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Cycle neighbor polynomial of some graph
operations
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Abstract
The Cycle Neighbor Polynomial of a graph G is defined as, CN∗[G,z] = Σ

c(G)
k=0 ck(G)zk, where c0(G) is the number

of isolated vertices, c1(G) is the number of non isolated vertices which does not belong to any cycle of G, c2(G)
is the number of bridges and ck(G) is the number of cycles of length k in G for g(G) ≤ k ≤ c(G) with g(G) and
c(G) are respectively the girth and circumference of G. This paper deals with the cycle neighbor polynomial of
some graph operations, graph modifications and that of graphs derived from the given graph.
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1. Introduction
Many graph polynomials are introduced and studied in

graph theory. Chromatic polyomial [13], Tutte polynomial[7],
clique polynomial [10], etc., are some examples. These poly-
nomials are studied because some of them are generating
functions of some graph properties, some count the num-
ber of occurrences of certain graph features and some others
make an attempt to find complete graph invariants and so
on. In [3] Annie Sabitha Paul and Raji Pilakkat introduced
one such polynomial called cycle neighbor polynomial of a
graph. For a graph G its cycle neighbor polynomial is defined
as CN∗[G,z] = Σ

c(G)
k=0 ck(G)zk, where c0(G) is the number of

isolated vertices, c1(G) is the number of non isolated vertices
which does not belong to any cycle of G, c2(G) is the number
of bridges and ck(G) is the number of cycles of length k in
G for 3≤ k ≤ n with c(G) as the circumference of G. It is a
generating polynomial for the number of cycles of different
lengths varying from g(G) (girth of G) to c(G) (circumfer-
ence of G). It reveals many graph properties like girth [5],

circumference [5], hamiltonicity [5], pacyclicity [4], Whether
the graph is bipartite or not etc., of a graph.

Many graph modification problems concern destroying
or creating cycles. In this paper we study the cycle neighbor
polynomial of some graph operations, graph modifications
and that of graphs derived from the given graph.

2. Cycle Neighbor Polynomial of Graph
Operations

First we consider the corona [11] of two graphs G and
H denoted by GoH. Let G be a connected graph of order
n ≥ 2 with k, 1 ≤ k ≤ n cycle neighbor free vertices which
is the set of all vertices which do not belong to any cycle
of G. Note that no cycle will be added or deleted from the
induced subgraph G of GoH. We obtain CN∗[GoH;z] when
H is a path, cycle or a star graph in terms of cycle neighbor
polynomial of G.

Theorem 2.1. Let Pm be a path on m≥ 1 vertices. Then

CN∗[GoPm;z] =



CN∗[G;z]+nz2 +nz,
if m = 1;

CN∗[G;z]+nz3− kz,
if m = 2;

CN∗[G;z]+n{Σm+1
k=3 {m− (k−2)}zk}− kz,

if m≥ 3;
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Proof. When m = 1, corresponding to the vertex in each of
the n copies of P1, n new edges and n new cycle neighbor free
vertices will be introduced in GoP1.
When m= 2, corresponding to the edge in each of the n copies
of P2, n triangles will be introduced in GoP2 and there are no
cycle neighbor free vertices in GoP2.
When m≥ 3, together with all cycles of different lengths in
G, (m− 1) triangles, (m− 2) 4-cycles,..., one m-cycle will
be formed in GoPm with a vertex of G common to all these
cycles in GoPm. Hence every vertex of G belong to at least
one cycle of GoPm and we have CN∗[GoPm;z] =CN∗[G;z]+
n{Σm+1

k=3 {m− (k−2)}zk}− kz.

Theorem 2.2. Let Cm be a cycle on m ≥ 3 vertices. Then,
CN∗[GoCm;z] =CN∗[G;z]+n{Σm+1

l=3 zl + zm}− kz

Proof. In GoCm at each of the n vertices of G, there is a
wheel graph on m+1 vertices with the central vertex as the
vertex of G. For a wheel graph Wm+1 ∼= Cm +K1, m ≥ 3,
CN∗[Wm+1,z] = m∑

m+1
k=3 zk + zm [3]. Hence it follows that

CN∗[GoCm;z] =CN∗[G;z]+n{m{Σm+1
l=3 zl}+ zm}− kz.

