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Abstract
Post quantum calculus or (p,q)-calculus is the generalisation of the quantum calculus(g-calculus). In this paper
we define Rucheweyh post-quantum differential operator wa and the subclass k— S*(a, 3, p, q) using the operator
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1. Introduction

Quantum calculus is the approach similar to the idea of
deriving the g-analog in the usual calculus, but without the use
of limit. At recent times, there has been a spurt of activities
in Geometric Function Theory using g-calculus techniques.
Kanas and Dorina in [10] introduced and studied a class of
k-starlike functions using the g-calculus operator. Around
1991 Chakrabarti and Jaganathan [4], Brodimas et al. [3],
Wachs And White [15] and Arik et al. [1] separately studied
the(p, g)-calculus using the (p,q)-numbers, with two inde-
pendent numbers p and g. For the basic ideas and results on
g-differential calculus we refer Jackson F.H [5] and [6]. We
in this paper, motivated by works of earlier authors, introduce
and study a generalised class applying post quantum differen-
tial operator and prove many interesting results. We consider
p and g to be in (0, 1) such that both are not simultaneously
equal. Denote by A the family of regular functions defined in

the unit disk A := {z € C/|z| < 1} with the series expansion

f@)=z+ Y an" (1.1)
n=2

normalised by the conditions f(0) = f/(0) — 1 = 0 and let
S denote the class of univalent functions in A. Let y be a
positively oriented circular arc contained in A with center
& € A. Then f € A is said to be unifomly convex(UCV) if
f maps 7y univalently onto a convex arc and f is said to be
uniformly starlike(UST) if f(y) is starlike with respect to
F(&). In 1992, Ma and Minda [11] gave the following one

variable characterization for the class UCV, whereas the one
variable analytic characterization for UST is still open. If

2f"(2), 2" (2) |
1(2) f'(2)

for f(z) € A and z € A, then f € UCV. Ronning in [12]
independent of Ma and Minda gave the single variable analytic
characterization of UCV and using the well known Alexander
relation Ronning characterised the parabolic starlike function
S, which satisfies the inequality

S, S
Mo

for f(z) € A and z € A. Kanas and Wisniowska in [7] extended
the class UCV to the k-Uniformly convex functions denoted

R{1+

3> |
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by k-UCV and proved analytic charecterisation for the class
k-UCV. A function f € A is said to be k-UCYV in A if the image
of every positively oriented circular arc of the form
{z€A/|z=§&|=r} with& € Aand 0 < |§| < k, is mapped uni-
valently onto a convex arc by f. An analytic characterization
for the members of k-UCV is given in [7] as,

2f"(2) Zf”( ) |
f'@) '(2)

for f(z) €A, z€ Aand 0 < k < . In [8], Kanas and Wis-
niowska introduced a class of k-starlike functions denoted by
k-ST using the Alexander relation. Such a class consists of
functions f(z) € A satisfing inequality

2f'(2) 2f"(2)
MW 1>y

for z € A. Note that when k = 1, k-ST=ST. k-ST can be
further generalized as follows [2]. A function f(z) € A is said
to be in the class ST (k, &) of k-starlike functions of order «,
0<ax<l,if

R{1+ }>k|

m{zf E

Q) )-

Denote by & the class of normalized Caratheodory functions
and denote by Q 4 the following conic domain,

kaa:{w:u+iv:u>k\/m+a} (1.2)

where 0 < k < o and 0 < a < 1. The domain £ 4 is convex
and symmetric about the real axis and 1 € € o for all k. For
k =0, € ¢ is the right half plane R(w) > ¢, for k = 1, the
domain is an unbounded parabola, for 0 < k < 1, the domain is
a hyperbola and for k > 1, the domain is a bounded portion, the
interior of the ellipse. We denote by & (py o) the following
class:
P(pra) ={p€ Z:p(A) C Qa}-

The extremal function of the above class is given with slight
modification in [9] as follows

