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1. Introduction

Many numbers and polynomials sequences can be defined,
characterized, evaluated, and classified by linear recurrence
relations with certain orders. The third order recurrence se-
quence have been generalized in two ways mainly, first by
preserving the initial conditions and second by preserving
the recurrence relation. There is a many generalizations of
numbers and polynomials of third order in literature which
are defined recursively. For exemple, Soykan and Tasdemir
in [13], given the Gaussian generalized Tribonacci numbers

{GVn}n≥0 = {GVn (GV0,GV1,GV2)}n≥0 by GVn = GVn−1 +GVn−2 +GVn−3, n≥ 3
GV0 = c0 + i(c2− c1− c0) , GV1 = c1 + ic0,
GV2 = c2 + ic1.

Let now we define some generalizations for some numbers
and polynomials of third order linear recurrence sequences,
we begin by the recurrence relation of generalized Gaussian
Padovan numbers {GNn}n≥0 = {GNn (a,b)}n≥0 as:{

GNn = aGNn−2 +GNn−3, n≥ 3
GN0 = 1+bi, GN1 = GN2 = 1+ i .

Special cases of {GNn}n≥0 are Gaussian Padovan num-
bers GNn (1,0) = GPn and Gaussian Pell Padovan numbers
GNn (2,−1) = GRn. We formally define them as follows:

Gaussian Padovan numbers is defined by

GPn = GPn−2 +GPn−3, for all n≥ 3,

with initial conditions GP0 = 1, GP1 = GP2 = 1+ i and Gaus-
sian Pell Padovan numbers is defined by

GRn = 2GRn−2 +GRn−3, for all n≥ 3,

with initial conditions GR0 = 1− i, GR1 = GR2 = 1+ i, see
the paper [5].
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Also, we define the generalized trivariate Fibonacci poly-
nomials {Wn (x,y, t)}n≥0 as follows

Wn (x,y, t) = xWn−1 (x,y, t)+ yWn−2 (x,y, t)+
tWn−3 (x,y, t) , n≥ 3
W0 (x,y, t) = a, W1 (x,y, t) = b+ cx,
W2 (x,y, t) = dx+ ey+ f x2.

(1.1)

If we take {a = c = e = f = 0, b = d = 1} and
{a = 3, b = d = 0, c = f = 1, e = 2} in (1.1) we give the
following definitions.

Definition 1.1. [6] For any integer n ≥ 0, the trivariate Fi-
bonacci polynomials, denoted by {Hn (x,y, t)}n≥0 is defined
recursively by

Hn (x,y, t) =xHn−1 (x,y, t)+ yHn−2 (x,y, t)

+ tHn−3 (x,y, t) ,

with the initials

H0 (x,y, t) = 0, H1 (x,y, t) = 1 and H2 (x,y, t) = x.

Definition 1.2. [6] For any integer n≥ 0, the trivariate Lu-
cas polynomials, denoted by {Kn (x,y, t)}n≥0 is defined recur-
sively by

Kn (x,y, t) =xKn−1 (x,y, t)+ yKn−2 (x,y, t)

+ tKn−3 (x,y, t) ,

with the initials

K0 (x,y, t) = 3, K1 (x,y, t) = x and K2 (x,y, t) = x2 +2y.

Next, we define the generalized Gaussian Padovan polyno-
mials {GMn (x)}n≥0 by the following third order recurrence
relation:{

GMn (x) = axGMn−2 (x)+GMn−3 (x) , n≥ 3
GM0 (x) = 1+bi, GM1 (x) = GM2 (x) = 1+ i .

(1.2)

If we take {a = 1, b = 0} and {a = 2, b =−1} in the
relationship (1.2), then we get the recurrence relations of
Gaussian Padovan and Gaussian Pell Padovan polynomials
{GPn (x)}n≥0 and {GRn (x)}n≥0 given in the Table 1.

Gaussian
polynomials

Linear
recurrence
sequences

Initial
conditions

Gaussian
Padovan

polynomials

GPn (x) = xGPn−2 (x)+
GPn−3 (x) ,n≥ 3

GP0 (x) = 1,
GP1 (x) = 1+ i,
GP2 (x) = 1+ i

Gaussian
Pell

Padovan
polynomials

GRn (x) = 2xGRn−2 (x)
+GRn−3 (x) ,n≥ 3

GR0 (x) = 1− i,
GR1 (x) = 1+ i,
GR2 (x) = 1+ i

Table 1. Gaussian Padovan and Gaussian Pell Padovan
polynomials.