Theorem 2.3. Let Sm+1 ∼= Km,1, m≥ 3. Then,
CN∗[GoSm+1;z] =CN∗[G;z]+n{mz3 +

(m
2

)
z4}− kz

Proof. Let H be a subgraph of GoSm+1 induced by a vertex
of G and a copy of Sm+1, m≥ 3. Then there are two vertices
say u and v of degree m+1 and m vertices of degree two in H.
Let V (H) = A∪B, where A = {u,v} and B = {v1,v2, ...,vm},
the set of all vertices of degree two in H. Since vi, 1≤ i≤ m
is adjacent to u and v only, there are exactly m triangles in H.
There are (m−1) 4-cycles through each vertex v in H. Infact
there are m(m−1)

2 4-cycles in H. Finally note that the maximum
length of any cycle in H is four. Since V (H) = A∪B and no
two vertices in B are adjacent, the sequence of vertices which
form any cycle in H will be either an alternating sequence of
vertices from A and B respectively or a sequence of the form
vi,u,v, 1 ≤ i ≤ 3. In the first case, since there are only two
vertices in A, any alternating vertex sequence from A and B
without repetition contain a maximum of four vertices. In the
second case, {vi,u,v} induces a triangle in H. Hence there
are no cycles of length greater than four in H.

”Subdivision graph [19] S(G) of a graph G is obtained by
subdividing each edge of G exactly once by a new vertex”. In
the next result, we compare CN∗[G;z] and CN∗[S(G);z] of a
graph G.

Theorem 2.4. Let G be a connected graph of order n≥ 2 with
CN∗[G;z] = Σ

c(G)
k=1 ckzk and let S(G) be the subdivision graph

of G. Then CN∗[S(G);z] = (c1 + c2)z+2c2z2 +Σ
c(G)
k=3 ckz2k.

Proof. The number of edges in G will be doubled in its sub-
division graph S(G) by the introduction of a new vertex on
every edge of G. Hence corresponding to every bridge in G,
there is a cycle neighbor free vertex in S(G). Also the number
of bridges and lengths of every cycle in G will be doubled in
S(G).

It follows from CN∗[S(G);z] that the subdivision graph of
every simple graph G is bipartite. The fact that g(S(G)) =
2g(G) and c(S(G)) = 2c(G) is immediate from CN∗[G;z],
where g(G) and c(G) are respectively the girth and circumfer-
ence of G.

”Square of a graph G [12] is obtained by adding edges
in G, which connect pairs of vertices of G at a distance two
apart”. It is denoted by G2. Next we obtain CN∗[G2;z], when
G is a path or a star graph.

Theorem 2.5. Let Pn be a path on n≥ 3 vertices. Then,
CN∗[P2

n ;z] = Σn
k=3{n− (k−1)}zk.

Proof. Let the vertices of Pn be labelled as v1,v2, ...,vn. Then
for 1 ≤ i ≤ n−2, each vi is adjacent to vi+2 in P2

n . Hence it
follows that for 1 ≤ i ≤ n− 2, the graph induced by the set
{vi,vi+1,vi+2} is a triangle in P2

n and no triangles are induced
by {vi,v j,vk} if vi,v j,vk does not form a set of consecutive
vertices of V (Pn). Therefore, there are exactly n−2 triangles.
Also, since every vertex belongs to at least one triangle, there
are no bridges or cycle neighbor free vertices in P2

n . In general,
for 1≤ i≤ k−1,
vivi+1vi+3vi+5...vi+(k−2)vi+(k−1)vi+(k−3)vi+(k−5)...vi+2vi, is a
k-cycle for odd k in P2

n and
vivi+1vi+3vi+5...vi+(k−1)vi+(k−2)vi+(k−4)vi+(k−6)...vi+2vi is a k-
cycle for even k where 3 ≤ k ≤ n. Hence in P2

n , there are
(n−3) 4-cycles, (n−4) 5-cycles,..., (n− (k−1)) k-cycles,...,
one n-cycle without duplication. Hence the proof.

It follows from CN∗[P2
n ;z] that P2

n is hamiltonian. More-
over, P2

n is pancyclic for n≥ 3 since it contains cycles of every
length from 3 to n.

Theorem 2.6. Let G be a graph of diameter two. If order of G
is n, Then, CN∗[G2;z] = n!

2 [
z3

3(n−3)! +
z4

4(n−4)! + ...+ zn−2

(n−2)2! +

zn−1

(n−1) +
zn

n ].

