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Initial coefficient estimates for subclasses of bi-univalent functions
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Abstract. The purpose of the present paper is to introduce a new subclasses of the function class Σ of normalized analytic
and bi-univalent functions in the open disk U. We obtain estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|
for functions of this subclasses.
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1. Introduction

Let A denote the class of all analytic functions f(z) of the form

f(z) = z +

∞∑
k=2

ak z
k (ak ≥ 0, n ∈ N = {1, 2, 3, ...}) (1.1)

which are analytic and univalent in the open unit disk

U = {z : z ∈ C; |z| < 1}.

We shall denote the class of all functions in A which are univalent in U by S, for details (see [9]; see also the
work [7], [8], [17]). For 0 < q < 1, we introduce the family of new functions defined as follows:

Qq
λ(β) =

{
f ∈ A : Re

(
(1− λ)

f(z)

z
+ λDqf(z)

)
> β, β < 1, λ ≥ 0

}
(1.2)

where Dq stands for q-derivative of the function f(z) introduced by Jackson [14]. For q → 1− it reduces to class
of analytic function introduced by Ding et al. [6].
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For function f(z) ∈ A given by (1.1) and 0 < q < 1, the q-derivative of a function f(z) is defined by (also
refer [12], [21])

Dqf(z) =
f(qz)− f(z)

(q − 1)z
; (z ̸= 0, q ̸= 0), (1.3)

from (1.3), we deduce that

Dqf(z) = 1 +

∞∑
k=2

[k]qak z
k−1 (1.4)

where

[k]q =
1− qk

1− q
. (1.5)

It is well known that every function f ∈ S has a inverse f−1, defined by

f−1(f(z)) = z, (z ∈ U)

and

f−1(f(w)) = w,

(
|w| < r0(f); r0(f) ≥

1

4

)
where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + ... .

A function f(z) ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U. We denote by Σ

the class of all functions f(z) which are bi-univalent in U and are given by the Taylor-Maclaurin series
expansion (1.1). The familiar Koebe function is not a member of Σ because it maps the unit disk U univalently
onto the entire complex plane minus a slit along the line − 1

4 to −∞. Hence image domain does not contain in
U. A systematic study of the class Σ of bi-univalent function in U, which is introduced in 1967 by Lewin [17].
Ever since then, several authors investigated various subclasses of the class Σ of bi-univalent functions. By
using Grunsky inequalities Lewin showed that |a2| < 1.51. Subsequently, Brannan and Clunie [4] conjectured
that |a2| ≤

√
2. Netanyahu [18], showed that max

f∈σ
|a2| = 4

3 . In 1985 Branges [1] proved Bieberbach conjecture

which state that, for each f(z) ∈ S given by Taylor-Maclaurin expansion (1.1) the following coefficient
inequality holds true:

|an| ≤ n; (n ∈ N− 1),

N being positive integer.
Brannan and Taha [6](see also [5]) introduce certain subclass of the bi-univalent function class Σ similar to

the familiar subclasses S∗(α) and K(α) of starlike and convex functions of order α (0 < α ≤ 1), respectively.
According to Brannan and Taha [6] (see also [3]) a function f(z) ∈ A is in the class S∗

Σ(α) of strongly bi-
univalent functions of order α (0 < α ≤ 1) if each of the following conditions is satisfied

f ∈ Σ and
∣∣∣∣arg(zf ′(z)

f(z)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, z ∈ U)

and ∣∣∣∣arg(wg′(w)

g(w)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, w ∈ U),
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where g is the extension of f−1 in U. Recently, several researchers such as (see [2, 11, 13, 15, 16, 19]) obtained
coefficients |a2| and |a3| of bi-univalent functions for the various subclasses of the function class Σ. For a further
historical amount of functions of class Σ, see the recent pioneering work by Srivastava et al. [22, 23]. The
coefficient estimate problem involving the bound of |an|(n ∈ N \ {1, 2}) for each f ∈ Σ given by (1.1) is still an
open problem.

The main aim of the present investigation is to introduce and study two new subclasses of the function class
Σ and find estimates on the initial coefficients |a2| and |a3| for functions in these new subclasses of the function
class Σ using q-differential operator.

2. Coefficient bounds for the function class Hq
Σ(α, λ)

We now introduce the following class of bi-univalent functions.