In this part we define some generalized Vieta polynomials.

Definition 1.3. [11] For n∈N, the generalized Vieta-Jacobsthal
polynomials, denoted by

{
GJk,n (x)

}
n∈N is defined recurrently

by {
Gk,n (x) = Gk,n−1 (x)−2kxGk,n−2 (x) , n≥ 2
Gk,0 (x) = 0, Gk,1 (x) = 1

.

Definition 1.4. [11] For n∈N, the generalized Vieta-Jacobsthal-
Lucas polynomials, denoted by

{
gk,n (x)

}
n∈N is defined recur-

sively by{
gk,n (x) = gk,n−1 (x)−2kxgk,n−2 (x) , n≥ 2
gk,0 (x) = 2, gk,1 (x) = 1

.

Definition 1.5. [12] For n ∈ N, the generalized Vieta-Pell
polynomials, denoted by

{
Pk,n (x)

}
n∈N is defined recurrently

by {
Pk,n (x) = 2kxPk,n−1 (x)−Pk,n−2 (x) , n≥ 2
Pk,0 (x) = 0, Pk,1 (x) = 1

.

Definition 1.6. [12] For n ∈ N, the generalized Vieta-Pell-
Lucas polynomials, denoted by

{
Qk,n (x)

}
n∈N is defined re-

cursively by{
Qk,n (x) = 2kxQk,n−1 (x)−Qk,n−2 (x) , n≥ 2
Qk,0 (x) = 2, Qk,1 (x) = 2kx

.

Definition 1.7. [12] For n∈N, the generalized Vieta-modified
Pell polynomials, denoted by

{
qk,n (x)

}
n∈N is defined recur-

sively by{
qk,n (x) = 2kxqk,n−1 (x)−qk,n−2 (x) , n≥ 2
qk,0 (x) = 1, qk,1 (x) = 2k−1x

.

The remainder of this paper is organized as follows:

• In section 2, we first give the notion of the symmetric
function and then we present and prove our main result
which relates the symmetric function defined in this
section with the symmetrizing operator δp1 p2 .

• In section 3, we derive the new generating functions
of generalized Gaussian Padovan numbers, generalized
Gaussian Padovan polynomials and generalized trivari-
ate Fibonacci polynomias. In particular, the generating
functions of Gaussian Padovan numbers and polynomi-
als, Gaussian Pell Padovan numbers and polynomials,
trivariate Fibonacci polynomials and trivariate Lucas
polynomials are obtained.

• In section 4, by making use of the symmetric func-
tion we obtain the new generating functions of general-
ized Vieta-Jacobsthal polynomials, generalized Vieta-
Jacobsthal-Lucas-polynomials, generalized Vieta-Pell
polynomials, generalized Vieta-Pell-Lucas polynomials
and generalized Vieta-modified Pell polynomials.
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2. Preliminaries and main results
In this section, we give definitions and properties of the

symmetric functions (for more details, we can see [7]). Let us
now start at the following definitions.

Definition 2.1. Let k and n be two positive integers and
{p1, p2, ..., pn} are set of given variables the k-th complete
homogeneous symmetric function hk (p1, p2, ..., pn) is defined
by

hk (p1, p2, ..., pn) = ∑
i1+i2+...+in=k

pi1
1 pi2

2 ...p
in
n (k ≥ 0) ,

with i1, i2, ..., in ≥ 0.

Remark 2.2. Set h0 (p1, p2, ..., pn) = 1, by usual convention.
For k < 0, we set hk (p1, p2, ..., pn) = 0.

Definition 2.3. [1] Let A and P be any two alphabets. We
define Sn(A−P) by the following form:

∏
p∈P

(1− pz)

∏
a∈A

(1−az)
=

∞

∑
n=0

Sn(A−P)zn, (2.1)

with the condition Sn(A−P) = 0 for n < 0.

Equation (2.1) can be rewritten in the following form

∞

∑
n=0

Sn(A−P)zn =

(
∞

∑
n=0

Sn(A)zn

)(
∞

∑
n=0

Sn(−P)zn

)
,

(2.2)

where

Sn(A−P) =
n

∑
j=0

Sn− j(−P)S j(A).

