

https://doi.org/10.26637/MJM0804/0078

Neutrosophic $PRE - \alpha$, $SEMI - \alpha$ and $PRE - \beta$ irresolute open and closed mappings in neutrosophic topological spaces

T. Rajesh Kannan^{1*} and S. Chandrasekar²

Abstract

Aim of this present paper is, the notions of Neutrosophic pre- α -irresolute open & closed mappings, Neutrosophic α -irresolute open & closed mappings, Neutrosophic semi- α -irresolute open & closed mappings and Neutrosophic pre- β -irresolute open & closed mappings are introduced and Besides giving characterizations of these mappings and several interesting properties of these mappings are also discussed.

Keywords

Neutrosophic α -irresolute, Neutrosophic pre α -irresolute, Neutrosophic β -irresolute, Neutrosophic α -closed sets; Neutrosophic topological spaces.

AMS Subject Classification

03E72.

1.2 PG & Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India. *Corresponding author: 1 rajeshkannan03@yahoo.co.in; 2 chandrumat@gmail.com Article History: Received 19 August 2020; Accepted 14 October 2020 ©2020 MJM.

> Venkateswara Rao [22] et.al., are introduced by pre open sets in Neutrosophic topological space. In this paper, the concepts of Neutrosophic pre- α -irresolute open and closed mappings, Neutrosophic

α -irresolute open and closed mappings, Neutrosophic semi-a-irresolute open and closed mappings and Neutrosophic pre- β -irresolute open and closed mappings are introduced and studied. Besides giving characterizations of these mappings, several interesting properties of these mappings are also given.

2. Preliminaries

In this section, we introduce the basic definition for Neutrosophic sets and its operations.

Definition 2.1 ([8]). Let \mathscr{S}^1_N be a non-empty fixed set. A Neutrosophic set $A_{\mathcal{S}_{\mathcal{N}}^{1}}$ is the form

$$A_{\mathscr{S}_{N}^{1}} = \{ < \xi^{*}, \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) >: \xi^{*} \in \mathscr{S}_{N}^{1} \}.$$

Where $\mu_{\mathscr{S}^1_N}(\xi^*): \mathscr{S}^1_N \to [0,1], \ \sigma_{A_{\mathscr{S}^1_N}}(\xi^*): \mathscr{S}^1_N \to [0,1],$ $\gamma_{A_{R_{*}^{1}}}(\xi^{*}):\mathscr{S}_{N}^{1}\to[0,1]$ are represent Neutrosophic of the degree of membership function, the degree indeterminacy and

Contents

1	Introduction 1795
2	Preliminaries1795
3	Neutrosophic PRE- α ,SEMI- α and PRE- β Irresolute Open Mappings
4	Properties and Characterizations1801
5	Properites of Neutrosophic PRE- α , SEMI- α and PRE- β Irresolute closed Mappings
6	Conclusion1805
	References

1. Introduction

C.L. Chang [7] was introduced fuzzy topological space by using . Zadeh's L.A [23] (uncertain) fuzzy sets. Further Coker [8] was developed the notion of intuitionistic fuzzy topological spaces by using Atanassov's [1] Smarandache [7] was defined the Neutrosophic set of three component (t, f, i)= (Truth, Falsehood, Indeterminacy). The Neutrosophic crisp set concept converted to Neutrosophic topological spaces by A.A. Salama [20]. I. Arokiarani [2] et al, introduced K. Bageerathi [11] was Neutrosophic α -closed sets. developed to the concept of semiopen set and V. the degree of non membership function respectively of each element $\xi^* \in \mathscr{S}^1_N$ to the set $A_{\mathscr{S}^1_N}$ with

$$0 \leq \mu_{A_{\mathcal{S}_{N}^{1}}}(\xi^{*}) + \sigma_{A_{\mathcal{S}_{N}^{1}}}(\xi^{*}) + \gamma_{A_{\mathcal{S}_{N}^{1}}}(\xi^{*}) \leq 1.$$

This is called standard form generalized fuzzy sets. But also Neutrsophic set may be

$$0 \leq \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) + \sigma_{A_{\mathscr{S}_{N}^{1}}}(\zeta^{*}) + \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \leq 3.$$

Definition 2.2 ([8]). Each Intuitionistic fuzzy set $A_{\mathscr{S}_N^1}$ is a non-empty set in \mathscr{S}_N^1 is obviously on Neutrosophic set having the form

$$\begin{split} A_{\mathscr{S}_{N}^{1}} &= \{ <\xi^{*}, \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), (1-(\mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*})+\gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}))), \\ &\gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) >: \xi^{*} \in \mathscr{S}_{N}^{1} \}. \end{split}$$

Definition 2.3 ([8]). We must introduce the Neutrosophic set 0_N and 1_N in \mathscr{S}^1_N as follows:

$$0_{N} = \{ < \xi^{*}, \ 0, 0, 1 >: \xi^{*} \in \mathscr{S}_{N}^{1} \}$$

and
$$1_{N} = \{ < \xi^{*}, \ 1, 1, 0 >: \xi^{*} \in \mathscr{S}_{N}^{1} \}.$$

Definition 2.4 ([8]). Let \mathscr{S}_N^1 be a non-empty set and Neutrosophic sets $A_{\mathscr{S}_N^1}$ and $B_{\mathscr{S}_N^1}$ in the form NS

$$A_{\mathscr{S}_{N}^{1}} = \{ < \xi^{*}, \, \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*})) >: \xi^{*} \in \mathscr{S}_{N}^{1} \}$$

and

$$B_{\mathscr{S}_{N}^{1}} = \{ <\xi^{*}, \ \mu_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \sigma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \gamma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}) >: \xi^{*} \in \mathscr{S}_{N}^{1} \}$$

defined as:

$$\begin{split} &I. \ A_{\mathscr{S}_{N}^{1}} \subseteq B_{\mathscr{S}_{N}^{1}} \Leftrightarrow \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \leq \mu_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \leq \\ & \sigma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \ and \ \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \geq \gamma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \\ &2. \ A_{\mathscr{S}_{N}^{1}}^{C} = \{ < \xi^{*}, \ \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \ \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) > : \\ & \xi^{*} \in \mathscr{S}_{N}^{1} \} \end{split}$$

3.
$$A_{\mathscr{S}_{N}^{1}} \cap B_{\mathscr{S}_{N}^{1}} = \{ \langle \xi^{*}, \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \rangle \land \mu_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \\ \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \rangle \land \sigma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \lor \gamma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}) >: \xi^{*} \\ \in R_{N}^{1} \}$$

4.
$$A_{\mathscr{S}_{N}^{1}} \cup B_{\mathscr{S}_{N}^{1}} = \{ < \xi^{*}, \ \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \lor \mu_{B_{\mathscr{S}_{N}^{1}}}(\xi), \ \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \\ \lor \sigma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \ \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}) \land \gamma_{B_{\mathscr{S}_{N}^{1}}}(\xi^{*}) >: \xi^{*} \in \mathscr{S}_{N}^{1} \}.$$

