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Initial coefficient estimates for subclasses of bi-univalent functions
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Abstract. The purpose of the present paper is to introduce a new subclasses of the function class 3 of normalized analytic
and bi-univalent functions in the open disk U. We obtain estimates on the first two Taylor-Maclaurin coefficients |a2| and |as|
for functions of this subclasses.
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1. Introduction

Let A denote the class of all analytic functions f(z) of the form
f)=z2+) apz" (ar >0,neN={1,2,3,..}) (1.1)
k=2

which are analytic and univalent in the open unit disk
U={z: 2€C;|z| < 1}.

We shall denote the class of all functions in A which are univalent in U by S, for details (see [9]; see also the
work [7], [8], [17]). For 0 < ¢ < 1, we introduce the family of new functions defined as follows:

f(2)

Q5B = {f € A: Re <(1 - )\)7 +)\qu(2)) >B,8<1, A> O} (1.2)

where D, stands for g-derivative of the function f(z) introduced by Jackson [14]. For ¢ — 1~ it reduces to class
of analytic function introduced by Ding et al. [6].
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For function f(z) € A given by (1.1) and 0 < ¢ < 1, the g-derivative of a function f(z) is defined by (also
refer [12], [21])

D,f(2) = T, (o v0q 20) 13

from (1.3), we deduce that
D, f(z) =1+ f: k] qar 271 (1.4)
[k]g = 1__qq : (1.5)

It is well known that every function f € S has a inverse f~*, defined by

U fR) =2 (z€0)

and

) =, (ol < (i) = )

where
fHw) = w — agw? + (263 — az)w® — (5a3 — 5agaz + ag)w* + ...

A function f(z) € A is said to be bi-univalent in U if both f(z) and f~!(z) are univalent in U. We denote by %
the class of all functions f(z) which are bi-univalent in U and are given by the Taylor-Maclaurin series
expansion (1.1). The familiar Koebe function is not a member of 3 because it maps the unit disk U univalently
onto the entire complex plane minus a slit along the line f% to —oo. Hence image domain does not contain in
U. A systematic study of the class X of bi-univalent function in U, which is introduced in 1967 by Lewin [17].
Ever since then, several authors investigated various subclasses of the class X of bi-univalent functions. By
using Grunsky inequalities Lewin showed that |as| < 1.51. Subsequently, Brannan and Clunie [4] conjectured
that |as| < v/2. Netanyahu [18], showed that r]peaX las| = %. In 1985 Branges [1] proved Bieberbach conjecture

which state that, for each f(z) € S given by Taylor-Maclaurin expansion (1.1) the following coefficient
inequality holds true:

lan| <n; (neN-1),

N being positive integer.

Brannan and Taha [6](see also [5]) introduce certain subclass of the bi-univalent function class ¥ similar to
the familiar subclasses S*(«r) and K(«) of starlike and convex functions of order « (0 < « < 1), respectively.
According to Brannan and Taha [6] (see also [3]) a function f(z) € A is in the class S& (o) of strongly bi-
univalent functions of order o (0 < o < 1) if each of the following conditions is satisfied

f€eXand

arg ('Z}CQS))‘ < Og; 0<a<lz€el)

and

/
arg <wg (w))‘ < %; 0<a<lwel),

3
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where g is the extension of f~!in U. Recently, several researchers such as (see [2, 11, 13, 15, 16, 19]) obtained
coefficients |az| and |ag| of bi-univalent functions for the various subclasses of the function class ¥. For a further
historical amount of functions of class X, see the recent pioneering work by Srivastava et al. [22, 23]. The
coefficient estimate problem involving the bound of |a,, |(n € N\ {1,2}) for each f € ¥ given by (1.1) is still an
open problem.

The main aim of the present investigation is to introduce and study two new subclasses of the function class
Y and find estimates on the initial coefficients |az| and |ag| for functions in these new subclasses of the function
class X using g-differential operator.

2. Coefficient bounds for the function class H(c, \)

We now introduce the following class of bi-univalent functions.