Proof. Since diam(G) = 2, d(vi,v j) ≤ 2, for every vi,v j ∈
V (G). Hence in G2, vi is adjacent to v j, for every i, j, 1 ≤
i, j ≤ n, i 6= j. Therefore, G2 ∼= Kn. Hence the result fol-
lows from the expression for cycle neighbor polynomial of
complete graphs[3].

Corollary 2.7 is a direct consequence of Theorem 2.6
Since diam(Sm+1) = 2 for Sm+1 ∼= Km,1.

Corollary 2.7. CN∗[S2
m+1;z] = (m+1)!

2 [ z3

3(m−2)! +
z4

4(m−3)! +...+

zm−1

(m−1)2! +
zm

m + zm+1

m+1 ]

In general, power of a graph Gk, k = 2,3,4, ... is obtained
by adding edges in G which connect pairs of vertices vi,v j if
d(vi,v j)≤ k. Then Gk ∼= Kn, therefore we have;

Theorem 2.8. Let G be a graph of diameter k, k = 2,3,4, ....
If order of G is n, Then, CN∗[Gk;z] = CN∗[Kn,z].
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From the expression for CN∗[Gk;z] of Gk, k = 2,3,4, ... it
is clear that Gk is pancyclic if diam(G) = k.

”The splitting graph S
′
(G) [15] of a graph G is obtained

by adding new vertices v
′

to G, corresponding to each vertex v
of G and then joining the vertex v

′
to all vertices of G adjacent

to v in G”. Now we find CN∗[S
′
(G);z] when G is a path or a

star graph.

Theorem 2.9. Let Pn be a path on n≥ 2 vertices. Then

CN∗[S
′
(Pn);z] =

{
3z2 +4z, if n = 2;
Σ

n−1
k=3{n− (k−1)}z2k, if n≥ 3;

Proof. Let the vertices of Pn be labelled as v1,v2, ...,vn, with
v1 and v2 as the pendant vertices. Let v

′
i be the vertex in S

′
(Pn)

corresponding to vi, 1≤ i≤ n. Then v
′
1 and v

′
n are the pendant

vertices of S
′
(Pn). For 1≤ i≤ n− k,

viv
′
i+1vi+2v

′
i+3vi+4...v

′
i+(k−2)vi+(k−1)vi+kv

′
i+(k−1)...vi+2vi+1vi

is a 2k-cycle in S
′
(Pn), when k is odd and

viv
′
i+1vi+2v

′
i+3vi+4...v

′
i+(k−1)vi+kvi+(k−1)v

′
i+(k−2)...v

′
i+2vi+1vi

is a 2k-cycle in S
′
(Pn), when k is even. Hence there are

n− 2 4-cycles, (n− 3) 6-cycles,...,two 2(n− 2)-cycles and
one 2(n−1) cycle in S

′
(Pn). Hence the proof.

Theorem 2.10. Let S
′
m+1 be the splitting graph of Sm+1 ∼=

Km,1, m≥ 2. Then CN∗[S
′
m+1;z] =

(m
2

)
z4 +mz2 +mz

Proof. Let V (S
′
m+1) = A∪B with A = {v,v′}, where v and

v
′

are the central vertex of Sm+1 and its corresponding ver-
tex in S

′
m+1 respectively and B = {u1,u2, ...,um,u

′
1,u

′
2, ...,u

′
m}

where ui and u
′
i, 1 ≤ i ≤ m are the pendant vertices of Sm+1

and its corresponding vertex in S
′
m+1 respectively. Then A

and B are independent sets. Hence the vertices of any cycle
in S

′
m+1 is an alternating sequence of vertices from A and B.

Since |A|= 2, the length of any cycle in S
′
m+1 is four and there

are (m−1) 4-cycles through u1, (m−2) 4-cycles through u2
without repetition and so on. Hence there are

(m
2

)
4-cycles in

S
′
m+1. Also there are m pendant vertices and m pendant edges

corresponding to u
′
i, 1≤ i≤ m. Hence the proof.

Since there are no odd cycles in both P
′
n and S

′
m+1, it

follows that the splitting graph of a path as well as that of a
star graph are bipartite.

”Duplication of a vertex v of a graph G is the graph G
′

obtained by adding a vertex v
′

in G with N(v
′
) = N(v)”. Here

we consider CN∗[G
′
;z] of G, when G is a path, cycle or a star

graph.
Since the duplication of a pendant vertex of a path Pn,

n ≥ 2 adds a new vertex in P
′
n which is adjacent to a single

vertex of Pn, we have;

Proposition 2.11. Let P
′
n be the graph obtained by the dupli-

cation of a pendant vertex of Pn, n≥ 2. Then
CN∗[P

′
n;z] =CN∗[Pn;z]+ z2 + z.