Definition 2.1. : A function f(z) given by (1.1) is said to be in the class Hq
Σ(α, λ) if the following conditions

satisfied:

f ∈ Σ and
∣∣∣∣arg((1− λ)

f(z)

z
+ λDqf(z)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, λ ≥ 1, z ∈ U) (2.1)

and ∣∣∣∣arg((1− λ)
g(w)

w
+ λDqg(w)

)∣∣∣∣ < απ

2
; (0 < α ≤ 1, λ ≥ 1, w ∈ U) (2.2)

where the function g is given by

g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2.3)

We note that for λ = 1 and q → 1−, the class Hq
Σ(α, λ) reduces to the class Hα

Σ introduced and studied by
Srivastava et al. [24] and for q → 1−, the class Hq

Σ(α, λ) reduces to the class BΣ(α, λ) introduced and studied
by Frasin and Aouf [11]. We begin by finding the estimates on the coefficients |a2| and |a3| for function in the
class Hq

Σ(α, λ).
In order to derive our main results, we have to recall here the following lemma.

Lemma 2.2. [9] If p ∈ P then |ck| ≤ 2 for each k, where P is the family of all functions p analytic in U for
which Re{p(z)} > 0

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... for z ∈ U.

For functions in the class Hq
Σ(α, λ) the following result is obtained.

Theorem 2.3. Let f(z) be given by (1.1) be in the function class Hq
Σ(α, λ), 0 < α ≤ 1; 0 < q < 1 and

λ ≥ 1.Then

|a2| ≤
2α√

2(1− λ+ [3]qλ)α+ (1− α)(1− λ+ [2]qλ)2
(2.4)

and

|a3| ≤
4α2

(1− λ+ [2]qλ)2
+

2α

(1− λ+ [3]qλ)
. (2.5)
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Proof: It follows from (2.1) and (2.2) that

(1− λ)
f(z)

z
+ λDqf(z) = [p(z)]α (2.6)

and

(1− λ)
g(w)

w
+ λDqg(w) = [q(w)]α (z, w ∈ U), (2.7)

respectively, where
p(z) = 1 + p1z + p2z

2 + ...

q(w) = 1 + q1w + q2w
2 + ...

in P . Now, upon equating the coefficients of z and z2 in (2.6) and (2.7), we get

(1− λ+ [2]qλ) a2 = αp1, (2.8)

(1− λ+ [3]qλ) a3 = αp2 +
α(α− 1)

2
p21, (2.9)

− (1− λ+ [2]qλ) a2 = αq1 (2.10)

and

(1− λ+ [3]qλ) (2a
2
2 − a3) = αq2 +

α(α− 1)

2
q21 . (2.11)

From (2.8) and (2.10), we obtain
p1 = −q1 (2.12)

and
2 (1− λ+ [2]qλ)

2
a22 = α2

(
p21 + q21

)
. (2.13)

Also, from (2.9), (2.11) and (2.13), we find that

2 (1− λ+ [3]qλ) a
2
2 = α (p2 + q2) +

(α− 1) (1− λ+ [2]qλ)
2
a22

α
. (2.14)

Therefore, we obtain

a22 =
α2

2(1− λ+ [3]qλ)α+ (1− α)(1− λ+ [2]qλ)2
(p2 + q2) . (2.15)

Applying lemma 2.2 for the coefficients p2 and q2, yields

|a2| ≤
2α√

2(1− λ+ [3]qλ)α+ (1− α)(1− λ+ [2]qλ)2
, (2.16)

which gives desired estimate on |a2| as asserted in (2.4).
Next, in order to find the bound on |a3|, we subtract (2.11) from (2.9), We thus get

2 (1− λ+ [3]qλ) a3 = α (p2 − q2) +
α2

(
p21 + q21

)
(1− λ+ [3]qλ)

(1− λ+ [2]qλ)
2 . (2.17)

Applying lemma 2.2 for the coefficients p1, q1, p2 and q2 in above equality, we get

|a3| ≤
4α2

(1− λ+ [2]qλ)2
+

2α

(1− λ+ [3]qλ)
. (2.18)

This completes the proof.
If we choose λ = 1 and q → 1− in Theorem 2.3, we have the following result.
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Corollary 2.4. ([24]). Let f(z) given by (1.1) be in the class Hα
Σ, (0 < α ≤ 1). Then

|a2| ≤ α

√
2

2 + α
(2.19)

and

|a3| ≤
α(3α+ 2)

3
. (2.20)

If we take q → 1− in Theorem 2.3, we have the following result.

Corollary 2.5. ([11]). Let f(z) given by (1.1) be in the class BΣ(α, λ), (0 < α ≤ 1) and (λ ≥ 1). Then

|a2| ≤
2α√

(λ+ 1)2 + α(1 + 2λ− λ2)
(2.21)

and

|a3| ≤
4α2

(λ+ 1)2
+

2α

2λ+ 1
. (2.22)

3. Coefficient bounds for the function class Hq
Σ(β, λ)

We now introduce the following class of bi-univalent functions.