Proposition 2.5 ([8]). For all $A_{\mathcal{S}_N^1 and} B_{\mathcal{S}_N^1}$ are two *Neutrosophic sets then the following condition are true:*

$$\begin{split} & I. \ (A_{\mathscr{S}_N^1} \cap B_{\mathscr{S}_N^1})^{c_{=}} (A_{\mathscr{S}_N^1})^c \cup (B_{\mathscr{S}_N^1})^c. \\ & 2. \ (A_{\mathscr{S}_N^1} \cup B_{\mathscr{S}_N^1})^{c_{=}} (A_{\mathscr{S}_N^1})^c \cap (B_{\mathscr{S}_N^1})^c. \end{split}$$

Definition 2.6 ([18]). A Neutrosophic topology is a nonempty set \mathscr{S}_N^1 is a family $\tau_{N_{\mathscr{S}_N^1}}$ of Neutrosophic subsets in \mathscr{S}_N^1 satisfying the following axioms:

$$l. \quad 0_N, 1_N \in \tau_{N_{\mathscr{S}_N^1}}$$

2.
$$G_{\mathscr{S}_N^1} \cap H_{\mathscr{S}_N^1} \in \tau_{N_{\mathscr{S}_N^1}}$$
 for any $G_{\mathscr{S}_1^N}, H_{\mathscr{S}_1^N} \in \tau_{N_{\mathscr{S}_N^1}}$

3.
$$\bigcup_i Gi_{\mathscr{S}_N^1} \in \tau_{N_{\mathscr{S}_N^1}}$$
 for every $Gi_{\mathscr{S}_N^1} \in \tau_{N_{R_N^1}}, i \in J$.

The pair $(\mathscr{S}_N^1, \tau_{N_{\mathscr{S}_N^1}})$ is called a Neutrosophic topological space.

The element Neutrosophic topological spaces of $\tau_{N_{\mathscr{S}_{N}^{1}}}$ are called Neutrosophic open sets. It is denoted by NOS \mathscr{S}_{N}^{1} .

A Neutrosophic set $A_{\mathscr{S}_N^1}$ is closed if and only if $A_{\mathscr{S}_N^1}^C$ is Neutrosophic open. It is denoted by $NCS\mathscr{S}_N^1$.

Definition 2.7 ([20]). Let $(\mathscr{S}_N^1, \tau_{N_{\mathscr{S}_N^1}})$ be Neutrosophic topological spaces.

$$A_{\mathscr{S}_{N}^{1}} = \{ <\xi^{*}, \mu_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}), \gamma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*})) >: \xi^{*} \in \mathscr{S}_{N}^{1} \}$$

be a Neutrosophic set in \mathscr{S}^1_N

- 1. Neu-Cl($A_{\mathscr{S}_N^1}$) = $\cap \{K_{\mathscr{S}_N^1} : K_{\mathscr{S}_N^1} \text{ is a Neutrosophic closed set in } \mathscr{S}_N^1 \text{ and } A_{\mathscr{S}_N^1} \subseteq K_{\mathscr{S}_N^1} \}$. It is denoted by $\underset{Neu}{Cl} A_{\mathscr{S}_N^1}$.
- 2. Neu-Int $(A_{\mathcal{S}_N^1}) = \bigcup \{G_{\mathcal{S}_N^1} : G_{\mathcal{S}_N^1} \text{ is a Neutrosophic open}$ set in \mathcal{S}_N^1 and $G_{\mathcal{S}_N^1} \subseteq A_{\mathcal{S}_N^1}\}$. It is denoted by $\stackrel{Int}{Neu}A_{\mathcal{S}_N^1}$.
- 3. Neutrosophic semi-open if $A_{\mathscr{S}_N^1} \subseteq {}^{Cl}_{Neu}({}^{int}_{Neu}A_{\mathscr{S}_N^1})$. It is denoted by $N^S OS \mathscr{S}_N^1$.
- 4. The complement of Neutrosophic semi-open set is called Neutrosophic semi-closed.
- 5. Neus-Cl($A_{\mathcal{S}_N^1}$) = $\cap \{K_{\mathcal{S}_N^1}/K_{\mathcal{S}_N^1} \text{ is a Neutrosophic semi closed set in } \mathcal{S}_N^1 \text{ and } A_{\mathcal{S}_N^1} \subseteq K_{\mathcal{S}_N^1} \}$. It is denoted by $\frac{SCl}{Neu}A_{\mathcal{S}_N^1}$.
- 6. Neus-Int $(A_{\mathscr{S}_N^1}) = \bigcup \{G_{\mathscr{S}_N^1} : G_{\mathscr{S}_N^1} \text{ is a Neutrosophic semi}$ open set in \mathscr{S}_N^1 and $G_{\mathscr{S}_N^1} \subseteq A_{\mathscr{S}_N^1} \}$. It is denoted by $\frac{Sint}{Neu}A_{\mathscr{S}_N^1}$.
- 7. Neutrosophic α -open set if $A_{\mathscr{S}_N^1} \subseteq \underset{Neu}{\overset{int}{Neu}} (\underset{Neu}{\overset{(int}{Neu}} A_{\mathscr{S}_N^1}))$. It is denoted by $N^{\alpha} 0S\mathscr{S}_N^1$.
- 8. The complement of Neutrosophic α-open set is called Neutrosophic α-closed.
- 9. $Neu\alpha C1(A_{\mathscr{S}_N^1}) = \bigcap \{K_{\mathscr{S}_N^1} : K_{A_{\mathscr{S}_N^1}} \text{ is a Neutrosophic} \\ \alpha\text{-closed set in } \mathscr{S}_N^1 \text{ and } A_{\mathscr{S}_N^1} \subseteq K_{\mathscr{S}_N^1} \}.$ It is denoted by $\alpha_{Neu}^{\alpha cl} A_{\mathscr{S}_N^1}.$

- 10. $Neu\alpha Int(A_{\mathbb{R}^1_N}) = \bigcup \{G_{\mathscr{S}^1_N} : G_{\mathscr{S}^1_N} \text{ is a Neutrosophic}$ $\alpha \text{ -open set in } \mathscr{S}^1_N \text{ and } G_{\mathscr{S}^1_N} \subseteq A_{\mathscr{S}^1_N} \}.$ It is denoted by $\alpha_{Neq}^{int}A_{\mathscr{S}^1_N}.$
- 11. Neutrosophic pre open set if $A_{\mathscr{S}_N^1} \subseteq \underset{Neu}{\overset{int}{N}} \binom{Cl}{Neu} A_{\mathscr{S}_N^1}$. It is denoted by $N^P OS \mathscr{S}_N^1$.
- 12. The complement of Neutrosophic pre-open set is called Neutrosophic pre-closed.
- 13. Neup-C1($A_{\mathscr{S}_N^1}$) = $\cap \{K_{A_{\mathscr{S}_N^1}} : K_{A_{\mathscr{S}_N^1}} \text{ is a Neutrosophic} p-closed set in <math>\mathscr{S}_N^1$ and $A_{\mathscr{S}_N^1} \subseteq K_{\mathscr{S}_N^1}\}$. It is deoted by $\frac{pcl}{Neu}A_{\mathscr{S}_N^1}$.
- 14. Neup-Int $(A_{R_N^1}) = \bigcup \{G_{A_{\mathscr{S}_N^1}} : G_{A_{\mathscr{S}_N^1}} \text{ is a Neutrosophic}$ p-open set in \mathscr{S}_N^1 and $G_{\mathscr{S}_N^1} \subseteq A_{\mathscr{S}_N^1} \}$. It is denoted by $\underset{Neu}{\overset{pint}{Neu}} A_{\mathscr{S}_N^1}$.