Remark 2.4. Taking A = {0} in (2.1) gives

∞

∑
n=0

Sn (−P)zn = ∏
p∈P

(1− pz) .

Definition 2.5. [2] Given a function g on Rn, the divided
difference operator is defined as follows

∂pi pi+1(g) =
g(p1, · · · , pi, pi+1, · · · , pn)

pi− pi+1

− g(p1, · · · , pi−1, pi+1, pi, pi+2, · · · , pn)

pi− pi+1
.

Definition 2.6. Let n be a positive integer and P2 = {p1, p2} be
set of given variables, then, the n-th symmetric function Sn(p1+
p2) is defined by

Sn(P2) = Sn(p1 + p2) =
pn+1

1 − pn+1
2

p1− p2
,

with

S0(P2) = S0(p1 + p2) = 1,
S1(P2) = S1(p1 + p2) = p1 + p2,

S2(P2) = S2(p1 + p2) = p2
1 + p1 p2 + p2

2,

...

Definition 2.7. [3] Given an alphabet P2 = {p1, p2}, the
symmetrizing operator δ k

p1 p2
is defined by

δ
k
p1 p2

g(p1) =
pk

1g(p1)− pk
2g(p2)

p1− p2
, for all k ∈ N0.

(2.3)

If g(p1) = p1, the operator (2.3) gives us

δ
k
p1 p2

g(p1) =
pk+1

1 − pk+1
2

p1− p2
= Sk (p1 + p2) .

The following theorem is one of the key tools of the proof
of our main results. It has been proved in [4]. For the com-
pleteness of the paper we state its proof here.

Theorem 2.8. Given two alphabets P2 = {p1, p2} and A3 =
{a1,a2,a3} , we have

∞

∑
n=0

Sn(A3)∂p1 p2(pn+1
1 )zn

= S0(−A3)−p1 p2S2(−A3)z2−p1 p2S3(−A3)S1(P2)z3(
∞

∑
n=0

Sn(−A3)pn
1zn
)(

∞

∑
n=0

Sn(−A3)pn
2zn
) (2.4)

with S0(−A3)= 1, S2(−A3)= a1a2+a1a3+a2a3, S3(−A3)=
−a1a2a3.

Proof. Let ∑
∞
n=0 Sn(A3)zn and

∞

∑
n=0

Sn(−A3)zn be two sequences

such that
∞

∑
n=0

Sn(A3)zn = 1
∞

∑
n=0

Sn(−A3)zn
. On one hand, since

g(p1) =
∞

∑
n=0

Sn(A3)pn
1zn and g(p2) =

∞

∑
n=0

Sn(A3)pn
2zn, we have

δp1 p2g(p1) = δp1 p2

(
∞

∑
n=0

Sn(A3)pn
1zn

)

=

p1
∞

∑
n=0

Sn(A3)pn
1zn− p2

∞

∑
n=0

Sn(A3)pn
2zn

p1− p2

=
∞

∑
n=0

Sn(A3)

(
pn+1

1 − pn+1
2

p1− p2

)
zn

=
∞

∑
n=0

Sn(A3)∂p1 p2(pn+1
1 )zn.

On the other part, since g(p1) =
1

∞

∑
n=0

Sn(−A3)pn
1zn

and g(p2) =

1758
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1
∞

∑
n=0

Sn(−A3)pn
2zn

, we have

δp1 p2g(p1) =

p1
∞

∑

n=0
Sn(−A3)pn

1zn
− p2

∞

∑

n=0
Sn(−A3)pn

2zn

p1−p2

=
p1

∞

∑
n=0

Sn(−A3)pn
2zn−p2

∞

∑
n=0

Sn(−A3)pn
1zn

(p1−p2)

(
∞

∑
n=0

Sn(−A3)pn
1zn
)(

∞

∑
n=0

Sn(−A3)pn
2zn
)

=

∞

∑
n=0

Sn(−A3)
p1 pn

2−p2 pn
1

p1−p2
zn(

∞

∑
n=0

Sn(−A3)pn
1zn
)(

∞

∑
n=0

Sn(−A3)pn
2zn
)

= S0(−A3)−p1 p2S2(−A3)z2−p1 p2S3(−A3)S1(P2)z3(
∞

∑
n=0

Sn(−A3)pn
1zn
)(

∞

∑
n=0

Sn(−A3)pn
2zn
) .

This completes the proof.

