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Abstract
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1. Introduction
Primary ideals play a central role in commutative ring

theory. One of the natural generalizations of primary ideals
which have attracted the interest of several authors is the no-
tion of primary submodules (see for example [1], [13] and
[14] ). These have led to more information on the structure
of the R-module M. A proper submodule Q of an R-module
M is called a primary submodule provided that for any s ∈ R
and m ∈ M, sm ∈ Q implies that m ∈ Q or sn ∈ (Q : M) for
some positive integer n. Note that every primary submodule
is a prime submodule but converse need not be true. If Q is a
primary submodule of M, then the radical of the ideal (Q : M)
is a prime ideal of R. If P =

√
(Q : M), then Q is called a

P-primary submodule of M.

The decomposition of an ideal (submodule) into primary

ideal (primary submodule) is a traditional pillar of ideal (mod-
ule) theory. It provides the algebraic foundation for decom-
posing an algebraic variety into its irreducible components.
From another point of view primary decomposition provides
a generalization of the factorization of an integer as a prod-
uct of prime-powers. A submodule N of M has a primary
decomposition if N =

⋂k
i=1 Qi with

√
(Qi : M) = Pi. If no

Q j ⊃
⋂n

i=1, j 6=i Qi,∀ j and the ideals Pi,1 ≤ j ≤ k are all dis-
tinct, then the primary decomposition is named as minimal
and the set Ass(N) = {P1,P2, .......,Pk} is termed as the set of
associated prime ideals of N.

In this paper, we study intuitionistic fuzzy primary decom-
position, irredundant intuitionistic fuzzy primary decomposi-
tion and normal intuitionistic fuzzy primary decomposition of
intuitionistic fuzzy submodule.

2. Preliminaries
In the entire article, R will be treated as a commutative

ring with unity 1,1 6= 0,M a unitary R-module with θ its zero
element.

Definition 2.1. ([2], [4]) Let X 6= /0. An intuitionistic fuzzy set
(IFS) A in X is a complex function A = ( fA,gA) : X → [0,1]×
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[0,1] where fA(x) denote the degree of membership and gA(x)
denote the degree of non-membership of element x ∈ X to the
set A satisfying the condition that 0≤ fA(x)+gA(x)≤ 1 for
each x ∈ X.

Remark 2.2.
(i) When fA(x)+gA(x) = 1, i.e., gA(x) = 1− fA(x) = fAc(x).
Then A is called a fuzzy set.

(ii) The class of IFSs of X is denoted by IFS(X).

For A,B ∈ IFS(X) we utter A ⊆ B iff fA(x) ≤ fB(x) and
gA(x)≥ gB(x),∀x ∈ X . Also, A⊂ B iff A⊆ B and A 6= B.

Definition 2.3 ([3], [4], [9]). Let A ∈ IFS(R). Then A is
termed as an intuitionistic fuzzy ideal (IFI) of R if for all
r,s ∈ R, the followings hold

(i) fA(r− s)≥ fA(r)∧ fA(s);

(ii) fA(rs)≥ fA(r)∨ fA(s);

(iii) gA(r− s)≤ gA(r)∨gA(s);

(iv)gA(rs)≤ gA(r)∧gA(s).

Definition 2.4 ([4], [9]). Let A ∈ IFS(M). Then A is termed
as an intuitionistic fuzzy module (IFM) of M if for all m,n ∈
M,r ∈ R, the followings hold

(i) fA(m−n)≥ fA(m)∧ fA(n);

(ii) fA(rm)≥ fA(m);

(iii) fA(θ) = 1;

(iv) gA(m−n)≤ gA(m)∨gA(n);

(v)gA(rm)≤ gA(m);

(vi)gA(θ) = 0.

We designate the set of all intuitionistic fuzzy R-modules
of M by IFM(M) and the set of all intuitionistic fuzzy ideals
of R by IFI(R). Notice that when R = M, then A ∈ IFM(M)
iff fA(θ) = 1,gA(θ) = 0 and A ∈ IFI(R).

