ξ /∈ A ∪B,
ξ − 2, ξ > 0 ∧ ξ ∈ A,

ξ + 2, ξ < 0 ∧ ξ ∈ A,

ξ − 1, ξ > 0 ∧ ξ ∈ B,

ξ + 1, ξ < 0 ∧ ξ ∈ B,

0, ξ = 0,

(ϕ− ψ)(ξ) =



1, ξ > 0 ∧ ξ /∈ A ∪B,
−1, ξ < 0 ∧ ξ /∈ A ∪B,
ξ + 2, ξ > 0 ∧ ξ ∈ A,

ξ − 2, ξ < 0 ∧ ξ ∈ A,

−ξ − 1, ξ > 0 ∧ ξ ∈ B,

−ξ + 1, ξ < 0 ∧ ξ ∈ B,

0, ξ = 0,

max{ϕ, ψ}(ξ) =



−1, ξ > 0 ∧ ξ /∈ A ∪B,
2, ξ < 0 ∧ ξ /∈ A ∪B,
ξ, ξ > 0 ∧ ξ ∈ A ∪B,
2, ξ < 0 ∧ ξ ∈ A,

1, ξ < 0 ∧ ξ ∈ B,

0, ξ = 0,
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min{ϕ, ψ}(ξ) =



−2, ξ > 0 ∧ ξ /∈ A ∪B,
1, ξ < 0 ∧ ξ /∈ A ∪B,
−2, ξ > 0 ∧ ξ ∈,
ξ, ξ < 0 ∧ ξ ∈ A ∪B,
−1, ξ > 0 ∧ ξ ∈ B,

0, ξ = 0.

For ∀(λn) ∈ S0(R) and ∀ϵ > 0,

|(ϕ+ ψ)(0 + λn)− (ϕ+ ψ)(0− λn)| =


6, λn /∈ A ∪B,
|2λn − 4| , λn ∈ A,

|2λn − 2| , λn ∈ B.

There exists a finite subset of natural numbers S such that

{n ∈ N: |(ϕ+ ψ)(λn)− (ϕ+ ψ)(−λn)| ≥ ϵ} =

{
N, λn /∈ A ∪B,
N\S, λn ∈ A ∪B,

Hence,

δ({n ∈ N: |(ϕ+ ψ)(λn)− (ϕ+ ψ)(−λn)| ≥ ϵ}) > 0.

Therefore (ϕ+ ψ) is not statistical weakly symmetrically continuous at 0. Similarly, for ∀n ∈ N,

|(ϕ− ψ)(0 + λn)− (ϕ− ψ)(0− λn)| =


2, λn /∈ A ∪B,
|2λn + 4| , λn ∈ A,

|−2λn − 2| , λn ∈ B,

|max{ϕ, ψ}(0 + λn)−max{ϕ, ψ}(0− λn)| =


3, λn /∈ A ∪B,
|λn − 2| , λn ∈ A,

|λn − 1| , λn ∈ B,

|min{ϕ, ψ}(0 + λn)−min{ϕ, ψ}(0− λn)| =


3, λn /∈ A ∪B,
|−λn − 2| , λn ∈ A,

|−λn − 1| , λn ∈ B,

For ∀ϵ > 0,

δ({n ∈ N: |(ϕ− ψ)(λn)− (ϕ− ψ)(−λn)| ≥ ϵ}) > 0,

δ({n ∈ N: |max{ϕ, ψ}(λn)−max{ϕ, ψ}(−λn)| ≥ ϵ}) > 0,

δ({n ∈ N: |min{ϕ, ψ}(λn)−min{ϕ, ψ}(−λn)| ≥ ϵ}) > 0.

Hence, the functions ϕ−ψ, max{ϕ, ψ} and min{ϕ, ψ} are not statistical weakly symmetrically continuous at 0.

Theorem 2.4. Let ϕ : X → R be a statistical weakly symmetrically continuous function at the point ξ0 and let
ψ : X → R be a statistical strong weakly symmetrically continuous function at the point ξ0. If ϕ and ψ are
locally bounded at ξ0, then ϕψ is statistical weakly symmetrically continuous at ξ0.
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Proof. Suppose that ϕ is statistical weakly symmetrically continuous and ψ is statistical strong weakly
symmetrically continuous at the point ξ0. Then, Sξ0(X) ̸= ∅ implies that there exists a sequence
(λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}) = 0

holds. Also from Theorem 1.9, ψ is statistical weakly symmetrically continuous function at the point ξ0. Then,

δ({n ∈ N: |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}) = 0.