3. The generating functions for some
well-known generalized numbers and

polynomials of third-order linear
recurrence sequences

In this part, we now derive the new generating functions of
generalized Gaussian Padovan numbers, generalized trivariate
Fibonacci polynomials and generalized Gaussian Padovan
polynomials. The technique used is based on the theory of the
so called symmetric functions.

• For the case A3 = {a1,a2,a3} and P2 = {1,0} in theo-
rem (2.8) we deduce the following lemma.

Lemma 3.1. Given an alphabet A3 = {a1,a2,a3}, we have

∞

∑
n=0

Sn (A3)zn =
1

(1−a1z)(1−a2z)(1−a3z)
. (3.1)

with

(1−a1z)(1−a2z)(1−a3z) =1− (a1 +a2 +a3)

+(a1a2 +a1a3 +a2a3)z2−a1a2a3z3.

Proposition 3.2. Given an alphabet A3 = {a1,a2,a3}, we
have

∞

∑
n=0

Sn−1 (A3)zn =
z

(1−a1z)(1−a2z)(1−a3z)
. (3.2)

Proof. By applying the operator δ 0
a1a2

to the identity

∞

∑
n=0

an
1zn =

1
1−a1z

,

we get

δ
0
a1a2

∞

∑
n=0

an
1zn = δ

0
a1a2

1
1−a1z

⇐⇒
∞

∑
n=0

δ
0
a1a2

an
1zn =

z
(1−a1z)(1−a2z)

⇐⇒
∞

∑
n=0

Sn−1 (a1 +a2)zn =
z

(1−a1z)(1−a2z)
.

By applying the operator δa2a3 to the identity
∞

∑
n=0

Sn−1 (a1 +a2)zn =
z

(1−a1z)(1−a2z)
,

we obtain

δa2a3

∞

∑
n=0

Sn−1 (a1 +a2)zn = δa2a3

z
(1−a1z)(1−a2z)

⇔
∞

∑
n=0

δa2a3Sn−1 (a1 +a2)zn = δa2a3

z
(1−a1z)(1−a2z)

⇔
∞

∑
n=0

Sn−1 (a1 +a2 +a3)zn =
z

(1−a1z)
δa2a3

1
(1−a2z)

⇔
∞

∑
n=0

Sn−1 (a1 +a2 +a3)zn =
z

(1−a1z)
1

3
∏
i=2

(1−aiz)
.

Therefore
∞

∑
n=0

Sn−1 (A3)zn =
z

(1−a1z)(1−a2z)(1−a3z)
.

Hence, we obtain the desired result.

Proposition 3.3. Given an alphabet A3 = {a1,a2,a3}, we
have

∞

∑
n=0

Sn−2 (A3)zn =
z2

(1−a1z)(1−a2z)(1−a3z)
. (3.3)

Proof. By applying the operator δ 0
a2a3

to the identity

∞

∑
n=0

Sn−1 (a1 +a2)zn =
z

(1−a1z)(1−a2z)
,

we have

δ
0
a2a3

∞

∑
n=0

Sn−1 (a1 +a2)zn = δ
0
a2a3

z
(1−a1z)(1−a2z)

⇔
∞

∑
n=0

δ
0
a2a3

Sn−1 (a1 +a2)zn = δ
0
a2a3

z
(1−a1z)(1−a2z)

⇔
∞

∑
n=0

Sn−2 (a1 +a2 +a3)zn =
z

(1−a1z)
δ

0
a2a3

1
(1−a2z)

⇔
∞

∑
n=0

Sn−2 (a1 +a2 +a3)zn ==
z

(1−a1z)
z

3
∏
i=2

(1−aiz)
.

Therefore
∞

∑
n=0

Sn−2 (A3)zn =
z2

(1−a1z)(1−a2z)(1−a3z)
.

This completes the proof.
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This part consists of three cases.
Case 1. The substitution of a1 +a2 +a3 = 0

a1a2 +a1a3 +a2a3 =−a
a1a2a3 = 1

(3.4)

in the relationships (3.1), (3.2) and (3.3), we obtain

∞

∑
n=0

Sn (A3)zn =
1

1−az2− z3 , (3.5)

∞

∑
n=0

Sn−1 (A3)zn =
z

1−az2− z3 , (3.6)

∞

∑
n=0

Sn−2 (A3)zn =
z2

1−az2− z3 , (3.7)

respectively.
Multiplying the equation (3.5) by (1+bi) and adding it

to the equation obtained by (3.6) multiplying by (1+ i) and
adding it to the equation obtained by (3.7) multiplying by
(1−a+ i(1−ab)), then we obtain

∞

∑
n=0

(
(1+bi)Sn (A3)+(1+ i)Sn−1 (A3)
+(1−a+ i(1−ab))Sn−2 (A3)

)
zn

=
1+bi+(1+ i)z+(1−a+ i(1−ab))z2

1−az2− z3 ,

and we have the following theorem.