Definition 3.1. : A function f(z) given by (1.1) is said to be in the class Hq
Σ(β, λ) if the following conditions

satisfied:

f ∈ Σ and Re

(
(1− λ)

f(z)

z
+ λDqf(z)

)
> β; (0 ≤ β < 1, λ ≥ 1, z ∈ U) (3.1)

and

Re

(
(1− λ)

g(w)

w
+ λDqg(w)

)
> β; (0 ≤ β < 1, λ ≥ 1, w ∈ U). (3.2)

For functions in the class Hq
Σ(β, λ) the following result is obtained.

Theorem 3.2. Let f(z) be given by (1.1) be in the function class Hq
Σ(β, λ), 0 ≤ β < 1; 0 < q < 1 and

λ ≥ 1.Then

|a2| ≤ min

{
2(1− β)

(1− λ+ [2]qλ)
,

√
2(1− β)

(1− λ+ [3]qλ)

}
(3.3)

and

|a3| ≤ min
{

2(1− β)

(1− λ+ [3]qλ)
,

4(1− β)2

(1− λ+ [2]qλ)2
+

2(1− β)

(1− λ+ [3]qλ)

}
. (3.4)
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Proof: It follows from (3.1) and (3.2) that

(1− λ)
f(z)

z
+ λDqf(z) = β + (1− β)p(z) (3.5)

and

(1− λ)
g(w)

w
+ λDqg(w) = β + (1− β)q(w) (z, w ∈ U), (3.6)

respectively, where
p(z) = 1 + p1z + p2z

2 + ...

q(w) = 1 + q1w + q2w
2 + ...

in P . Now, upon equating the coefficients of (3.5) and (3.6), we obtain

(1− λ+ [2]qλ) a2 = (1− β)p1, (3.7)

(1− λ+ [3]qλ) a3 = (1− β)p2, (3.8)

− (1− λ+ [2]qλ) a2 = (1− β)q1 (3.9)

and
(1− λ+ [3]qλ) (2a

2
2 − a3) = (1− β)q2. (3.10)

From (3.7) and (3.9), we obtain
p1 = −q1 (3.11)

and
2 (1− λ+ [2]qλ)

2
a22 = (1− β)2

(
p21 + q21

)
. (3.12)

Also, from (3.8) and (3.10), we have

2 (1− λ+ [3]qλ)a
2
2 = (1− β) (p2 + q2) . (3.13)

Applying lemma 2.2 for (3.12) and (3.13), we get

|a2| ≤ min

{
2(1− β)

(1− λ+ [2]qλ)
,

√
2(1− β)

(1− λ+ [3]qλ)

}
, (3.14)

we get desired estimate on |a2| as asserted in (3.3).
Next, in order to find the bound on |a3|, we subtract (3.10) and (3.8), we get

2(1− λ+ [3]qλ) a3 = (1− β) (p2 − q2) + 2(1− λ+ [3]qλ) a
2
2, (3.15)

which, upon substitution of the value of a22 from (3.12), yields

|a3| =
(1− β)2

2(1− λ+ [2]qλ)2
(p21 + q21) +

(1− β)

(1− λ+ [3]qλ)
(p2 − q2). (3.16)

On the other hand, by using (3.13) into (3.15), it follows that

|a3| =
(1− β)

2(1− λ+ [3]qλ)2
p2. (3.17)

Applying lemma 2.2 for (3.16) and (3.17), yields

|a3| ≤ min
{

2(1− β)

(1− λ+ [3]qλ)
,

4(1− β)2

(1− λ+ [2]qλ)2
+

2(1− β)

(1− λ+ [3]qλ)

}
. (3.18)

This completes the proof.
The next Corollary can be easily obtained from Theorem 3.2.
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Corollary 3.3. . Let f(z) given by (1.1) be in the class Hα
Σ, 0 ≤ β < 1. Then

|a2| =


√

2(1−β)
3 , for 0 ≤ β ≤ 1/3

1− β, for 1/3 ≤ β < 1
(3.19)

and

|a3| ≤
2(1− β)

3
. (3.20)

Remark 3.4. Corollary (3.3) provides an improvement for the estimates obtained by Srivastava et al. ([24]).

Corollary 3.5. ([24]). Let f(z) given by (1.1) be in the class Hβ
Σ, (0 ≤ β < 1). Then

|a2| ≤
√

2(1− β)

3
(3.21)

and

|a3| ≤
(1− β)(5− 3β)

3
. (3.22)

If we choose q → 1− in Theorem 3.2, we have the following result.

Corollary 3.6. ([11]). Let f(z) given by (1.1) be in the class BΣ(β, λ), (0 ≤ β < 1) and (λ ≥ 1). Then

|a2| ≤
√

2(1− β)

2λ+ 1
(3.23)

and

|a3| ≤
4(1− β)2

(λ+ 1)2
+

2(1− β)

2λ+ 1
. (3.24)

Remark 3.7. . For λ = 1 the results obtained in this paper are coincides with the results discussed in ([2]).
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