Definition 2.8 ([9]). Take $\Sigma'_1, \Sigma'_2, \Sigma'_3$ are belongs to real numbers 0 to 1 such that $0 \le \Sigma'_1 + \Sigma'_2 + \Sigma'_3 \le 1$. An Neutrosophic point $f(\Sigma'_1, \Sigma'_2, \Sigma'_3)$ is Neutrosophic set defined by

$$f(\Sigma_1', \Sigma_2', \Sigma_3') = \begin{cases} (\Sigma_1', \Sigma_2', \Sigma_3'), & \text{if } \Sigma = f \\ (0, 0, 1), & \text{if } \Sigma \neq f. \end{cases}$$

Take $(\Sigma_1, \Sigma_2, \Sigma_3) = \langle f_{\Sigma_1}, f_{\Sigma_2}, f_{\Sigma_3} \rangle$, where $f_{\Sigma_1}, f_{\Sigma_2}, f_{\Sigma_3}$ are represent Neutrosophic the degree of membership function, the degree indeterminacy and the degree of non-membership function respectively of each element $\Sigma^* \in \mathscr{S}_N^1$ to the set $A_{\mathscr{S}_N^1}$.

Definition 2.9 ([9]). Let \mathscr{S}_N^1 and \mathscr{S}_N^2 be two finite sets. Define $\psi_1 : \mathscr{S}_N^1 \to \mathscr{S}_N^2$. If

$$A_{\mathscr{S}_{N}^{2}} = \{ <\theta, \ \mu_{A_{\mathscr{S}_{N}^{2}}}(\theta), \sigma_{A_{\mathscr{S}_{N}^{2}}}(\theta), \gamma_{A_{\mathscr{S}_{N}^{2}}}(\theta)) >: \theta \in \mathscr{S}_{N}^{2} \}$$

is an NS in \mathscr{S}^2_N , then the inverse image(pre image) $A_{\mathscr{S}^2_N}$ under ψ_1 is an NS defined by

$$\begin{split} & \psi_1^{-1}(A_{\mathscr{S}_N^2}) = \\ & <\xi^*, \psi_1^{-1}\mu_{A_{\mathscr{S}_N^2}}(\xi^*), \psi_1^{-1}\sigma_{A_{\mathscr{S}_N^2}}(\xi^*), \psi_1^{-1}\gamma_{A_{\mathscr{S}_N^2}}(\xi^*) : \xi^* \in \mathscr{S}_N^1 > . \end{split}$$

Also define image NS

$$U = <\xi^*, \mu_U(\xi^*), \sigma_U(\xi^*), \gamma_U(\xi^*): \xi^* \in \mathscr{S}^1_N: >$$

under ψ_1 is an NS defined by

$$\begin{split} \psi_1(U) &= \\ &< \theta, \psi_1(\mu_{A_{\mathscr{S}^2_N}}(\theta)), \psi_1(\sigma_{A_{\mathscr{S}^2_N}}(\theta)), \psi_1(\gamma_{A_{\mathscr{S}^2_N}}(\theta): \theta \in \mathscr{S}^2_N > \end{split}$$

where

$$\begin{split} \psi_1(\mu_{A_{\mathscr{S}_N^2}}(\theta)) &= \begin{cases} \sup \mu_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if } \psi_1^{-1}(\theta) \neq \phi, \\ & \xi^* \in \psi_1^{-1}(\theta) \\ 0, & elsewhere \end{cases} \\ \psi_1(\sigma_{A_{\mathscr{S}_N^2}}(\theta)) &= \begin{cases} \sup \sigma_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if } \psi_1^{-1}(\theta) \neq \phi, \\ & \xi^* \in \psi_1^{-1}(\theta) \\ 0, & elsewhere \end{cases} \\ \psi_1(\gamma_{A_{\mathscr{S}_N^2}}(\theta)) &= \begin{cases} \inf(\gamma_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if} \psi_1^{-1}(\theta) \neq \phi, \\ & \xi^* \in \psi_1^{-1}(\theta) \\ 0, & elsewhere \end{cases} \end{split}$$

 $\begin{array}{lll} \textbf{Definition} & \textbf{2.10} & ([2]). & A & mapping \\ \psi_1 : (\mathscr{S}_N^1, \tau_{N_{\mathscr{S}_N^1}}) \to (\mathscr{S}_N^2, \tau_{N_{\mathscr{S}_N^2}}) \text{ is called } a & \end{array}$

- 1. Neutrosophic continuous (Neu-continuous) if $\psi_1^{-1}(A_{\mathscr{S}^2_N}) \in NCS\mathscr{S}^1_N$ whenever $A_{\mathscr{S}^2_N} \in NCS\mathscr{S}^2_N$.
- 2. Neutrosophic α -continuous (Neu α -continuous) if $\psi_1^{-1}(A_{\mathscr{S}^2_N}) \in N^{\alpha}CS\mathscr{S}^1_N$ whenever $A_{\mathscr{S}^2_N} \in NCS\mathscr{S}^2_N$.
- 3. Neutrosophic semi-continuous (Neu semi-continuous) if $\psi_1^{-1}(A_{\mathscr{P}^2_v}) \in N^s CS \mathscr{P}^1_N$ whenever $A_{\mathscr{P}^2_v} \in NCS \mathscr{P}^2_N$.

- 1. Neutrosophic open map if $\psi_1(A_{\mathscr{S}_N^1}) \in NOS\mathscr{S}_N^2$ whenever $A_{\mathscr{S}_N^1} \in NOS\mathscr{S}_N^1$.
- 2. Neutrosophic α -open map if $\psi_1(A_{\mathscr{S}_N^1}) \in N^{\alpha}OS\mathscr{S}_N^2$ whenever $A_{\mathscr{S}_N^1} \in NOS\mathscr{S}_N^1$.
- 3. Neutrosophic pre -open map if $\psi_1(A_{\mathscr{S}_N^1}) \in N^P 0S\mathscr{S}_N^2$ whenever $A_{\mathscr{S}_N^1} \in NOS\mathscr{S}_N^1$.
- 4. Neutrosophic β -open map if $\psi_1(A_{\mathscr{S}_N^1}) \in N^{\beta}OS\mathscr{S}_N^2$ whenever $A \in NOS\mathscr{S}_N^1$.