Theorem 3.4. For n ∈ N, the new generating function of
generalized Gaussian Padovan numbers GNn is given by

∞

∑
n=0

GNnzn =
1+bi+(1+ i)z+(1−a+ i(1−ab))z2

1−az2− z3 ,

(3.8)

with

GNn = (1+bi)Sn (A3)+(1+ i)Sn−1 (A3)+

(1−a+ i(1−ab))Sn−2 (A3) .

Proof. The generalized Gaussian Padovan numbers can be
considered as the coefficients of the formal power series

g(z) =
∞

∑
n=0

GNnzn.

Using the initial condition, we get

g(z) = GN0 +GN1z+GN2z2 +
∞

∑
n=3

GNnzn

= GN0 +GN1z+GN2z2 +
∞

∑
n=3

aGNn−2zn

+
∞

∑
n=3

GNn−3zn

= GN0 +GN1z+GN2z2 +az2
∞

∑
n=1

GNnzn

+z3
∞

∑
n=0

GNnzn

= GN0 +GN1z+GN2z2−aGN0z2

+az2
∞

∑
n=0

GNnzn + z3
∞

∑
n=0

GNnzn

= 1+bi+(1+ i)z+(1−a+ i(1−ab))z2

+
(
az2 + z3)g(z).

Hence, we obtain(
1−az2− z3)g(z) = 1+bi+(1+ i)z

+(1−a+ i(1−ab))z2.

Therefore

g(z) =
1+bi+(1+ i)z+(1−a+ i(1−ab))z2

1−az2− z3 .

Thus, this completes the proof.

• By putting a = 1 and b = 0 in the relationship (3.8), we
obtain the following corollary.

Corollary 3.5. [9] For n ∈ N, the generating function of
Gaussian Padovan numbers GPn is given by

∞

∑
n=0

GPnzn =
1+(1+ i)z+ iz2

1− z2− z3 ,

with

GPn = Sn(A3)+(1+ i)Sn−1(A3)+ iSn−2(A3).

• Put a = 2 and b =−1 in the relationship (3.8), we can
state the following corollary.

Corollary 3.6. [9] For n ∈ N, the generating function of
Gaussian Pell Padovan numbers GRn is given by

∞

∑
n=0

GRnzn =
1− i+(1+ i)z+(−1+3i)z2

1−2z2− z3 ,

with

GRn = (1− i)Sn(A3)+(1+ i)Sn−1(A3)

+(−1+3i)Sn−2(A3).
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Case 2. The setting of a1 +a2 +a3 = x
a1a2 +a1a3 +a2a3 =−y
a1a2a3 = t

in the relationships (3.1), (3.2) and (3.3), we obtain

∞

∑
n=0

Sn (A3)zn =
1

1− xz− yz2− tz3 , (3.9)

∞

∑
n=0

Sn−1 (A3)zn =
z

1− xz− yz2− tz3 , (3.10)

∞

∑
n=0

Sn−2 (A3)zn =
z2

1− xz− yz2− tz3 , (3.11)

respectively.
Multiplying the equation (3.9) by (a) and adding it to

the equation obtained by (3.10) multiplying by (b+(c−a)x)
and adding it to the equation obtained by (3.11) multiplying
by ((d−b)x+(e−a)y+( f − c)x2), then we obtain

∞

∑
n=0

(
aSn(A3)+(b+(c−a)x)Sn−1(A3)
+((d−b)x+(e−a)y+( f − c)x2)Sn−2 (A3)

)
zn

=
a+(b+(c−a)x)z+((d−b)x+(e−a)y+( f − c)x2)z2

1− xz− yz2− tz3 ,

and we have the following theorem.