1+(1-2a)z

12 Lif k=0,
1+ 2% (@) Jifk=1,
Pea(2) = 1= cos(A(k)iO) - Lif ke (0,1),
u(z)
N 2_ -
]i S’”(zk()f\[de)"f']/zT? Jif k> 1.
2 Vi @ = g1 TVE
with A(k) = 2arccosk, u(z) = i @ =log— & and
Y = m (0 <t < 1,z € A), where t is chosen

such that k = cosh Zgét)), and K(r) is Legendre’s complete el-
liptic integral of first kind and K’ (¢) is complementary integral
of K(t). The series expansion of py ¢ is given by

Pra(z) = 1+Piz+P + ...
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where P, = P(k, ).
The (p,q) analog of the number k is defined as
k_ k

P —4q
Klpq= forp#gq.
L
Then [k]; 4, = lqu which is the q integer number k and

limy_, [k]1 4 = k, the ordinary integer k. For our alleviation
we use the notation Y instead of [k], , throughout this paper.

Definition 1.1. [5] The (p,q) derivative of a function f(z)
with respect to z denoted by D), ,f(z) is defined as

f(pz) = f(4z)
(p—q)z
= f(0), provided that f(z) is differentiable

Dpqf(z) = (z#0,p#q)

and (Dp,qf)(0)

at 0.

In particular if f(z) € A, then (D, ,f)(0) = f'(0) =1
Note that D 4 is the g-derivative operator defined in [10].
Also it can be easily seen that the operator D), , operator is a
linear operator.

Example 1.2. Let f(z) = {%£. Then
2
N (=)
2
Di4f(2) = =g =Dy f(2)
and )
[}i_rﬂDl.qf(Z) =0 =f'(z).

For f(z) of the form (1.1)

Dp.,qf(z) =1+ Z an [n]p,qzn_l'
n=1

The (p,q)-gamma function is defined as I', ;(n+1) = [n],, 4!

and the generalised (p,q)-Pochhamer symbol is defined as

1
i {[I]p,q[t"’ pg

2. Preliminaries

We need the following results to prove our main result.

,ifn=0

Lt+n—1]pe Lifn#0

Lemma 2.1. [10]Ifq(z) = 1+ q12+q2* + ...
function with positive real part in A, then

-1}

Lemma 2.2. [9]Ifq(z) = 1 +qiz+q2> +... €
an analytic function in A, then

is an analytic

‘612 -
P (pr,a) is

—uP? if p<o,
92— pai| <3 A ifo<p<l,
Pi+(u—1Pr ifu>1.
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Lemma 2.3. [9] Let 0 < k < o0 be fixed and 0 < o < 1. If a
function
q(2) =1+qiz+ @+ ... € P (Pr.a), then

gt — 2| <Py

Definition 2.4. For f(z) € A, the generalised Ruscheweyh-
(p,q) differential operator is defined as,

R f(2)=f(2) #Fpg541(2) (REAS>—1) (21)
where
_ - pq (n+96) 2
Fp,q,5+l(z) - Z pq F ( T 5)
= i -t 0 2.2)
= ]pq

The symbol * stands for convolution. As p —gand g — 1,
the qu f(z) is the Ruscheweyh derivative operator defined
by Ruscheweyh in [13]. As p — 1, Rf,’q f(z) reduces to the
R’lf( ) as in [7]. From (2.1) we can see that,

/@) = 1(@). D} &) =Dy f2)..... and
()7 D ("1 £(2))

[mlp.q!

of(2) is given by

for m € N. The power series for

L

using (2.1) and (2.2). We can easily check that

q

ZDP-,q(FpA,q.,5+1 (Z)) (1 +A) Dyq, 5+2( )*AFp,q.ﬁJrl(Z) Z€A

(2.3)
here A = pq[8 I llpg
where A = pq[8],. sy, —85T, -
Also making use of Hadamard product we obtain

Dpg(R) 4 f(2) = (1+ARDL f(2) —AR) . f(2) z€A

n—1
where A = pq[d],, qm

above equality reduces to the well known recurrent formula
for the Ruscheweyh differential operator. Now we define the
following subclass as it specify the regions for various values
of k as in [9].