Definition 2.5. ([9]) For P,Q ∈ IFS(M) and S ∈ IFS(R), de-
fine the residual quotient (P : Q) and (P : S) as follows:
(P : Q) =

⋃
{J : J ∈ IFS(R) such that J ·Q⊆ P} and

(P : S) =
⋃
{K : K ∈ IFS(M) such that S ·K ⊆ P}.

Theorem 2.6. ([9]) For P,Q∈ IFS(M) and S∈ IFS(R). Then
we have

(i) (P : Q) ·Q⊆ P ;

(ii) S · (P : S)⊆ P ;

(iii) S ·Q⊆ P⇔ S⊆ (P : Q)⇔ Q⊆ (P : S).

Theorem 2.7. ([9]) For Pi(i∈ J),Q∈ IFS(M) and S∈ IFS(R).
Then we have

(i) (
⋂

i∈J Pi : Q) =
⋂

i∈J(Pi : Q);

(ii) (
⋂

i∈J Pi : S) =
⋂

i∈J(Pi : S).

Theorem 2.8. ([9]) For P,Q ∈ IFS(M) and S ∈ IFS(R)

(i) If P∈ IFM(M), then (P : Q)=
⋃
{J : J ∈ IFI(R) such that J ·

Q⊆ P};
(ii) If S∈ IFI(R), then (P : S)=

⋃
{K : K ∈ IFS(M) such that S ·

K ⊆ P}.

Theorem 2.9. ([9]) For P,Q ∈ IFM(M) and S ∈ IFI(R).
Then (P : Q) ∈ IFI(R) and (P : S) ∈ IFM(M).

Theorem 2.10. ([9]) For P,Qi ∈ IFS(M) and Si ∈ IFS(R),(i∈
J) . Then we have

(i) (P :
⋃

i∈J Qi) =
⋂

i∈J(P : Qi);

(ii) (P :
⋃

i∈J Si) =
⋂

i∈J(P : Si).

Definition 2.11. ([3], [8]) For a non-constant C ∈ IFI(R),C
is called an intuitionistic fuzzy prime (respectively, primary)
ideal of R if for any intuitionistic fuzzy points x(p,q),y(r,s) ∈
IFP(R), x(p,q)y(r,s) ∈C implies that either x(p,q) ∈C or y(r,s) ∈
C (or respectively, either x(p,q) ∈ C or yn

(r,s) ∈ C, for some
n ∈ N).

Definition 2.12. ([12]) Let A be an intuitionistic fuzzy sub-
module of B. Then A is called an intuitionistic fuzzy prime (re-
spectively, primary) submodule of B, if r(s,t) ∈ IFP(R),x(p,q) ∈
IFP(M) (r ∈ R,x ∈ M,s, t, p,q ∈ (0,1)), r(s,t)x(p,q) ∈ A im-
plies that either x(p,q) ∈ A or rn

(s,t)B⊆ A, for some n ∈ N (or
respectively, either x(p,q) ∈ A or r(s,t)B⊆ A).

In particular, taking B= χM , if for r(s,t) ∈ IFP(R),x(p,q) ∈
IFP(M) we have r(s,t)x(p,q) ∈ A implies that either x(p,q) ∈ A
or rn

(s,t)χM ⊆ A, for some n ∈ N, then A is called an intuition-
istic fuzzy prime (respectively, primary) submodule of M (or
respectively, either x(p,q) ∈ A or r(s,t)χM ⊆ A).

The following theorem says that intuitionistic fuzzy pri-
mary submodule and intuitionistic fuzzy primary ideals coin-
cide when R is considered to be a module over itself.

Theorem 2.13. ([12]) If M = R, then B ∈ IFM(M), is an
intuitionistic fuzzy primary submodule of M iff B ∈ IFI(R) is
an intuitionistic fuzzy primary ideal.