3. Neutrosophic PRE- α ,SEMI- α and PRE- β Irresolute Open Mappings

In this section, we introduce the Neutrosophic PRE- α , SEMI- α and PRE- β Irresolute Open Mappings and its properties.

Definition 3.1. A mapping $\lambda^N_{\dashv} : (\mathfrak{R}^1_N, \mathfrak{I}^1_N) \to (\mathfrak{R}^2_N, \mathfrak{I}^2_N)$ and λ^N_{\dashv} is said to be

1. Neutrosophic Pre- α irresolute open (Neutrosophic pre- α -irresolute closed.) mapping if $\lambda^N_{+}(V_1)$ is an $N^{\alpha}OS(N^{\alpha}CS)$ in $(\mathfrak{R}^2_N,\mathfrak{T}^2_N)$ for every $N^POS(N^PCS)V_1$ in $(\mathfrak{R}^1_N,\mathfrak{T}^1_N)$.

- 2. Neutrosophic α -irresolute open mapping (Neutrosophic α -irresolute closed) mapping if $\lambda_{\dashv}^{N}(V_{1})$ is an $N^{\alpha}OS(N^{\alpha}CS)$ in $(\Re_{N}^{2}, \Im_{N}^{2})$ for every $N^{\alpha}OS(CS)V_{1}$ in $(\Re_{N}^{1}, \Im_{N}^{1})$.
- 3. Neutrosophic semi- α -irresolute open (Neutrosophic semi- α -irresolute closed.) mapping. if $\lambda^N_{-1}(V_1)$ is an $N^{\alpha}OS(N^{\alpha}CS)$ in $(\mathfrak{R}^2_N, \mathfrak{I}^2_N)$ for every $N^{\mathscr{S}}OS(N^{\mathscr{S}}CS)V_1$ in $(\mathfrak{R}^1_N, \mathfrak{I}^1_N)$.
- 4. Neutrosophic pre- β -irresolute open (Neutrosophic pre- β -irresolute closed.) mapping if $\lambda^N_{\dashv}(V_1)$ is an $N^{\beta}OS(N^{\beta}CS)$ in $(\mathfrak{R}^2_N,\mathfrak{I}^2_N)$ for every $N^POS(N^PCS)V_1$ in $(\mathfrak{R}^1_N,\mathfrak{I}^1_N)$.

Proposition 3.2. Every Neutrosophic Pre- α (Neutrosophic α and Neutrosophic semi- α) irresolute open mapping is Neutrosophic α -open mapping.

Proof. Let λ_{\dashv}^{N} : $(\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \rightarrow (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$. Assume that λ_{\dashv}^{N} is Neutrosophic pre-α (Neutrosophic α and Neutrosophic semi-α) -irresolute open mapping. Let V_{1} be $NOS\mathfrak{R}_{N}^{1}$. Since every $NOS\mathfrak{R}^{1}$ is an $N^{P}OS\mathfrak{R}_{N}^{1}(N^{\alpha}OS\mathfrak{R}_{N}^{1})$ and $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1})$. Take V_{1} is an $N^{P}OS\mathfrak{R}_{N}^{1}(N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1})$ and $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1})$. As λ_{\dashv}^{n} is an Neutrosophic pre-α (Neutrosophic- α and Neutrosophic semi-α, resp.) irresolute open mapping. $\lambda_{\dashv}^{N}(V_{1})$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{2}$. Hence λ_{\dashv}^{N} is Neutrosophic $\alpha - open$ (Neutrosophic α and Neutrosophic semi-α) mapping. □

Remark 3.3. The above converse of the Proposition necessity not be true as shown by the following below examples.

Example 3.4. Let $\mathfrak{R}_N^1 = \{a_n b_n c_n\} = \mathfrak{R}_N^2$ then $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2 U} C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2 U} C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2 U} C_{\mathfrak{R}_N^2}, a_{\mathfrak{R}_N^2 U} C_{\mathfrak{R}_N^2} C_{\mathfrak{R}_N^2}, a_{\mathfrak{R}_N^2 U} C_{\mathfrak{R}_N^2} C_{\mathfrak$

- $A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.5), (b_n, 0.4, 0.5, 0.6), (c_n, 0.6, 0.5, 0.4) \\ > : x \in \mathfrak{R}_N^1 \}$
- $B_{\mathfrak{N}_N^2} = \{ \langle y, (a_n, 0.5, 0.5, 0.5), (b_n, 0.3, 0.5, 0.7), (c_n, 0.6, 0.5, 0.4) \\ >; y \in \mathfrak{R}_N^1 \}$
- $C_{\mathfrak{M}_{N}^{2}} = \{ \langle y, (a_{n}, 0.2, 0.5, 0.7), (b_{n}, 0.4, 0.5, 0.6), (c_{n}, 0.3, 0.5, 0.7) \\ > ; y \in \mathfrak{R}_{N}^{1} \}$
- $$\begin{split} D_{\mathfrak{R}_N^1} &= \{ < x, \, (a_n, 0.5, 0.5, 0.4), \, (b_n, 0.4, 0.5, 0.5), \, (c_n, 0.6, 0.5, 0.4) \\ &> ; x \in \mathfrak{R}_N^1 \}. \end{split}$$

Proposition 3.5. Every Neutrosophic Pre- α Neutrosophic and Neutrosophic semi- α , resp.)-irresolute open mapping is Neutrosophic-open mapping.

Proof. Let λ_{\dashv}^{N} : $(\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \rightarrow (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$. Assume that λ_{\dashv}^{N} is Neutrosophic pre- α (Neutrosophic α and Neutrosophic semi-α.)-irresolute open mapping. Let V_{1} be $NOS\mathfrak{R}_{N}^{1}$. Since every $NOS\mathfrak{R}_{N}^{1}$ is an $N^{P}OS\mathfrak{R}_{N}^{1}(N^{\alpha}OS\mathfrak{R}_{N}^{1})$ and $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1}$, resp) V_{1} is an $N^{P}OS\mathfrak{R}_{N}^{1}(N^{\alpha}OS\mathfrak{R}_{N}^{1})$ and $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1}$ is an Neutrosophic pre-α (Neutrosophic α – and Neutrosophic semi-α-, resp.) irresolute open mapping. $\lambda_{\dashv}^{N}(V_{1})$ is an $N^{\alpha}OS$ in \mathfrak{R}_{N}^{2} . Hence $\lambda_{\dashv}^{N}(V_{1})$ is an $N^{\beta}OS$ in \mathfrak{R}_{N}^{2} . Hence λ_{\dashv}^{N} is Neutrosophic β-open(Neutrosophic α and Neutrosophic semi-α) mapping. □

Remark 3.6. The above converse of the Proposition necessity not be true as shown by the following below examples.