Theorem 2.12. Let P
′
n be the graph obtained by the duplica-

tion of a non pendant vertex of Pn, n≥ 2 then
CN∗[P

′
n;z] =CN∗[Pn;z]+ z4−2z2−3z.

Proof. The subgraph of P
′
n induced by the duplication of a non

pendant vertex vertex of Pn, its corresponding vertex and their
neighbors is a 4-cycle in P

′
n and consequently, the number of

cycle neighbor free vertices of Pn will be reduced by three and
number of bridgrs of Pn will be reduced by two in P

′
n.

Theorem 2.13. Let C
′
n be the graph obtained by the duplica-

tion of a vertex of the cycle Cn, n≥ 3 then
CN∗[C

′
n;z] =CN∗[Cn;z]+ zn + z4.

Proof. Let v be any vertex of Cn and v
′

be the duplication of
v in C

′
n. Then {v,v′}∪N(v) induces a 4-cycle and

{v′}∪V (Cn)\{v} induces an n-cycle in C
′
n. Therefore there

are two n-cycles and a 4-cycle in C
′
n.

Theorem 2.14. Let S
′
m+1 be the graph obtained by the du-

plication of the central vertex of Sm+1 ∼= Km,1, m ≥ 2. Then
CN∗[S

′
m+1;z] =

(m
2

)
z4.

Proof. Let V (S
′
m+1) = A∪B with A = {v,v′}, where v and v

′

are the central vertex of Sm+1 and duplication of v in S
′
m+1

respectively and B = {u1,u2, ...,um}, where ui, 1≤ i≤ m are
the pendant vertices of Sm+1. Since A and B form a partition
of V (S

′
m+1) and since A and B are independent sets, as in the

case of splitting graph of Sm+1 there are
(m

2

)
4-cycles in S

′
m+1.

Also since both v and v
′

are adjacent to all the vertices of B,
There are no cycle neighbor free vertices or bridges in S

′
m+1.

Hence the result.

It follows that the graph obtained by the duplication of
the central vertex of Sm+1 ∼= Km,1, m ≥ 2 is bipartite. It is
obvious that if G

′
is the graph obtained by the duplication of

any one of the pendant vertices of Sm+1, then CN∗[G
′
;z] =

CN∗[Sm+1;z]+ z2 + z
”Duplication of of a vertex w ∈ V (G) of a graph G by

an edge [18] produces a new graph G
′

by adding an edge
e
′
= u

′
v
′

to G such that N(v
′
) = {w,u′} and N(u

′
) = {w,v′}”.

In the next result we obtain CN∗[G
′
;z] of a graph G.

Theorem 2.15. Let G be a connected graph of order n ≥ 2
which contains k, 0≤ k ≤ n cycle neighbor free vertices and
let G

′
be the graph obtained by the duplication of a vertex

w ∈V (G) by an edge. Then

CN∗[G
′
;z] =


CN∗[G;z]+ z3− z,

if w is a cycle neighbor free vertex
CN∗[G;z]+ z3,

otherwise

Proof. Duplication of of a vertex w ∈V (G) of a graph G by
an edge e = uv produces a triangle wuvw in G

′
. Therefore, the

number of cycle neighbor free vertices will be reduced by one
if w is a cycle neighbor free vertex.
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Let G
′

be the graph obtained by duplication of each vertex
of G by edges, then clearly G

′ ∼= GoP2 hence it follows from
Theorem [2.1] that CN∗[G

′
;z] =CN∗[G;z]+nz3− kz, where

k is the number of cycle neighbor free vertices in G.
”The middle graph M(G) (also known as the semi total

(line) graph T1(G) [14]) of a graph G is the graph whose
vertex set is V (G)∪E(G) and two vertices are adjacent if they
are adjacent edges of G or one is a vertex and the other is
an edge incident with it.” Next we obtain CN∗[M(G);z] when
G∼= Pn.