As p—gand g — 1 the

Definition 2.5. Let 0 < a <1, k>0 and 6 > —1.
f(z) € Ais said to be in the class k— S*(a,8,p,q) if

Then

ZDqu(Rg,qf(Z)) ’ZDP,Q(RZSJ,qf(Z))
RS ,f(2) RS f(2)
As p—qk—S"(a,8,p,q) reduces to ST (k,0.,6,q) and as

p—qand g— 1, k—S"(a,0,p,q) reduces to the class
ST (k, o).

R

}>k —1|+a 24
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3. Properties of the class k —S*(a, 6, p,q)

The following theorem provides the necessary and suffi-
cient condition for f(z) to be in k—S*(a, 8, p,q).

Theorem 3.1. Let f(z) € A be given by (1.1).Then f € k—
S*(a, 8, p,q) if and only if the inequality

I, ,(n+9)
N e e (]

ngk

|an| <l-o«o
n

3.DH

holds true for some k (0 <k <o0), 6 >—lando (0< o < 1)
. The inequality is sharp for the function

(1 —Oc)[n— 1}!rp7q(l +5) 7"
n](k+1)—k—al'y,(n+96)

Proof. From (2.4), it is enough to prove that

RS ,f(2) RS, f(2)

Now consider,
k | LGS )

fn(Z) =Z—

(3.2)

— %R

—-1}<l-o

ZDp q(

01|kl
I’q

qf()

)
< (k+1)| ZD”;’S;’;ZZ];(Z)) —1|

ot Tpq(n+8 —
L (1pg— 1) el s a,e!

= (k+ )|

Ty y(nté) —
U+ L i, ey @

it Tpq(n+9)
X ([n]pq— I)WW

n=2
< (k+1) 1 s
_nz [—1]'T 4 (n+1) |a,,|

The last equation is bounded by 1 — & only if the inequality
(3.1) holds. We can easily verify that the result is sharp for
the functions given in (3.2). Now we have to prove that the
function f,(z) € k—S*(t, 8, p,q). Consider,

k‘zD,,,q(quf(z)) ST (1—a)(1—[n]pg)"" ’
R} ,f(2) (A) = (1—a)z!
- k(1—a)
k+1
and
ZDP-,q(R;(z.,qf(Z)) A—[np(1—a)"!
Ve R S (R
k+oa
k+1
where A = [n], 4(k+ 1) —k — ¢, the condition (2.4) holds true
for f,(z). Thus f, € k—S*(et, 0, p,q). O
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Corollary 3.2. Let f(z) =z+a,7". If

(I1—a)[n—1]Tp,q(1+6)
n](k+1)—k—al},4(n+0)

then f € k—S*(a,8,p,q).

ap <

(n>2),

Now consider
p(z) = ZDM(Rg qf(z))/Rf,,qf

>k|p

(z). We can rewrite (2.4) as

Rep(z —1|+oa. (3.3)
Then the range of p(z) for z € A is the conic domain(1.2) and

9dQy o is a curve defined by

Qo ={w=utiv/(u—a) =ku—1)>+k?}.
From (2.4) and (3.3) we obtain that
D, (RS, f(z
Dpa(Rpo/(2) € Qg (3.4)
Rpq

Using the properties of the domain Q  and (3.4) it follows
that if f € k—S*(«t, 8, p,q), then

ZDP,q(Rg,qf(Z)) k+a (cen)
1)
Rpq k+1
and
S _l-a
g DpaBa Q) forian ey o k=0
S =
Rpq z k=0

where I =[0,1). Let fiq = 7+ A2z + A3z + ... be the ex-
tremal function in the class k — S*(«, 8, p,q). Then the rela-
tion between the extremal functions in the classes & (py o)
and k—S*(, 8, p,q) is given by

2Dpq(R) 4f(2))
RS, f(2)

Making use of (2.4), (3.3) and (3.5) we obtain for py ¢ (z) the
following coefficient relation

Pra(z) = (z€A). (3.5)

[6 + 1]”*] ([n]p-,q - 1)An _ = [6 + l}mflAnPrlfm A =1
n—1]pq! mz=’1 [m—1]pq! o '
In particular, we get
Py
Ay = d
S TR P (7 PP R
As 2]p. {([2lpq — )P+ P2}
[(1+6]p4[2+68]pg([Blpg — D([2lpg— 1)

3.6)

A, are nonnegative, since 8 > —1, pand g € (0,1) and P,’s
are nonnegative.