Example 3.7. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and let $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ be a two Neutrosophic Topological spaces on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 . Where

- $$\begin{split} A_{\mathfrak{R}_N^1} &= \{ < x, \ (a_n, 0.5, 0.5, 0.3), (b_n, 0.3, 0.5, 0.5), (c_n, 0.4, 0.5, 0.6) \\ &>; x \in \mathfrak{R}_N^1 \}, \end{split}$$
- $$\begin{split} B_{\mathfrak{R}^2_N} &= \{ < y, \ (a_n, 0.4, 0.5, 0.6), (b_n, 0.4, 0.5, 0.3), (c_n, 0.2, 0.5, 0.6) \\ &> ; y \in \mathfrak{R}^1_N \}, \end{split}$$

Define an Neutrosophic mapping $\lambda_{\neg}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \rightarrow (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ by $\lambda_{\neg}^{N}(a_{n}) = a_{n}, \lambda_{\neg}^{N}(b_{n}) = b_{n}, \lambda_{\neg}^{N}(c_{n}) = c_{n}$. Take $A_{\mathfrak{R}_{N}^{1}}$ is Neutrosophic Open set in \mathfrak{R}_{N}^{1} . Then $\lambda_{\neg}^{N}(A_{N})$ is an $N^{\beta}OS\mathfrak{R}_{N}^{2}$. Thus λ_{\neg}^{N} is Neutrosophic-open mapping. But not Neutrosophic Pre- α (Neutrosophic and Neutrosophic semi- α)-irresolute open mapping.

Proposition 3.8. Every Neutrosophic pre- α (Neutrosophic semi- α) irresolute open mapping is Neutrosophic- irresolute open mapping.

Proof. Consider, $\lambda_{\dashv}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ is Neutrosophic pre- α (Neutrosophic semi- α .) - irresolute open mapping. Let V_1 be $N^{\alpha}OS\mathfrak{R}_N^1$. Since every $N^{\alpha}OS\mathfrak{R}_N^1$ is an $N^POS\mathfrak{R}_N^1(N^SOS\mathfrak{R}_N^1)$. Then V_1 is an $N^POS\mathfrak{R}_N^1(N^{\mathscr{S}}OS\mathfrak{R}_N^1)$. As λ_{\dashv}^N is an Neutrosophic pre- α (Neutrosophic semi- α resp.) -irresolute open mapping, $\lambda_{\dashv}^N(V_1)$ is an $N^{\alpha}OS\mathfrak{R}_N^2$. Hence λ_{\dashv}^N is Neutrosophic-irresolute open mapping.

Remark 3.9. The above converse of the Proposition necessity not be true as shown by the following below examples.

Example 3.10. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and take, $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ are a two Neutrosophic

Topological spaces on \mathfrak{R}^1_N and \mathfrak{R}^2_N where

$$\begin{split} A_{\mathfrak{R}_N^1} &= \{ < x, (a_n, 0.5, 0.5, 0.3), (b_n, 0.3, 0.5, 0.5), \\ &\quad (c_n, 0.4, 0.5, 0.6) >; x \in \mathfrak{R}_N^1 \}, \\ B_{\mathfrak{R}_N^2} &= \{ < y, (a_n, 0.4, 0.5, 0.6), (b_n, 0.4, 0.5, 0.3), \\ &\quad (c_n, 0.2, 0.5, 0.6) >; y \in \mathfrak{R}_N^1 \}, \\ C_{\mathfrak{R}_N^1} &= \{ < x, (a_b, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3), \\ &\quad (c_n, 0.7, 0.5, 0.3) >; x \in \mathfrak{R}_N^1 \} \end{split}$$

Example 3.11. Let $\Re^1_N = \{a_n, b_n\}, \ \Re^2_N = \{c_n, d_n\}$ and take,

$$\mathfrak{S}_{N}^{1} = \{0_{Nr}A_{\mathfrak{R}_{N'}^{1}}1_{N}\}, \qquad \mathfrak{S}_{N}^{2} = \{0_{N}, B_{\mathfrak{R}_{N}^{2}}, 1_{N}\}$$

are two Neutrosophic Topological spaces on \mathfrak{R}^1_N and \mathfrak{R}^2_N where

$$\begin{split} A_{\mathfrak{R}_N^1} &= \{ < x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.3, 0.5, 0.6) >; \\ & x \in \mathfrak{R}_N^1 \}, \\ B_{\mathfrak{R}_N^2} &= \{ < y, (c_n, 0.3, 0.5, 0.6), (d_n, 0.4, 0.5, 0.5) >; \\ & y \in \mathfrak{R}_N^1 \}, \\ C_{\mathfrak{R}_N^1} &= \{ < x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3) >; \\ & x \in \mathfrak{R}^{1_N} \} \end{split}$$

is in Neutrosophic \mathfrak{R}^{1_N} . Define an Neutrosophic mapping $\lambda^N_{\dashv} : (\mathfrak{R}^{1_N}, \mathfrak{I}^{1_N}) \to (\mathfrak{R}^2_N, \mathfrak{I}^2_N)\lambda^N_{\dashv}(a_n) = c_n, \lambda^N_{\dashv}(b_n) = d_n$. Then $A_{\mathfrak{R}^1_N}$ is an $NOS\mathfrak{R}^1_N$ and $N^{\alpha}OS\mathfrak{R}^1_N$. Therefore λ^N_{\dashv} is Neutrosophic α -irresolute open mapping. and also $C_{\mathfrak{R}^1_N}$ is an $N^{\mathscr{S}}OS\mathfrak{R}^1_N$. Hence $\lambda^N_{\dashv}(C_{\mathfrak{R}^1_N})$ is not in $N^{\alpha}OS\mathfrak{R}^2_N$ and λ^N_{\dashv} is not Neutrosophic semi- α -irresolute open mapping.

Proposition 3.12. Every Neutrosophic pre- α irresolute open mapping is Neutrosophic pre- β -irresolute open mapping.

Proof. Consider, $\lambda_{\dashv}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ is Neutrosophic pre- α irresolute open mapping. Let V_{1} be $N^{P}OS\mathfrak{R}_{N}^{1}$. As λ_{\dashv}^{N} is an Neutrosophic pre- α irresolute open mapping, $\lambda_{\dashv}^{N}(V_{1})$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{2}$. Hence $\lambda_{\dashv}^{N}(V_{1})$ is an $N^{\beta}OS\mathfrak{R}_{N}^{2}$. Hence λ_{\dashv}^{N} is Neutrosophic pre β -irresolute open mapping.

Remark 3.13. The above converse of the Proposition necessity not be true as shown by the following below examples.