Theorem 3.7. For n ∈ N, the new generating function of
generalized trivariate Fibonacci polynomials Wn (x,y, t) is
given by

∞

∑
n=0

Wn (x,y, t)zn

=
a+(b+(c−a)x)z+((d−b)x+(e−a)y+( f − c)x2)z2

1− xz− yz2− tz3 ,

(3.12)

with

Wn (x,y, t) = aSn(A3)+(b+(c−a)x)Sn−1(A3)

+((d−b)x+(e−a)y+( f − c)x2)Sn−2 (A3) .

Proof. The generalized trivariate Fibonacci polynomials can
be considered as the coefficients of the formal power series

g(x,y, t,z) =
∞

∑
n=0

Wn (x,y, t)zn.

Using the initial condition, we get

g(x,y, t,z) = W0 (x,y, t)+W1 (x,y, t)z+W2 (x,y, t)z2

+
∞

∑
n=3

Wn (x,y, t)zn

= W0 (x,y, t)+W1 (x,y, t)z+W2 (x,y, t)z2

+
∞

∑
n=3

(xWn−1 (x,y, t)+ yWn−2 (x,y, t))zn

+
∞

∑
n=3

tWn−3 (x,y, t)zn

= W0 (x,y, t)+W1 (x,y, t)z+W2 (x,y, t)z2

+xz
∞

∑
n=2

Wn (x,y, t)zn + yz2
∞

∑
n=1

Wn (x,y, t)zn

+tz3
∞

∑
n=0

Wn (x,y, t)zn

= W0 (x,y, t)+W1 (x,y, t)z+W2 (x,y, t)z2

−x(W0 (x,y, t)+W1 (x,y, t)z)z− yW0 (x,y, t)z2

+
(
xz+ yz2 + tz3) ∞

∑
n=0

Wn (x,y, t)zn

= a+(b+(c−a)x)z+((d−b)x+(e−a)y

+( f − c)x2)z2 +
(
xz+ yz2 + tz3)g(x,y, t,z).

Hence, we obtain(
1− xz− yz2− tz3)g(x,y, t,z) = a+(b+(c−a)x)z+

((d−b)x+(e−a)y+( f − c)x2)z2.

Therefore

g(x,y, t,z) =
a+(b+(c−a)x)z
1− xz− yz2− tz3

+
((d−b)x+(e−a)y+( f − c)x2)z2

1− xz− yz2− tz3 .

Thus, this completes the proof.

• By setting a = c = e = f = 0 and b = d = 1 in the
relationship (3.12), we obtain the following corollary.

Corollary 3.8. [9] For n ∈ N, the generating function of
trivariate Fibonacci polynomials Hn (x,y, t) is given by

∞

∑
n=0

Hn (x,y, t)zn =
z

1− xz− yz2− tz3 ,

with

Hn (x,y, t) = Sn−1(A3).

• Put a = 3, b = d = 0, c = f = 1 and e = 2 in the rela-
tionship (3.12), we can state the following corollary.
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Corollary 3.9. [9] For n ∈ N, the generating function of
trivariate Lucas polynomials Kn (x,y, t) is given by

∞

∑
n=0

Kn (x,y, t)zn =
3−2xz− yz2

1− xz− yz2− tz3 ,

with

Kn (x,y, t) = 3Sn(A3)−2xSn−1(A3)− ySn−2 (A3) .

Case 3. The substitution of a1 +a2 +a3 = 0
a1a2 +a1a3 +a2a3 =−ax
a1a2a3 = 1

in the relationships (3.1), (3.2) and (3.3), we obtain

∞

∑
n=0

Sn (A3)zn =
1

1−axz2− z3 , (3.13)

∞

∑
n=0

Sn−1 (A3)zn =
z

1−axz2− z3 , (3.14)

∞

∑
n=0

Sn−2 (A3)zn =
z2

1−axz2− z3 , (3.15)

respectively.
Multiplying the equation (3.13) by (1+bi) and adding

it to the equation obtained by (3.14) multiplying by (1+ i)
and adding it to the equation (3.15) multiplying by (1−ax+
i(1−abx)), then we obtain

∞

∑
n=0

(
(1+bi)Sn(A3)+(1+ i)Sn−1(A3)
+(1−ax+ i(1−abx))Sn−2 (A3)

)
zn

=
1+bi+(1+ i)z+(1−ax+ i(1−abx))z2

1−axz2− z3 ,

and we have the following theorem.