1716

Theorem 3.3. Let k € [0,00) and @ € [0,1). If f(z) is of the
form (1.1) belongs to the class k— S*(a, 8, p,q), then

|a2| < Aj and ‘a3‘ <Aj.

Proof. Let p(z) = zDp 4(RS ,f(2))/RS . f(2). Using the rela-
tion (2.3) and for
p(z) = 14 p1z+ paz® + ..., we have

[0+ 1][)-,11([”}17«1 —
[n—1]pq!

1 S8+ 1]
o=y Rt )

m=1 [m—1]p 4!

Since py o is univalent in A, the function
= = 1+c1z+czz2+...

is analytic in A and Re g(z) > 0. From

s(z)—1

p(Z) = Pku(s(z)_i_l)
1 1 1, )
= 1+§CIPIZ+(§CZPI+ZC1(P2_P1))Z +
1 P 1 P; P
(§P1C3 +61C2(?—P1)+ZC?(?—P2+?))Z3
+...
we have
C1p1
a = (3.8)
2[6 +1]pq([2)pq—1)
and
lcipi] Py

= ST TPl = 6+ Tya(Phpg =)

using upon (3.6) and |c,,f < 2. We consider a3 and use
lemma.2.3 to get

2
2lpg!lp2+ m}

TS0+ g (Bl 1) G2
and
‘03‘ < [2];;,51!{[([ ]pq_l |P2_ 2‘ - |P1|}
B [6+1]p4[6+2]p4([3]pq )([ ]pq_l)
2]pg{[([2lpg — (P —Pz)] 2] -2)P7}
N [5+1]p7q[5+2}p,q([ lpa—D(2]pg—1)
_ 2]p.4'{[([2]p.q 1)P2+P12]} A
(6 +1]pg[6+2]p4(Blpg—D([2]pg—1)
This completes the proof. 0

Theorem 3.4. Let 0 <k <oo, § > —1,and e € [0,1). If f(2)
of the form (1.1) belongs to the class k—S*(a, 8, p,q), then

n—1p g Pi(([2)pg =D +Pr)..((n—1]p g —
[5+1}n7 ([Plpg—1)-([2pg—1)

1)+P)

] <
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Proof. We prove this result using induction on n. The result
is clearly true for n=2. Let n be any integer number with

n > 2, and assume that the inequality is true for all k <n —1.

Making use of (3.7), we have

=1

“ S B (=D P
n—1
+ Z [6 + 1]m—1 ampn—m}
m=2 [n—1]p4!
[n—1]pq!
< 3+ 1ot D
— 5+1 m 1
I )
[n— l]p,q! N [8 4 1
= B a0 B,
[m—2]p.4'P1(([2]p.g — 1)+P1)-~-((Q)+P1)}
[6+1ma(lmlpg—1)--(12]pg—1)
where Q = [m — 1], 4 — 1, using the induction hypothesis and

| p,,| < Py . Again applying mathematical induction, we find

|+ "X_:l m—=2]p N6 +m—1],_

m=2 [n—1]p4!
P((2lpg =D +P)-((m—1]pg—1)+P)
[0+ Um—a([m]pg—1)...([2]pg— 1)
_ ((2pg=D)+P)..((In=2]pg— 1) +P)
(n=1]pq—1)...(2]pg— 1)
implies the inequality (3.10). O

4. Fekete-Szego probelm

Theorem 4.1. Let k € [0,), § > —1 and a € [0,1). For
f(z) €ek—S*(a,d,p,q) of the form (1.1)

jas — paj|

4.1
For a real parameter ‘u, we g€t
2]pq!
~MySp 1R w< B
’aS_”a%IS Pl ueX
23!
~Mpep— 2pgP? ==
4.2)
= . = D _ (Rl
where A = ([ﬁp.ql—l)’ P =72,y = ([2];:_1)’
B= gD+ 1pg](2lpg—1?’ C = t(Blpg— D[S +2pq