Example 3.14. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and take $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ are a two Neutrosophic Topological spaces on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 where

$$\begin{split} A_{\Re_N^1} &= \{ < x, (a_n, 0.5, 0.5, 0.3), (b_n, 0.3, 0.5, 0.5), \\ &\quad (c_n, 0.4, 0.5, 0.6) >; x \in \Re_N^1 \}, \\ B_{\Re_N^2} &= \{ < y, (a_n, 0.4, 0.5, 0.6), (b_n, 0.4, 0.5, 0.3), \\ &\quad (c_n, 0.2, 0.5, 0.6) >; y \in \Re_N^1 \}, \\ C_{\Re_N^1} &= \{ < x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3), \\ &\quad (c_n, 0.7, 0.5, 0.3) >; x \in \Re_N^1 \}. \end{split}$$

is in neutrosophic \mathfrak{R}_N^1 . Define an Neutrosophic mapping λ_{\dashv}^N : $(\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ by $\lambda_{\dashv}^N(a_n) = b_n$, $\lambda_{\dashv}^N(b_n) = c_n, \lambda_{\dashv}^N(c_n) = a_n$. Here $A_{\mathfrak{R}_N^1}$ is an NeutrosophicOpen set and, $N^{\alpha}OS\mathfrak{R}_N^1$. We get, $\lambda_{\dashv}^N(A_{\mathfrak{R}_N^1})$, is an $N^{\alpha}OS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Thus λ_{\dashv}^{Nis} Neutrosophic- irresolute open mapping. Finally $C_{\mathfrak{R}_N^1}$ is Neutrosophic pre- β -irresolute open mapping. And also $\lambda_{\dashv}^N(C_{\mathfrak{R}_N^1})$ is not N^{\alpha}OS\mathfrak{R}_N^2. Hence λ_{\dashv}^N is not Neutrosophic Pre- α -irresolute open mapping.

Proposition 3.15. Every Neutrosophic semi- α -irresolute open mapping is Neutrosophic irresolute open mapping.

Proof. Take λ_{\dashv}^{N} : $(\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \rightarrow (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ from an Neutrosophic topological space. $(\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1})$ to another Neutrosophic topological space $(\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ is Neutrosophic semi- *α* -irresolute open mapping. Let $C_{\mathfrak{R}_{N}^{1}}$ bein $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1}$. As λ_{\dashv}^{N} is an Neutrosophic semi-*α* – irresolute open $\lambda_{\dashv}^{N}(C_{\mathfrak{R}_{N}^{1}})$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{2}$. Every $N^{\alpha}OS\mathfrak{R}_{N}^{2}$ is also in $N^{s}OS\mathfrak{R}_{N}^{2}$. So $\lambda_{\dashv}^{N}(C_{\mathfrak{R}_{N}^{1}})$ is $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{2}$. Hence λ_{\dashv}^{N} is Neutrosophic irresolute open mapping. □

Remark 3.16. The above converse of the Proposition necessity not be true as shown by the following below examples.

Example 3.17. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$, then $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}, a_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}, a_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}$

$$\begin{split} A_{\Re_N^1} &= \{ < x, \ (a_n, 0.5, 0.5, 0.5), \ (b_n, 0.4, 0.5, 0.6), \\ &\quad (c_n, 0.6, 0.5, 0.4) >; x \in \Re_N^1 \} \\ B_{\Re_N^2} &= \{ < y, \ (a_n, \ 0.5, 0.5, 0.5), \ (b_n, 0.3, 0.5, 0.7), \\ &\quad (c_n, 0.6, 0.5, 0.4) >; y \in \Re_N^1 \} \\ C_{\Re_N^2} &= \{ < y, (a_n, 0.2, 0.5, 0.7), \ (b_n, 0.4, 0.5, 0.6), \\ &\quad (c_n, \ 0.3, 0.5, 0.7) >; y \in \Re_N^1 \} \\ D_{\Re_N^1} &= \{ < x, (a_n, 0.5, 0.5, 0.4), \ (b_n, 0.4, 0.5, 0.5), \\ &\quad (c_n, 0.6, 0.5, 0.4) >; x \in \Re_N^1 \} . \end{split}$$

Define an Neutrosophic mapping $\lambda_{\downarrow}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ by $\lambda_{\downarrow}^{N}(a_{n}) = a_{n}, \lambda_{\downarrow}^{N}(b_{n}) = b_{n}, \lambda_{\downarrow}^{N}(c_{n}) = c_{n}.$

Then $A_{\mathfrak{R}_N^1}$ and $D_{\mathfrak{R}_N^1}$ are in $N^SOS\mathfrak{R}_N^1$ and $\lambda_{\dashv}^N(A_{\mathfrak{R}_N^1})$ and $\lambda_{\dashv}^N(D_{\mathfrak{R}_N^1})$ are N^SOS in \mathfrak{R}_N^2 . So λ_{\dashv}^N is Neutrosophic irresolute open mapping. But $\lambda_{\dashv}^N(D_{\mathfrak{R}_N^1})$ is not $N^{\alpha}OS$ in \mathfrak{R}_N^2 . Therefore λ_{\dashv}^N is not Neutrosophic semi- α -irresolute open mapping.

Proposition 3.18. Every Neutrosophic pre- β -irresolute open mapping is Neutrosophic β -open mapping.

Proof. Let λ_{\dashv}^N be a map from an Neutrosophic topological space $(\mathfrak{R}_N^1, \mathfrak{T}_N^1)$ to another Neutrosophic topological space $(\mathfrak{R}_N^2, \mathfrak{T}_N^2)$ and Neutrosophic pre- β -irresolute open mapping. Let $C_{\mathfrak{R}_N^1}$ be $NOS\mathfrak{R}_N^1$. Since every $NOS\mathfrak{R}_N^1$ is an $N^POS\mathfrak{R}_N^1$, hence $C_{\mathfrak{R}_N^1}$ is an $N^POS\mathfrak{R}_N^1$. As λ_{\dashv}^N is an Neutrosophic pre- β -irresolute open. we get $\lambda_{\dashv}^N(C_{\mathfrak{R}_N^1})$ is an $N^\beta OS\mathfrak{R}_N^2$. Hence λ_{\dashv}^N is Neutrosophic β -open mapping.

Remark 3.19. The above converse of the Proposition necessity not be true as shown by the following below examples.

Example 3.20. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$, then $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}$

$$\begin{split} A_{\mathfrak{R}_N^1} &= \{ < x, (a_n, 0.5, 0.5, 0.5), (b_n, 0.4, 0.5, 0.6), \\ &\quad (c_n, \ 0.6, 0.5, 0.4) >; x \in \mathfrak{R}_N^1 \} \\ B_{\mathfrak{R}_N^2} &= \{ < y, (a_n, 0.5, 0.5, 0.5), (b_n, 0.3, 0.5, 0.7), \\ &\quad (c_n, \ 0.6, 0.5, 0.4) >; y \in \mathfrak{R}_N^1 \}. \\ C_{\mathfrak{R}_N^2} &= \{ < y, (a_n, 0.2, 0.5, 0.7), (b_n, 0.4, 0.5, 0.6), \\ &\quad (c_n, \ 0.3, 0.5, 0.7) >; y \in \mathfrak{R}_N^1 \} \\ D_{\mathfrak{R}_N^1} &= \{ < x, \ (a_n, \ 0.5, 0.5, 0.4), \ (b_n, \ 0.4, 0.5, 0.5), \\ &\quad (c_n, 0.6, 0.5, 0.4) >; x \in \mathfrak{R}_N^1 \} \end{split}$$