Definition 2.1. : A function f(z) given by (1.1) is said to be in the class H&(c, \) if the following conditions
satisfied:

feX¥and |arg ((1 —)\)@ —|—)\qu(2)>‘ < O%T; O<a<l,A>1l,zel) 2.1
and
arg <(1 - A)% + )\Dqg(w))‘ < %ﬂ; O<a<1,A>1wel) 2.2)
where the function g is given by
g(w) = w — asw? + (242 — as)w® — (5a3 — Hagas + ag)w* + - - - . (2.3)

We note that for A\ = 1 and ¢ — 17, the class H%(a, \) reduces to the class H$ introduced and studied by
Srivastava et al. [24] and for ¢ — 17, the class H%(c, ) reduces to the class By (o, A) introduced and studied
by Frasin and Aouf [11]. We begin by finding the estimates on the coefficients |as| and |as| for function in the
class HE (o, A).

In order to derive our main results, we have to recall here the following lemma.

Lemma 2.2. [9] Ifp € P then |ci| < 2 for each k, where P is the family of all functions p analytic in U for
which Re{p(z)} >0
p(z) =1+crz+coz? +e32° 4 ... for z € U.
For functions in the class H (v, A) the following result is obtained.

Theorem 2.3. Let f(z) be given by (1.1) be in the function class H&(a,N), 0 < a < 1; 0 < ¢ < 1 and
A > 1.Then
2a

laz] < V20 =N+ Bl N+ (1 —a)(1 = A+ [2];))2 @

and

402 2«
93l S TR @ T T A Bl =
A
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Proof: It follows from (2.1) and (2.2) that
f(z)

(1= N5 £ ADf(2) = [p(2))”

and
- aDgw) = )" (zweD),
respectively, where
p(z) =1+ prz+p22® + ...
q(w) =1+ qw + gw? + ...
in P. Now, upon equating the coefficients of z and 22 in (2.6) and (2.7), we get

(1 =X+ [2]4A) a2 = ap1,

-1
(1 =X+ [3]gA) a3 = aps + %p%,

—(I=A+[2]gA) a2 = aqx
and

ala—1) ,

(1= X+ [3]gA) (243 — a3) = aga + 5 i

From (2.8) and (2.10), we obtain
b1 = —q

and
2(1 - A+ 2,03 =a® (2 +4d).
Also, from (2.9), (2.11) and (2.13), we find that

2(1=X+[3lgN) a3 = o (p2 +q2) +

(67

Therefore, we obtain
2
2 Q

2720 A+ BlgNa+ (L—a)(L = A+ 20?2

a (P2 + q2) -

Applying lemma 2.2 for the coefficients ps and ¢, yields

2a
las| < \/2(1 A+ Bl Na+ (1T —a)(I -2+ [2]11)\)2’

which gives desired estimate on |as| as asserted in (2.4).
Next, in order to find the bound on |a3|, we subtract (2.11) from (2.9), We thus get

(0= 1) (1= A+ 2N a3

o (0 +4f) (1 = A+ [3]4))

20 A+ Bl as =a - ) + R

Applying lemma 2.2 for the coefficients p;, g, p2 and g2 in above equality, we get

las| < 402 + 2c '
(IT=A+[2]gA)2 (T =X+ [3]gA)

This completes the proof.
If we choose A = 1 and ¢ — 1~ in Theorem 2.3, we have the following result.
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Corollary 2.4. ([24]). Let f(z) given by (1.1) be in the class HE, (0 < a < 1). Then

2
< P 2.1
jaa] < 0y 5 (2.19)

and
3 2
jas] < & O;Jr ) (2.20)
If we take ¢ — 17 in Theorem 2.3, we have the following result.
Corollary 2.5. ([11]). Let f(z) given by (1.1) be in the class Bs(a, X), (0 < o < 1) and (A > 1). Then
2
laz| < < (2.21)
VO+1)2+a(l+2) - )2)
and
402 2
@ a (2.22)

< .
jas] < O+1? Toasd

3. Coefficient bounds for the function class (3, \)

We now introduce the following class of bi-univalent functions.