1717

D=[6+1p4)([2lpg—1) and

X =B(C—([2lpq—1)'D.C—([2]p4—1)1D)

Proof. Let u be complex. From (3.8) and (3.9) we have

s — a2 2]p.q _ i
’ 3TH 2| [5+1}2([3]p7q_1)|p2 (2lpg—1)
( 1([Blpg — D6 +2]pq —1)

2]p.g![6 +1]pqg([2]pg—1)

using lemma.2.1 we arrive at the inequality (4.1). Now making
u real and using lemma.2.2 we have the inequality (4.2). O

A necessary and sufficient condition for a function f(z) €
A to be in the class S*(k, &, 8, p, q) using Hadamard product
is given by

Theorem 4.2. Let0<k<oo, 6 > —1and0< a < 1. Then
the function f(z) belongs to the class k — S* (¢, 8, p,q) if and

only if (f*H, , 5(z)/z) # 0 in A where
A
H 1— pq6+1(z) W(t)“r 43
a8 = Fpgsa(2){1—(1 qu,6+2(z))(W([) 1)} 4.3)
where A — M 22— (kt+a—1)2>0and

pqln— ]]17q

w(t) = (kt + o) £i\/r>— (kt + ot —1)?

Proof. Let f € k—S*(at, 0, p,q). Then by (3.4) we have

z2Dp 4 (R;iqf(z))

€ Qo
k) 5
RPJ]

so that

y £ (kt+00) £iy/12 — (kt + 0 — 1)2 = w(t)
prq

(4.4)

where z € A and 1> — (kt + o — 1)> > 0. Using (2.1) and
the properties of Hadamard product, the condition (4.4) is
satisfied only if

—w()F+p,q,6+1(z)] /2 # 0.
4.5)

(@) *[2Dpg(Fpq.5+1(2))

Making use of the recurrent formula for zD, 4(F, ; 5:1(2))

from (2.3), it follows from (4.5) that (f «H, , 5(z)/z) # 0

where H), , 5(z) is given by (4.3). Conversely, assume that

(f*H,, ( )/2) #O0forz e A. Thenthevalueofw
P

lies completely inside £ o or on its complement. But at
Dyp.q(RY 4f (2))

z = 0 the value of 23 is 1 € & o and therefore
pq
RS
%7"}[“) € O o impling that f € k—S*(a,d,p,q). O
Pq
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Theorem 4.3. Let0<k<oo, § > —-1and0< a < 1. The

coefficients hy, of the function H, , 5 given by (4.3) satisfies

the inequality

O+ 1] 1(1—o+n]pq(k+1))
(—a)fn—1]y!

Proof. From the series expansion of (4.3) we have

o] =

. n>2. (4.6)

[0+ 1]n—1 [n]pg —w(t)

" =Tl 1w
and hence
L e AR e ()
1 (g 1;1 -2 )
= (e,

The function ®(¢) attain its minimum at # = fy where

1-2 . L . _
fo= [n]p“ﬁ% and ®(¢) is decreasing in the interval (IIT% ,to)
and increasing in the interval (¢p,0). As t becomes large, ®(¢)

approaches 1 and

(5

—

[6]

[71

[8]

91

[10]

[11]

[12]

[13]

[14]
-« 1+k
O(——) = 1-2k —1)—
(k—H) ([nlp.q )l—a
(1+k)? (151
+([nlpg+1- Za)ﬁ
> 1
So the maximum value of ®(r) is attained at the point }:T?
But CID(}C_T‘IX) < [%”;(Hl)]z so the coefficients of H,, , 5
satisfies the inequality (4.6). O

Corollary 4.4. Let h(z) = z+a,7". If

(I—a)[n—1]p,!
O+ 1]—1(l—o+n]pq(k+1))

‘a"‘ S[

then h € k—S*(,8,p,q).
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