Theorem 2.14. ([12]) (a) Let N be a primary submodule of
M and p,q ∈ (0,1) such that p+q < 1. If A is an IFS of M
defined by

fA(x) =

{
1, if x ∈ N
p, if otherwise

; gA(x) =

{
0, if x ∈ N
q, otherwise.

for all x ∈M. Then A is an intuitionistic fuzzy primary sub-
module of M.
(b)Conversely, any intuitionistic fuzzy primary submodule can
be obtained as in (a).

Corollary 2.15. ([12]) Let A be an intuitionistic fuzzy pri-
mary submodules of M. Then
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A∗ = {m ∈M : fA(m) = fA(θ) and gA(m) = gA(θ)}

is a primary submodule of M.

Theorem 2.16. ([12]) If B ∈ IFM(M), A a intuitionistic pri-
mary submodule of M. Then

(i) if B⊆ A, then (A : B) = χR and

(ii) if B * A, then
√
(A : B) =

√
(A : χM).

Theorem 2.17. ([12]) If A ∈ IFM(M), C ∈ IFI(R) and A be
an intuitionistic fuzzy primary submodule of M. Then

(i) C *
√
(A : χM)⇒ (A : C) = A;

(ii) C ⊆ (A : χM)⇒ (A : C) = χM .

Theorem 2.18. ([12]) If A is an intuitionistic fuzzy primary
submodule of M, then

√
(A : χM) is an intuitionistic fuzzy

prime ideal of R.

Definition 2.19. ([12]) Let A be an intuitionistic fuzzy pri-
mary submodule of M and P =

√
(A : χM). Then A is said to

be an intuitionistic fuzzy P-primary submodule of M.

Theorem 2.20. ([12]) Let A be an intuitionistic fuzzy P-
primary submodule of M and B ∈ IFM(M). If (A : B) 6= χR,
then (A : B) is an intuitionistic fuzzy P-primary ideal of R.

Theorem 2.21. ([12]) Let A ∈ IFM(M) and C ∈ IFI(R). If
A is an intuitionistic fuzzy P-primary submodule of M and
(A : C) 6= χM , then (A : C) is an intuitionistic fuzzy P-primary
submodule of M.

Theorem 2.22. ([12]) If A is an intuitionistic fuzzy primary
submodule of M, then IFradχM (A) =

√
(A : χM) =

⋂
{C ∈

IFSpec(R)|(A : χM)⊆C} is intuitionistic fuzzy primary ideal
of R if and only if radM(A∗) =

⋂
{P∈ Spec(R)|(A∗ : M)⊆ P}

is primary ideal of R.

3. Decomposition of intuitionistic fuzzy
primary submodules

Definition 3.1. Let A ∈ IFM(M). A decomposition of A as a
finite intersection, A = ∩n

i=1Ai of intuitionistic fuzzy primary
submodules Ai of M is called an intuitionistic fuzzy primary
decomposition of A and the set of intuitionistic fuzzy prime
ideals {

√
(Ai : χM)|i = 1,2, ....,n} is called the set of associ-

ated intuitionistic fuzzy prime ideals of A.

An intuitionistic fuzzy primary decomposition A = ∩n
i=1Ai

is called irredundant of no Ai contains
⋂n

j=1, j 6=i A j and an
irredundant intuitionistic fuzzy primary decomposition of A is
called normal if distinct Ai have distinct associated intuition-
istic fuzzy prime ideals.

Definition 3.2. An intuitionistic fuzzy primary submodule Ai
in the normal prime decomposition A = ∩n

i=1Ai is called iso-
lated if the associated intuitionistic fuzzy prime ideal

√
(Ai : χM)

is minimal in the set of associated intuitionistic fuzzy prime
ideals of A.

Theorem 3.3. If Ai , (i = 1,2,3.....,n) be intuitionistic fuzzy
P-primary submodules of M. Then

⋂n
i=1 Ai is also intuitionis-

tic fuzzy P-primary submodule of M.