Define an Neutrosophic mapping $\lambda_{\dashv}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ by $\lambda_{\dashv}^{N}(a_{n}) = a_{n}$, $\lambda_{\dashv}^{N}(b_{n}) = b_{n}$, $\lambda_{\dashv}^{N}(c_{n}) = c_{n}$. Here $A_{\mathfrak{R}_{N}^{1}is}$ an $NOS\mathfrak{R}_{N}^{1}$. We get λ_{\dashv}^{N} is an $N^{\beta}OS\mathfrak{R}_{N}^{2}$ which implies λ_{\dashv}^{N} is β -open mapping. But $D_{\mathfrak{R}_{N}^{1}}$ is $N^{P}OS$ in \mathfrak{R}_{N}^{1} and $\lambda_{\dashv}^{N}(D_{\mathfrak{R}_{N}^{1}})$ is not $N^{\beta}OS\mathfrak{R}_{N}^{2}$. So, λ_{\dashv}^{Nis} not Neutrosophic pre- β irresolute open mapping.

Proposition 3.21. Every Neutrosophic pre- α -irresolute open mapping is Neutrosophic pre irresolute open mapping.

Proof. Let $\lambda_{\dashv}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ from an Neutrosophic topological space to another Neutrosophic topological space and Neutrosophic pre- α -irresolute open mapping. Let $A_{\mathfrak{R}_{N}^{1}}$ be in $N^{P}OS\mathfrak{R}_{N}^{1}$. As λ_{\dashv}^{N} is Neutrosophic pre- α -irresolute open. We get $\lambda_{\dashv}^{N}(A_{\mathfrak{R}_{N}^{1}})$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{2}$. As every $N^{\alpha}OS\mathfrak{R}_{N}^{2}$ is $N^{P}OS\mathfrak{R}_{N}^{2}$, finally $\lambda_{\dashv}^{N}(A_{\mathfrak{R}_{N}^{1}})$ is an $N^{P}OS\mathfrak{R}_{N}^{2}$. Hence λ_{\dashv}^{N} is Neutrosophic pre-irresolute open mapping. \Box

Remark 3.22. The above converse of the Proposition necessity not be true as shown by the following below examples.

Remark 3.23. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and take, $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}$, $\mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ are a two Neutrosophic Topological spaces on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 , where

$$\begin{split} A_{\Re_N^1} &= \{ < x, \ (a_n, \ 0.5, 0.5, 0.3), \ (b_n, \ 0.3, 0.5, 0.5), \\ &\quad (c_n, 0.4, 0.5, 0.6) >; x \in \Re_N^1 \}, \\ B_{\Re_N^2} &= \{ < y, \ (a_n, \ 0.4, 0.5, 0.6), \ (b_n, \ 0.4, 0.5, 0.3), \\ &\quad (c_n, \ 0.2, 0.5, 0.6) >; y \in \Re_N^1 \}, \\ C_{\Re_N^1} &= \{ < x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3), \\ &\quad (c_n, 0.7, 0.5, 0.3) >; x \in \Re_N^1 \} \end{split}$$

Define an Neutrosophic mapping $\lambda_{\dashv}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ $\lambda_{\dashv}^{N}(a_{n}) = b_{n}, \lambda_{\dashv}^{N}(c_{n}) = b_{n}, \lambda_{\dashv}^{N}(c_{n}) = a_{n}.$ Then $A_{\mathfrak{R}_{N}^{1}}$ and $C_{\mathfrak{R}_{N}^{1}}$ are $N^{P}OS\mathfrak{R}_{N}^{1}$ and $\lambda_{\dashv}^{N}(A_{\mathfrak{R}_{N}^{1}})$ and $\lambda_{\dashv}^{N}(C_{\mathfrak{R}_{N}^{1}})$ are in $N^{P}OS\mathfrak{R}_{N}^{2}$. Therefore λ_{\dashv}^{N} is Neutrosophic pre irresolute open mapping. But $\lambda_{\dashv}^{N}(C_{\mathfrak{R}_{N}^{1}})$ is not $N^{\alpha}OS\mathfrak{R}_{N}^{2}$. Thus λ_{\dashv}^{N} is not Neutrosophic pre- α -irresolute open mapping. Hence the converse of the above Proposition need not be true.

Proposition 3.24. Every Neutrosophic pre irresolute open mapping is Neutrosophic pre- β -irresolute open mapping.

Proof. Take, $\lambda_{\dashv}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ from an Neutrosophic topological space $(\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1})$ to another Neutrosophic topological space $(\mathfrak{R}_{N}^{2}, \mathfrak{I}_{N}^{2})$ is Neutrosophic pre irresolute open mapping. Let $A_{\mathfrak{R}_{N}^{1}}$ be in $N^{P}OS\mathfrak{R}_{N}^{1}$. As λ_{\dashv}^{N} is Neutrosophic pre irresolute open $\lambda_{\dashv}^{N}(A_{\mathfrak{R}_{N}^{1}})$ is an $N^{P}OS\mathfrak{R}_{N}^{2}$. As every $N^{P}OS\mathfrak{R}_{N}^{2}$ is $N^{\beta}OS\mathfrak{R}_{N}^{2}$. Fianally we get $\lambda_{\dashv}^{N}(A_{\mathfrak{R}_{N}^{1}})$ is an $N^{\beta}OS\mathfrak{R}_{N}^{2}$. Hence λ_{\dashv}^{N} is Neutrosophic pre- β -irrresolute open mapping.

Remark 3.25. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ then $\mathfrak{I}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}$

$$\begin{split} A_{\mathfrak{R}_N^1} &= \{ < x, \ (a_n, \ 0.5, 0.5, 0.5), \ (b_n, \ 0.4, 0.5, 0.6), \\ &\quad (c_n, \ 0.6, 0.5, 0.4) >; x \in \mathfrak{R}_N^1 \} \\ B_{\mathfrak{R}_N^2} &= \{ < y, (a_n, 0.5, 0.5, 0.5), \ (b_n, 0.3, 0.5, 0.7), \\ &\quad (c_n, 0.6, 0.5, 0.4) >; y \in \mathfrak{R}_N^1 \}. \\ C_{\mathfrak{R}_N^2} &= \{ < y, (a_n, 0.2, 0.5, 0.7), \ (b_n, 0.4, 0.5, 0.6), \\ &\quad (c_n, 0.3, 0.5, 0.7) >; y \in \mathfrak{R}_N^1 \} \\ D_{\mathfrak{R}_N^1} &= \{ < x, \ (a_n, 0.5, 0.5, 0.4), \ (b_n, 0.4, 0.5, 0.5), \\ &\quad (c_n, 0.6, 0.5, 0.4) >; x \in \mathfrak{R}_N^1 \}. \end{split}$$