Theorem 2.16. Let M(Pn) be the middle graph of path Pn,
n≥ 2. Then,

CN∗[M(Pn);z] =
{

2z2 +3z, if n = 2
(n−2)z3 +2z2 +2z, if n > 2

Proof. Let V (M(Pn))=A∪B where A= {v1,v2, ...,vn}, is the
set of vertices of Pn and B = {u1,u2, ...,un−1} be the vertices
of M(Pn) corresponding to the edges of Pn. The subgraph of
M(Pn) induced by B is Pn−1 and for 2≤ i≤ n−1, vi is adjacent
to ui−1 and ui. Hence the graph induced by {ui−1,vi,ui} is a
triangle for 2≤ i≤ n−1. Also u1v1 and vnun−1 are bridges
of M(Pn). Hence the result.

If V (G) of a graph G can be partitioned into an indepen-
dent set and an acyclic set, then G is said to be a near-bipartite
graph [1]. From the proof of Theorem 2.16, it is clear that
middle graph of path Pn, n≥ 2 is near bipartite.

Theorem 2.17. Let M(Sm+1) be the middle graph of Sm+1 ∼=
Km,1, m≥ 3. Then,
CN∗[M(Sm+1);z] = (m+1)!

2 [ z3

3(m−2)! +
z4

4(m−3)! + ...+ zm−1

(m−1)2! +

zm

m + zm+1

m+1 ]+mz2 +mz.

Proof. Let V (M(Sm+1)) = {v,v1,v2, ...,vm,u1,u2, ...,um},
where {v,v1,v2, ...,vm} is V (Sm+1) with v as the central vertex
and {u1,u2, ...,um} corresponds to the edges of Sm+1. Since
every edge in Sm+1 are adjacent and are incident with v, the
subgraph of M(Sm+1) induced by {v,u1,u2, ...,um} is Km+1
and in M(Sm+1), |N(vi)|= 1 for 1≤ i≤ m. Hence the result
follows from the expression for CN∗[Km+1] [3].

”A split graph [8] is a graph whose vertices can be parti-
tioned into two subsets, such that one subset induces a clique,
and the other induces an independent set.” ” A graph is called
a cograph or complement reducible graph [6] if it contains
no induced P4 and a graph is called trivially perfect [9] if it
is a cograph and contains no induced C4.” It is obvious from
CN∗[M(Sm+1);z] of Sm+1 ∼= Km,1 that the middle graph of ev-
ery star graph is a split graph. Also since the graph induced
by any four vertices of M(Sm+1) contains a triangle, middle
graph of every star graph is a cograph and is trivially perfect
too.

”The semi total (point) graph T2(G) [14]) of a graph G is
the graph whose vertex set is V (G)∪E(G) and two vertices
are adjacent if they are adjacent vertices of G or one is a vertex
and the other is an edge incident with it.”

Proposition 2.18. Let Pn be a path on n ≥ 2 vertices. Then
CN∗[T2(Pn);z] = (n−2)z3

Proof. Let V (T2(Pn)) = A∪B, where A = {v1,v2, ...,vn} =
V (Pn) and B = {u1,u2, ...,un−1} be the vertices of T2(Pn)
corresponding to the edges of Pn. Then for 1 ≤ i ≤ n− 1,
〈{v− i,ui,vi+1}〉 is a triangle in T2(Pn) and every vertex of
T2(Pn) is in at least one triangle. Also since ui,u j, 1 ≤
i, j ≤ n− 1, i 6= j are non adjacent and N(ui) = {vi,vi + 1}
for 1 ≤ i ≤ n− 1 there are no cycles of length greater than
three.

Proposition 2.19. CN∗[T2(Sn);z] = (n− 2)z3, where Sn ∼=
Kn−1,1 and n≥ 3.

Proof. Let V (T2(Sn)) = A∪B, where A = {v1,v2, ...,vn} =
V (Sn) with vn as the central vertex and B = {u1,u2, ...,un−1}
be the vertices of T2(Pn) corresponding to the edges of Sn such
that ui is incident with vi and vn of Sn for 1≤ i≤ n−1. Then
for 1≤ i≤ n−1, 〈{vi,ui,vn}〉 is a triangle in T2(Sn) and every
vertex of T2(Sn) is in at least one triangle. Also since ui,u j,
1 ≤ i, j ≤ n−1, i 6= j are non adjacent and N(ui) = {vi,vn}
for 1 ≤ i ≤ n− 1 there are no cycles of length greater than
three as in the case of T2(Pn).