holds for ∀ϵ > 0.
Because of ϕ and ψ are locally bounded at ξ0, there exists K,M > 0 and δ > 0 such that |ϕ(ξ)| ≤ M and

|ψ(ξ)| ≤ K for all ξ ∈ (ξ0 − δ, ξ0 + δ) ∩X .
Since (λn) ∈ Sξ0(X), we can pick N ∈ N such that ξ0 + λn, ξ0 − λn ∈ (ξ0 − δ, ξ0 + δ) ∩X for ∀n ≥ N

such that
|(ϕψ)(ξ0 + λn)− (ϕψ)(ξ0 − λn)| =

= |ϕ(ξ0 + λn)ψ(ξ0 + λn)− ϕ(ξ0 − λn)ψ(ξ0 − λn)| ≤

≤ |ϕ(ξ0 + λn)| |ψ(ξ0 + λn)− ψ(ξ0 − λn)|+

+ |ψ(ξ0 − λn)| |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≤

≤M |ψ(ξ0 + λn)− ψ(ξ0 − λn)|+K |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|

holds. So, following inclusion

{n ∈ N: |(ϕψ)(ξ0 + λn)− (ϕψ)(ξ0 − λn)| ≥ ϵ} ⊆

⊆ {n ∈ N:M. |ψ(ξ0 + λn)− ψ(ξ0 − λn)| ≥
ϵ

2
}∪

∪{n ∈ N:K. |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥
ϵ

2
}

implies that
δ({n ∈ N: |(ϕψ)(ξ0 + λn)− (ϕψ)(ξ0 − λn)| ≥ ϵ}) = 0.

Therefore, ϕψ is statistical weakly symmetrically continuous at ξ0. ■

The following example shows that if ϕ ∈ W S C st and ψ ∈ S W S C st but at least one of ϕ or ψ is not
locally bounded, then ϕψ /∈ W S C st.

Example 2.5. Consider the functions ϕ, ψ : R → R defined by

ϕ(ξ) = ξ and ψ(ξ) =

{
1

ln(|ξ|+1) , ξ /∈ [− 1
e ,

1
e ]

0, otherwise,

For every (λn) ∈ R with λn → 0, we have for every ϵ > 0

δ({n ∈ N: |ϕ(λn)− ϕ(−λn)| ≥ ϵ}) = 0

and
δ({n ∈ N: |ψ(λn)− ψ(−λn)| ≥ ϵ}) = 0.
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Then, ϕ and ψ are statistical strong weakly symmetrically continuous at 0. The function ϕ is locally bounded
at 0 however ψ is not. By Theorem 1.9, the function ϕ is statistical weakly symmetrically continuous at 0.
Additionally,

(ϕψ)(ξ) =

{
ξ

ln(|ξ|+1) , ξ /∈ [− 1
e ,

1
e ]

0, otherwise.

Hence, ∀λn ∈ S0(R) and ∀ϵ > 0 we have

|(ϕψ)(0 + λn)− (ϕψ)(0− λn)| =
2λn

ln(λn + 1)

{n ∈ N: |(ϕψ)(0 + λn)− (ϕψ)(0− λn)| ≥ ϵ} = N

δ({n ∈ N: |(ϕψ)(λn)− (ϕψ)(−λn)| ≥ ϵ}) > 0.

Hence, ϕψ is not statistical weakly symmetrically continuous at 0.

Theorem 2.6. Let ϕ : X → R be a statistical weakly symmetrically continuous function at ξ0. Suppose that
ϕ(ξ) ̸= 0 for ∀ξ ∈ X and 1

ϕ is locally bounded at ξ0. Then, 1
ϕ is statistical weakly symmetrically continuous at

ξ0.

Proof. Suppose that ϕ be a statistical weakly symmetrically continuous at a point ξ0 and let ϕ(ξ) ̸= 0 for ∀ξ ∈ X

and 1
ϕ is locally bounded at ξ0. Let Sξ0(X) ̸= ∅ then, there exists a sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

and ∃δ,M > 0 such that
∣∣∣ 1
ϕ(ξ)

∣∣∣ ≤ M , for ∀ξ ∈ (ξ0 − δ, ξ0 + δ) ∩X . Since (λn) ∈ Sξ0(X), then we can pick
N ∈ N such that ξ0 + λn, ξ0 − λn ∈ (ξ0 − δ, ξ0 + δ) ∩X for ∀n ≥ N.

So, following inequality∣∣∣∣ 1

ϕ(ξ0 + λn)
− 1

ϕ(ξ0 − λn)

∣∣∣∣ = |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|
∣∣∣∣ 1

ϕ(ξ0 + λn)ϕ(ξ0 − λn)

∣∣∣∣
≤M2 |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)|

and related inclusion

{n ∈ N:
∣∣∣∣ 1

ϕ(ξ0 + λn)
− 1

ϕ(ξ0 − λn)

∣∣∣∣ ≥ ϵ} ⊆

⊆ {n ∈ N :M2 |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}

holds. Then,

δ({n ∈ N:
∣∣∣∣ 1

ϕ(ξ0 + λn)
− 1

ϕ(ξ0 − λn)

∣∣∣∣ ≥ ϵ}) = 0.