Definition 3.1. : A function f(z) given by (1.1) is said to be in the class H¥ (53, \) if the following conditions
satisfied:

f € ¥ and Re <(1)\)JCF:)+>\qu(z)) >0 (0<8<1L,A>1,2€l) 3.1
and
Re ((1 - /\)%w) + )\Dqg(w)> >0 (0<8<1,A>1wel). (3.2)

For functions in the class H% (5, A) the following result is obtained.

Theorem 3.2. Let f(z) be given by (1.1) be in the function class HL(8,)), 0 < 8 < 1,0 < q < 1 and
A > 1.Then

. 2(1-p5) 2(1-p)
a2 <mm{(1—)\+[2]q/\)’ (1—)\+[3]q/\)} G-
and
o208 40— py 21 )
laa] < m‘“{u B T AT @ T oA BN } G4
E 2
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Proof: It follows from (3.1) and (3.2) that
f(2)

(1= NT2 4 AD,f() = B+ (1= ()

and
=02 ADg(w) = B+ (1 Bla(w)  (zweU),

w
respectively, where
p(z) =1+ prz+p22® + ...
q(w) =14 qw + guw? + ...

in P. Now, upon equating the coefficients of (3.5) and (3.6), we obtain

(L= A+ [2lgA) a2 = (1 = B)p1,

(L= A+ BlgA) az = (1 = B)p2,

—A=A+[2gN) az=(1-B)n
and

(1= A+ [3]¢A) (203 — a3) = (1 - B)ge.
From (3.7) and (3.9), we obtain
P1=—q

and
2(1 = A+ 20763 = (1= 8)” (p] +af) -
Also, from (3.8) and (3.10), we have
2(1 = A+ [8]g\)a3 = (1 - B) (b2 + a2).-
Applying lemma 2.2 for (3.12) and (3.13), we get

|CL2| <min{ 2(1_B) 2(1_B) }
- A=A+ 20N) VA =X+[3]A) [

we get desired estimate on |as| as asserted in (3.3).
Next, in order to find the bound on |as|, we subtract (3.10) and (3.8), we get

2(1 = A+ [3]gA) as = (1= B) (p2 — q2) + 2(1 = A+ [3]¢)) a3,
which, upon substitution of the value of a% from (3.12), yields

‘a ‘ _ (1 B 6)2
TR = A+ 21,02
On the other hand, by using (3.13) into (3.15), it follows that

e L
21 — A+ B],\)?

Applying lemma 2.2 for (3.16) and (3.17), yields

(1-5)

0 +a) + m(@ —q2).

p2.

lag| < min{(l A+ [BlA) (1= A+ [2],0)2 + (1 =X+ [3]g\)

This completes the proof.
The next Corollary can be easily obtained from Theorem 3.2.
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Corollary 3.3. . Let f(z) given by (1.1) be in the class H%, 0 < 8 < 1. Then

[20-5) <g<
|ag| = 5 for0sB<1/3 (3.19)

1—5, for1/3<pg <1

and

2(1-6)

las| < 3

(3.20)

Remark 3.4. Corollary (3.3) provides an improvement for the estimates obtained by Srivastava et al. ([24]).

Corollary 3.5. ([24]). Let f(z) given by (1.1) be in the class HE, (0< B < 1). Then

2(1 —
las| < -5 (3.21)
3
and
1-5)(5-3
Mﬂﬁg——ﬁ%——ia. (3.22)
If we choose ¢ — 17 in Theorem 3.2, we have the following result.
Corollary 3.6. ([11]). Let f(z) given by (1.1) be in the class Bs(8,A), (0 < 8 < 1) and (A > 1). Then
2(1-5)
<3\ /- .
ool <4/ 55 (3.23)
and
4(1-p6)2 201 -
jag < 2007 20— F) (324)

A+1)2 " 2x+1

Remark 3.7. . For \ = 1 the results obtained in this paper are coincides with the results discussed in ([2]).
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