Proof. Let A =
⋂n

i=1 Ai, where A1,A2, .....,An be intuitionistic
fuzzy P-primary submodules of M, then√
(A1 : χM) =

√
(A2 : χM) = ..........=

√
(An : χM) = P.

Let r(s,t) ∈ IFI(R) and x(p,q) ∈ IFM(M) such that r(s,t)x(p,q) ∈
A =

⋂n
i=1 Ai and r(s,t) /∈

√
(A : χM). Since√

(A : χM) =
√

(
⋂n

i=1 Ai : χM) =
⋂n

i=1
√

(Ai : χM), by using
Theorem (4.6) of [6] and Theorem (3.4) of [9]. Thus we
get r(s,t)x(p,q) ∈ Ai and r(s,t) /∈

√
(Ai : χM), then since each Ai

are intuitionistic fuzzy P-primary submodules of M, we have
x(p,q) ∈ Ai,∀i = 1,2, ....,n, so x(p,q) ∈

⋂n
i=1 Ai = A. It remain

to show that
√
(A : χM) = P.

If r(s,t) ∈ P then there exists ni ∈N such that rni
(s,t)χM ⊆ Ai,

∀i ∈ {1,2, ....,n}. Let k = ∑
n
i=1 ni, then rk

(s,t)χM ⊆ Ai, ∀i ∈
{1,2, ....,n}. So we have rk

(s,t)χM ⊆
⋂n

i=1 Ai = A. Thus r(s,t) ∈√
(A : χM). So we have P⊆

√
(A : χM)....(1)

Conversely, if r(s,t) ∈
√
(A : χM), then

r(s,t) ∈
⋂n

i=1
√

(Ai : χM) = P, so
√
(A : χM)⊆ P......(2).

From (1) and (2) we get
√

(A : χM) = P. This complete the
result.

Theorem 3.4. Let A ∈ IFM(M) and A = ∩n
i=1Ai be an ir-

redundant intuitionistic fuzzy primary decomposition of A,
where Ai are intuitionistic fuzzy Pi-primary submodules of M.
Then an intuitionistic fuzzy prime ideal
C ∈ {Pi =

√
(Ai : χM)|i = 1,2, ....,n} if and only if there exist

B ∈ IFM(M) such that
√

(A : B) =C. Hence the set of intu-
itionistic fuzzy prime ideals {Pi =

√
(Ai : χM)|i = 1,2, ....,n}

is independent of the particular irredundant intuitionistic
fuzzy primary decomposition of A.

Proof. Let A ∈ IFM(M) and A = ∩n
i=1Ai be an irredundant

intuitionistic fuzzy primary decomposition of A, where Ai are
intuitionistic fuzzy Pi-primary submodules of M. Now for any
B ∈ IFM(M), we have

(A : B) = (
⋂n

i=1 Ai : B) =
⋂n

i=1(Ai : B).

Then by Theorem (2.16) and Theorem (2.20), we have (Ai :
B) = χR if B⊆Ai and (Ai : B) is intuitionistic fuzzy Pi-primary
ideal of R if B * Ai. Hence (Ai : B) ∈ IFI(R). Thus we have√

(A : B) =
⋂n

i=1
√
(Ai : B) =

⋂m
j=1

√
(As j : χM),

where the intersection is taken over those s j such that B * As j .

Now suppose that
√

(A : B) =C is an intuitionistic fuzzy
prime ideal of R. Then by Theorem (3.18) of [5], we get

C =
√
(A : B) =

⋂m
j=1

√
(As j : χM)⊇√

(As1 : χM)
√

(As2 : χM).....
√

(Asm : χM)
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and so C ⊇
√
(As j : χM) for some s j. Also√

(A : B)⊆
√
(As j : χM). It follows that C =

√
(As j : χM).