Theorem 3.10. For n ∈ N, the new generating function of
generalized Gaussian Padovan polynomials GMn (x) is given
by

∞

∑
n=0

GMn(x)zn =
1+bi+(1+ i)z+(1−ax+ i(1−abx))z2

1−axz2− z3 ,

(3.16)

with

GMn (x) = (1+bi)Sn (A3)+(1+ i)Sn−1 (A3)+

(1−ax+ i(1−abx))Sn−2 (A3) .

Proof. The generalized Gaussian Padovan polynomials can
be considered as the coefficients of the formal power series

g(x,z) =
∞

∑
n=0

GMn (x)zn.

Using the initial condition, we get

g(x,z) =GM0 (x)+GM1 (x)z+GM2 (x)z2+
∞

∑
n=3

GMn (x)zn

= GM0 (x)+GM1 (x)z+GM2 (x)z2 +
∞

∑
n=3

(axGMn−2 (x)+GMn−3 (x))zn

= GM0 (x)+GM1 (x)z+GM2 (x)z2 +

axz2
∞

∑
n=1

GMn (x)zn + z3
∞

∑
n=0

GMn (x)zn

= GM0 (x)+GM1 (x)z+GM2 (x)z2−axGM0 (x)z2 +

axz2
∞

∑
n=0

GMn (x)zn + z3
∞

∑
n=0

GMn (x)zn

= 1+bi+(1+ i)z+(1−ax+ i(1−abx))z2

+
(
axz2 + z3)g(x,z).

Hence, we obtain(
1−axz2− z3)g(x,z) = 1+bi+(1+ i)z

+(1−ax+ i(1−abx))z2.

Therefore

g(x,z) =
1+bi+(1+ i)z+(1−ax+ i(1−abx))z2

1−axz2− z3 .

Thus, this completes the proof.

• By taking a = 1 and b = 0 in the relationship (3.16),
we obtain the following corollary.

Corollary 3.11. [9] For n ∈ N, the generating function of
Gaussian Padovan polynomials GPn (x) is given by

∞

∑
n=0

GPn (x)zn =
1+(1+ i)z+(1− x+ i)z2

1− xz2− z3 ,

with

GPn (x) = Sn(A3)+(1+ i)Sn−1(A3)+(1− x+ i)Sn−2 (A3) .

• Put a = 2 and b =−1 in the relationship (3.16), we can
state the following corollary.
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Corollary 3.12. [9] For n ∈ N, the generating function of
Gaussian Pell Padovan polynomials GRn (x) is given by

∞

∑
n=0

GRn (x)zn =
1− i+(1+ i)z+(1−2x+ i(1+2x))z2

1−2xz2− z3 ,

with

GRn (x) = (1− i)Sn(A3)+(1+ i)Sn−1(A3)+

(1−2x+ i(1+2x))Sn−2 (A3) .

4. Construction of generating functions
of some well-known generalized Vieta

polynomials
In this part, we now derive the generating functions of

generalized Vieta-Jacobsthal polynomials, generalized Vieta-
Jacobsthal-Lucas polynomials, generalized Vieta-Pell polyno-
mials, generalized Vieta-Pell-Lucas polynomials and general-
ized Vieta-modified Pell polynomials.

• For the case A3 = {a1,−a2,0} in the relationships (3.1)
and (3.2) we deduce the following corollaries.

Corollary 4.1. Given an alphabet A2 = {a1,−a2}, we have

∞

∑
n=0

Sn (a1 +[−a2])zn =
1

1− (a1−a2)z−a1a2z2 . (4.1)

Corollary 4.2. Given an alphabet A2 = {a1,−a2}, we have

∞

∑
n=0

Sn−1 (a1 +[−a2])zn =
z

1− (a1−a2)z−a1a2z2 . (4.2)

This part consists of two cases.
Case 1. Assuming that{

a1−a2 = 2kx
a1a2 =−1

in the relationships (4.1) and (4.2), we obtain

∞

∑
n=0

Sn (a1 +[−a2])zn =
1

1−2kxz+ z2 , (4.3)

∞

∑
n=0

Sn−1 (a1 +[−a2])zn =
z

1−2kxz+ z2 , (4.4)

respectively, and we have the following corollary.

Corollary 4.3. For n ∈ N, the generating function of gener-
alized Vieta-Pell polynomials Pk,n (x) is given by

∞

∑
n=0

Pk,n (x)zn =
z

1−2kxz+ z2 , (4.5)

with

Pk,n (x) = Sn−1 (a1 +[−a2]) .