Therefore, 1
ϕ is statistical weakly symmetrically continuous at ξ0. ■

Theorem 2.7. Let ϕ : X → R be a statistical weakly symmetrically continuous function at a point ξ0 and locally
bounded at ξ0. Let ψ : X → R be a statistical strong weakly symmetrically continuous function at a point ξ0. If
ψ(ξ) ̸= 0 for all ξ ∈ X and 1

ψ is locally bounded at ξ0 then, ϕψ is statistical weakly symmetrically continuous at
ξ0.

Proof. It is omitted because of similarity with Theorem 2.6. ■

Theorem 2.8. Let ϕ : X → Y and ψ : Y → R. Suppose that ϕ ∈ W S C st and ψ be a uniformly continuous on
Y . Then, ψ ◦ ϕ ∈ W S C st.
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Proof. Suppose that ϕ is statistical weakly symmetrically continuous at ξ0 and ψ is uniformly continuous on Y .
Then, Sξ0(X) ̸= ∅ implies that there exists a sequence (λn) ∈ Sξ0(X) such that ∀ϵ > 0,

δ({n ∈ N: |ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| ≥ ϵ}) = 0

and ∀ϵ > 0, ∃δ ≡ δ(ϵ) > 0 ∋ |ζ0 − ζ1| ≤ δ implies that for ∀ζ0, ζ1 ∈ Y

|ψ(ζ0)− ψ(ζ1)| < ϵ (2.1)

There is N ∈ N such that for all n ≥ N

|ϕ(ξ0 + λn)− ϕ(ξ0 − λn)| < δ. (2.2)

By equation (2.1) and (2.2),

|(ψ ◦ ϕ)(ξ0 + λn)− (ψ ◦ ϕ)(ξ0 − λn)| = |ψ(ϕ(ξ0 + λn))− ψ(ϕ(ξ0 + λn))| < ϵ

So, we have below inclusion

{n ∈ N: |(ψ ◦ ϕ)(ξ0 + λn)− (ψ ◦ ϕ)(ξ0 − λn)| ≥ ϵ} ⊆ {1, 2, ...N}

and

δ({n ∈ N: |(ψ ◦ ϕ)(ξ0 + λn)− (ψ ◦ ϕ)(ξ0 − λn)| ≥ ϵ}) = 0.

Consequently, ψ ◦ ϕ is statistical weakly symmetrically continuous at ξ0. ■

The following example shows that when ϕ ∈ W S C st but ψ is not uniformly continuous on the domain, it
will be ψ ◦ ϕ /∈ W S C st

Example 2.9. Define ϕ, ψ : R → R by

ψ(ξ) =

{
1
ξ , ξ ̸= 0,

0, ξ = 0.
and ϕ(ξ) = ξ cos ξ

The function ϕ is statistical weakly symmetrically continuous at 0 and ψ is not uniformly continuous on R.

(ψ ◦ ϕ)(ξ) =

{
1

ξ cos ξ , ξ ̸= 0 ∧ ξ ̸= (kπ + π
2 ),

0, otherwise,

for all k ∈ Z. For ∀(λn) ∈ S0(R) and ϵ > 0,

|(ψ ◦ ϕ)(0 + λn)− (ψ ◦ ϕ)(0− λn)| =
2

λn cos(λn)

{n ∈ N: |(ψ ◦ ϕ)(λn)− (ψ ◦ ϕ)(−λn)| ≥ ϵ} = N
δ({n ∈ N: |(ψ ◦ ϕ)(λn)− (ψ ◦ ϕ)(−λn)| ≥ ϵ}) = 1 > 0.

Hence, ψ ◦ ϕ is not statistical weakly symmetrically continuous at 0.
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3. Conclusion and some Remarks

P. Pongsriim-T. Thongsiri in [23] classified functions with removable discontinuity, and SC, WC and WSC

classes were created. In this study, functions with removable discontinuities were subjected to a new classification
with the help of natural density, and the following inclusions diagram was obtained. (Note that E → D means
that E ⊆ D)

C

�� ## **
WC

��

C st

{{ %%

SC

��

// WSC

��
W C st S W S C st // W S C st

As a continuation of this study, the first question that comes to mind is to make a similar extension by taking
a different kinds of densities instead of natural density, for example, logarithmic density, uniform density, and
density produced by a regular matrix, generalized density, etc.

Maybe the other problem is determining whether there is any class of functions between X and Y where
X ∈ {SC,WC,WSC} and Y ∈ {S W S C st,W C st,W S C st}.
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