Next consider any one of the associated intuitionistic fuzzy
prime ideal

√
(Ai : χM) of A = ∩n

i=1Ai. Let B =
⋂n

j=1, j 6=i A j.
Then we have

(A : B) = ((
⋂n

k=1 Ak) : (
⋂n

j=1, j 6=i A j)) =
⋂n

k=1(Ak :⋂n
j=1, j 6=i A j), by Theorem (2.7)

As
⋂n

j=1, j 6=i A j ⊆ A j,∀ j, j 6= i implies (A j :
⋂n

j=1, j 6=i A j) = χR,
by Theorem (2.16)
By the irredundancy of the set of Ai, we have

⋂n
j=1, j 6=i A j * Ai.

Thus by Theorem (2.16) we get√
(Ai :

⋂n
j=1, j 6=i A j) =

√
(Ai : χM).

Therefore,
√
(A : B) =

√
(Ai : χM). Hence the set of intu-

itionistic fuzzy prime ideals {
√
(Ai : χM)|i = 1,2, ....,n} is

independent of the particular irredundant intuitionistic fuzzy
primary decomposition of A.

From Theorem (3.3) and Theorem (3.4) we see that an
intuitionistic fuzzy submodule of M that is an intersection of
intuitionistic fuzzy primary submodules of M if and only if it
has only one associated intuitionistic fuzzy prime ideal.

Theorem 3.5. Let A ∈ IFM(M). If A has an intuitionistic
fuzzy primary decomposition, then A has a normal intuitionis-
tic fuzzy primary decomposition.

Proof. We assume that A has an intuitionistic fuzzy primary
decomposition A=∩n

i=1Ai. If Ai1 ,Ai2 , ...,Aik ∈{A1,A2, ...,An}
are such that

√
(Ai1 : χM)=

√
(Ai2 : χM)= .....=

√
(Aik : χM),

let Ái =
⋂k

j=1 Ai j . Then Ái is an intuitionistic fuzzy pri-

mary submodule of M and
√
(Ái : χM) =

√
(Ai : χM), by

Theorem (3.3). Thus A = Á1 ∩ Á2 ∩ ......∩ Ám, where the
Ái have distinct associated intuitionistic fuzzy prime ideals. If
Ái ⊇

⋂m
j=1, j 6=i Á j, for some i, then Ái is deleted. Therefore A

has a normal intuitionistic fuzzy primary decomposition.

Theorem 3.6. Let A ∈ IFM(M). Suppose that A has an in-
tuitionistic fuzzy primary decomposition, A = ∩n

i=1Ai. Then
A∗ = ∩n

i=1(Ai)∗ is a primary decomposition of A∗, and if it is
normal , then the decomposition of A = ∩n

i=1Ai is normal.

Proof. It follows from Theorem (3.5) and Theorem (2.22).

Theorem 3.7. Let A ∈ IFM(M). Suppose that A = ∩n
i=1Ai

is a normal intuitionistic fuzzy primary decomposition of
A. Then there exists a finite set {

√
(Ai : χM)|i = 1,2, ....,m},

m≤ n, where the
√
(Ai : χM) are minimal in the set of associ-

ated intuitionistic fuzzy prime ideals of A = ∩n
i=1Ai, such that√

(A : χM)=
⋂m

i=1
√
(Ai : χM) and (A : (

⋃m
i=1

√
(Ai : χM)))=

A when m≥ 2.

Proof. Suppose that A = ∩n
i=1Ai is a normal intuitionistic

fuzzy primary decomposition of A. Then, by Theorem (2.7)√
(A : χM) = (

√⋂n
i=1 Ai : χM) =

⋂n
i=1

√
(Ai : χM)

Let C be an intuitionistic fuzzy prime ideal of R such that
C ⊇

√
(A : χM). Then

C⊇
⋂n

i=1
√

(Ai : χM)⊇
√
(A1 : χM)

√
(A2 : χM)..(

√
An : χM),

by Theorem (3.18) of [5]. So C ⊇
√

(Ai : χM) for some i.
Thus C contains some

√
(Ai : χM) that is minimal among√

(A1 : χM),
√

(A2 : χM), ......,
√

(An : χM).
Hence if we select those

√
(Ai : χM) in

{
√
(A1 : χM),

√
(A2 : χM), ....,

√
(An : χM)} that are minimal

and reindex, then we have√
(A : χM) =

⋂m
i=1

√
(Ai : χM).