As in the case of middlle graph of Pn, the semi total (point)
graph of Pn is also near bipartite. And from the proof of
expression for CN∗[T2(Sn);z], it is clear that T2(Sn), Sn ∼=
Kn−1,1 is totally perfect. Also it is trivial from the expressions
of CN∗[T2(Pn);z] and CN∗[T2(Sn);z] that T2(Pn) and T2(Sn)
are cyn∗-equivalent [2].

”The total graph T (G) of a graph G is a graph whose
vertex set is V (T (G))=V (G)∪E(G) and two distinct vertices
x and y of T (G) are adjacent if x and y are adjacent vertices
of G or adjacent edges of G or x is a vertex incident with edge
y.” Now we find CN∗[T (G);z] when G∼= Pn.

Theorem 2.20. Let T (Pn) be the total graph of path Pn, n≥ 2.
Then, CN∗[T (Pn);z] = Σ

2n−1
k=3 (2n− k)zk.

Proof. Let V (T (Pn))= {v,v1,v2, ...,vn,u1,u2, ...,un−1}, where
{v,v1,v2, ...,vn} = V (T (Pn)) and ui, 1 ≤ i ≤ n− 1 are the
vertices of T (Pn) corresponding to the edges of Pn. Then
for 2 ≤ i ≤ n− 1 and 2 ≤ j ≤ n− 2, |N(vi)| = |N(u j)| = 4,
|N(u1)| = |N(un−1| = 3 and |N(v1)| = |N(vn)| = 2. Let 3 ≤
k ≤ n. When k is odd, for, 1≤ i≤ n−b k

2c,
vivi+1vi+2...vi+ k−1

2
ui+ k−3

2
ui+ k−5

2
...uivi is a k-cycle and for for,

1≤ i≤ n−d k
2e,

uiui+1ui+2...ui+ k+1
2

vi+ k+1
2

vi+ k−1
2
...vi+1ui is a k-cycle. And

when k is even, for, 1≤ i≤ n− k
2 ,

vivi+1vi+2...vi+ k
2
ui+ k

2
ui+ k−2

2
...uivi and

uiui+1ui+2...ui+ k−2
2

vi+ k
2
vi+ k−2

2
...viui is a k-cycle in T (Pn).

Hence in both cases, there are n− k−1
2 + n− k+1

2 = n− k
2 +

n− k
2 = 2n− k k-cycles in in T (Pn). Hence the proof.

It is obvious from the expression for CN∗[T (Pn);z] that
total graph of path Pn, is pancyclic for n≥ 2.
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Derived graph of a simple graph G denoted by G† was
introduced by Jog et al in their paper [16]. ”For a simple
graph G(V,E), its derived graph G† is the graph with vertex
set V (G) in which two vertices are adjacent if and only if their
distance in G is two.”

It is clear from the definition of derived graph G† of G
that for a path Pn, n≥ 2, P†

2
∼= K2, P†

n
∼= Pb n

2 c∪Pd n
2 e, when n

is odd and P†
n
∼= Pn

2
∪Pn

2
when n is even. Hence we have;

Proposition 2.21. Let P†
n be the derived graph of path Pn,

n≥ 2. Then,

CN∗[P†
n ;z] =


2, if n = 2;
z2 +2z+1, if n = 3;
(n−2)z2 +nz, if n≥ 3;

Since number of edges in P†
n is less than n−1, it is clear

from CN∗[P†
n ;z] that P†

n is disconnected.
Similarly for a cycle Cn, n ≥ 3, C†

3
∼= K3, C†

4
∼= P2 ∪P2,

C†
n
∼=Cn if n is odd and n≥ 5 and C†

n
∼=C n

2
∪C n

2
if n is even

and n≥ 6 we have the result;

Proposition 2.22. Let C†
n be the derived graph of cycle cn,

n≥ 3. Then,

CN∗[C†
n ;z] =


3, if n = 3;
2z2 +4z+1, if n = 4;
zn, if n≥ 5 and n is odd;
2z

n
2 , if n≥ 6 and n is even;

CN∗[C†
n ;z] = 2z

n
2 for n≥ 6 and n is even, implies that C†

n
is disconnected, otherwise the two cycles in C†

n will have a
vertex in common and hence n cannot be even.

For star graph Sm+1 ∼= Km,1, S†
m+1
∼= Km ∪K1. Hence

we have, CN∗[S†
m+1;z] = CN∗[Km;z]+ 1. It is obvious from

CN∗[S†
m+1;z] that S†

m+1 is disconnected and it is a split graph.
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