Multiplying the equation (4.3) by (2) and adding it to the
equation obtained by (4.4) multiplying by (−2kx), then we
have the following proposition and corollary.

Proposition 4.4. For n ∈ N, the generating function of gen-
eralized Vieta-Pell-Lucas polynomials Qk,n (x) is given by

∞

∑
n=0

Qk,n (x)zn =
2−2kxz

1−2kxz+ z2 . (4.6)

Corollary 4.5. The following identity holds true:

Qk,n (x) = 2Sn(a1 +[−a2])−2kxSn−1(a1 +[−a2]).

• Based on the relationships (4.5) and (4.6) and with
k = 1, we obtain the following corollaries.

Corollary 4.6. For n ∈ N, the generating function of Vieta-
Pell polynomials tn (x) is given by

∞

∑
n=0

tn (x)zn =
z

1−2xz+ z2 ,

with

tn (x) = Sn−1 (a1 +[−a2]) .

Corollary 4.7. For n ∈ N, the generating function of Vieta-
Pell-Lucas polynomials sn (x) is given by

∞

∑
n=0

sn (x)zn =
2−2xz

1−2xz+ z2 ,

with

sn (x) = 2Sn (a1 +[−a2])−2xSn−1 (a1 +[−a2]) .

Multiplying the equation (4.4) by (−2k−1x) and adding it
to the equation (4.3), then we have the following proposition
and corollary.

Proposition 4.8. For n ∈ N, the generating function of gen-
eralized Vieta-modified Pell polynomials qk,n (x) is given by

∞

∑
n=0

qk,n (x)zn =
1−2k−1xz

1−2kxz+ z2 . (4.7)

Corollary 4.9. The following identity holds true:

qk,n (x) = Sn(a1 +[−a2])−2k−1xSn−1(a1 +[−a2]).

Case 2. By taking{
a1−a2 = 1
a1a2 =−2kx

in the relationships (4.1) and (4.2), we obtain
∞

∑
n=0

Sn (a1 +[−a2])zn =
1

1− z+2kxz2 , (4.8)

∞

∑
n=0

Sn−1 (a1 +[−a2])zn =
z

1− z+2kxz2 , (4.9)

respectively, and we have the following corollary.
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Corollary 4.10. For n ∈ N, the generating function of gener-
alized Vieta-Jacobsthal polynomials Gk,n (x) is given by

∞

∑
n=0

Gk,n (x)zn =
z

1− z+2kxz2 , (4.10)

with

Gk,n (x) = Sn−1 (a1 +[−a2]) .

Multiplying the equation (4.8) by (2) and adding it to the
equation obtained by (4.9) multiplying by (−1), then we have
the following proposition.

Proposition 4.11. For n ∈ N, the generating function of gen-
eralized Vieta-Jacobsthal-Lucas polynomials gk,n (x) is given
by

∞

∑
n=0

gk,n (x)zn =
2− z

1− z+2kxz2 , (4.11)

with

gk,n (x) = 2Sn(a1 +[−a2])−Sn−1(a1 +[−a2]).

• Based on the relationships (4.10) and (4.11) and with
k = 1, we obtain the following corollaries.

Corollary 4.12. For n ∈ N, the generating function of Vieta-
Jacobsthal polynomials Gn (x) is given by

∞

∑
n=0

Gn (x)zn =
z

1− z+2xz2 ,

with

Gn (x) = Sn−1(a1 +[−a2]).

Corollary 4.13. For n ∈ N, the generating function of Vieta-
Jacobsthal-Lucas polynomials gn (x) is given by

∞

∑
n=0

gn (x)zn =
2− z

1− z+2xz2 ,

with

gn (x) = 2Sn(a1 +[−a2])−Sn−1(a1 +[−a2]).

5. Conclusion
In this paper, we have generalized the work of Saba, Bous-

sayoud and Abderrezzak [9] by introduced the generaliza-
tions of some numbers and polynomials. Some important
generalizations of generating functions are produced. By mak-
ing use of theorem (2.8), we have obtained propositions and

corollaries which is led to generating function for a class of
generalized vieta polynomials.

The results obtained in this work are promising, but there
are other perspictives to follow in the field. Future work
should be based on the extension of the generating functions
of binary products of Gaussian generalized Tribonacci num-
bers with generalized polynomials of second-order linear re-
currence sequences.
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