If m≥ 2, then (A :
⋃m

i=1
√

(Ai : χM))=
⋂m

i=1
√
(Ai : (Ai : χM)),

by Theorem (2.10)
As

√
(Ai : χM) *

√
(A : χM) =

⋂m
i=1(Ai :

√
(Ai : χM)),

(A :
√
(Ai : χM)) = A,∀i ∈ {1,2, ....,n}, by Theorem (2.17)

Hence A = (A :
⋃m

i=1
√
(Ai : χM)).

Theorem 3.8. Let A =∩n
i=1Ai be a normal intuitionistic fuzzy

prime decomposition of A and Ai be isolated intuitionistic
fuzzy

√
(Ai : χM)-primary submodules of M. Then

A = (A :
⋂n

j=1, j 6=i
√

(A j : χM)),∀i = 1,2, ....,n.

Proof. Since√
(A1 : χM)...

√
(Ai−1 : χM)

√
(Ai+1 : χM)...

√
(An : χM)

⊆
⋂n

j=1, j 6=i
√
(A j : χM), it follows from the minimality of√

(Ai : χM) that
⋂n

j=1, j 6=i
√
(A j : χM)*

√
(Ai : χM) and hence

⋂n
j=1, j 6=i

√
(A j : χM)*

⋂n
j=1

√
(A j : χM) =

√
(A : χM)

Thus by Theorem (2.16), we have
(A :

⋂n
j=1, j 6=i

√
(A j : χM)) = A,∀i = 1,2, ....,n.

Example 3.9. Let G be a finite group of order n= pn1
1 pn2

2 ...pnk
k ,

where pi are distinct primes. Then by the structure theorem of
finitely generated group we have G∼= Zp

n1
1
⊕Zp

n2
2
⊕ .....⊕Zp

nk
k

.
Take M = G, then M is a Z-module. Let M =< x1,x2, ....,xk >
such that o(xi) = pni

i , for 1≤ i≤ k. Let M0 =< 0 >, M1 =<
x1 >, M2 =< x1,x2 >,........,Mk =< x1,x2, ..........,xk >= M
be the chain of maximal submodules of M such that
M0 ⊂M1 ⊂ .........⊂Mk−1 ⊂Mk.
Let A be any intuitionistic fuzzy submodule of M defined by

fA(x) =



1 if x ∈M0

α1 if x ∈M1\M0

α2 if x ∈M2\M1

...........

αk if x ∈Mk\Mk−1

1711
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gA(x) =



0 if x ∈M0

β1 if x ∈M1\M0

β2 if x ∈M2\M1

...........

βk if x ∈Mk\Mk−1.

where 1 = α0 ≥ α1 ≥ .....≥ αk and 0 = β0 ≤ β1 ≤ ....≤ βk
and the pair (αi,βi) are called double pins and the set ∧(A) =
{(α0,β0),(α1,β1), ......,(αk,βk)} is called the set of double
pinned flags for the IFSM A of M.

Define IFSs Ai on M as follows:

fAi(x) =

{
1, if x ∈< pni

i >

αi+1, if otherwise
;

gAi(x) =

{
0, if x ∈< pni

i >

βi+1, otherwise.

where αi,βi ∈ (0,1) such that αi +βi ≤ 1, for 1≤ i≤ k and
αk+1 = α1, βk+1 = β1 . Clearly, Ai are intuitionistic fuzzy
primary submodules of M. It can be easily checked that
A = ∩n

i=1Ai is an intuitionistic fuzzy primary decomposition
of A.
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