 $\begin{array}{ccc} Define & an & Neutrosophic & mapping \\ \lambda^{N}_{\dashv}: (\mathfrak{R}^{1}_{N}, \ \mathfrak{I}^{1}_{N}) \to (\mathfrak{R}^{2}_{N}, \ \mathfrak{I}^{2}_{N}) \ by \ \lambda^{N}_{\dashv}(a_{n}) = a_{n}, \ \lambda^{N}_{\dashv}(b_{n}) = b_{n}, \end{array}$

 $\lambda^N_{\dashv}(c_n) = c_n$. Here $A_{\mathfrak{R}^1_N}$. And $D_{\mathfrak{R}^1_N}$ are in $N^POS\mathfrak{R}^1_N$ and $\lambda^N_{\dashv}(A_{\mathfrak{R}^1_N})$ and $\lambda^N_{\dashv}(D_{\mathfrak{R}^1_N})$ are in $N^POS\mathfrak{R}^2_N$. But $\lambda^N_{\dashv}(D_{\mathfrak{R}^1_N})$ is not in $N^POS\mathfrak{R}^2_N$. Hence λ^N_{\dashv} is Neutrosophic pre- β -irresolute open mapping and not Neutrosophic pre irresolute open mapping. Thus the converse of the above Proposition need not be true.

Diagram I

Interrelationships between Neutrosphicpre- α (Neutrosphic *alpha*, Neutrosphic semi- α and Neutrosphic pre- β , resp.) -irresolute open mappings with existing mappings in Neutrosphic topological spaces.

4. Properties and Characterizations

Theorem 4.1. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$, $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ be Neutrosophic TSs. Let $\lambda_{\mathcal{A}}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ and $\mu_{\mathcal{A}}^N : (\mathfrak{R}_N^2, \mathfrak{I}_N^2) \to (\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ be any two maps. If $\mu_{\mathcal{A}}^N \circ \lambda_{\mathcal{A}}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ is Neutrosophic pre- α -irresolute (Neutrosophic pre- α -irresolute) open and $\lambda_{\mathcal{A}}^N$ is Onto, Neutrosophic pre- α -irresolute (Neutrosophic semi- α -irresolute, resp.) function then $\mu_{\mathcal{A}}^N$ is Neutrosophic α -irresolute open mapping.

Proof. Let C_N be any in $N^{\alpha}OS\Re_N^2$. Since λ_{\dashv}^N is an Neutrosophic pre- α -irresolute (Neutrosophic semi- α -irresolute.) function, $\lambda_{\dashv}^{N^{-1}}(C_N)$ is $N^POS\Re_N^1(N^{\mathscr{S}}OS\Re_N^1)$. Also $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic pre- α -irresolute (Neutrosophic semi- α -irresolute.) open. Therefore $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N)\lambda_{\dashv}^{N^{-1}}(C_N) = \mu_{\dashv}^N(C_N)$ is an $N^{\alpha}OS\Re_N^3$ in (\Re_N^3, \Im_N^3) . Hence μ_{\dashv}^N is an Neutrosophic- α -irresolute open mapping.

Theorem 4.2. Let $(\mathfrak{R}^1_N, \mathfrak{I}^1_N)$, $(\mathfrak{R}^2_N, \mathfrak{I}^2_N)$ and $(\mathfrak{R}^3_N, \mathfrak{I}^3_N)$ be Neutrosophic TSs. Let $\lambda^N_{\dashv} : (\mathfrak{R}^1_N, \mathfrak{I}^1_N) \to (\mathfrak{R}^2_N, \mathfrak{I}^2_N)$ and $\mu^N_{\dashv} : (\mathfrak{R}^2_N, \mathfrak{I}^2_N) \to (\mathfrak{R}^3_N, \mathfrak{I}^3_N)$ be any two maps. If $\mu^N_{\dashv} \circ \lambda^N_{\dashv} : (\mathfrak{R}^1_N, \mathfrak{I}^1_N) \to (\mathfrak{R}^3_N, \mathfrak{I}^3_N)$ is an Neutrosophic α -irresolute open and λ^{Nis}_{\dashv} surjective, Neutrosophic α -continuous function then μ^N_{\dashv} is Neutrosophic α -open mapping.

Proof. Let B_N be any in $NOS\mathfrak{R}_N^2$. Since λ_{\dashv}^N is an Neutrosophic α -continuous function, $\lambda_{\dashv}^{N^{-1}}(B_N)$ is $N^{\alpha}OS\mathfrak{R}_N^1$. As $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic α -irresolute open, then $((\mu_{\dashv}^{\square} \circ \lambda_{\dashv}^N)(\lambda_{\dashv}^{N^{-1}}(B_N)) = \mu_{\dashv}^N(B_N)$ is an $N^{\alpha}OS\mathfrak{R}_N^3$ in $(\mathfrak{R}_N^3, \mathfrak{I}_N^3)$. Hence $\mu_{\dashv}^N(B_N)$ is an Neutrosophic- α open mapping.

Theorem 4.3. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1), (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ be Neutrosophic TSs. Let $\lambda_{\dashv}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ and $\mu_{\dashv}^N : (\mathfrak{R}_N^2, \mathfrak{I}_N^2) \to (\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ be any two maps. If $\mu_{\dashv}^N \circ \lambda_{\dashv}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ is Neutrosophic pre- β -irresolute open and λ_{\dashv}^N is surjective, Neutrosophic pre irresolute function then μ_{\dashv}^N is Neutrosophic pre- β -irresolute open mapping.

Proof. Let B_N be any in $NOS\Re_N^2$. Since $\lambda_{\dashv}^N(B_N)$ is Neutrosophic pre-irresolute function, $\lambda_{\dashv}^{N^{-1}}(B_N)$ is $N^POS\Re_N^1$. As $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic pre- β -irresolute open, $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N)(\lambda_{\dashv}^{N^{-1}}(B_N)) = \mu_{\dashv}^N(B_N)$ is an $N^\beta OS\Re_N^3$ in $(\Re_N^3, \Im_N^3$. Hence μ_{\dashv}^N is an Neutrosophic pre- β -irresolute open mapping. \Box

Theorem 4.4. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1), (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ be Neutrosophic TSs. Let $\lambda_{\dashv}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ and $\mu_{\dashv}^N : (\mathfrak{R}_N^2, \mathfrak{I}_N^2) \to (\mathfrak{R}_N^3, \mathfrak{I}_N^3)$ be any two maps. If $\mu_{\dashv}^N \circ \lambda_{\dashv}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^3, \mathfrak{I}_N^3)$. Then the following statements hold:

1. If λ^N_{\dashv} is Neutrosophic pre- α -irresolute (Neutrosophic α -irresolute and Neutrosophic semi - α - irresolute) open and μ^N_{\dashv} is Neutrosophic α -irresolute open

mappings, then $\mu^N_{\dashv} \circ \lambda^N_{\dashv} : (\mathfrak{R}^1_N, \mathfrak{I}^1_N) \to (\mathfrak{R}^3_N, \mathfrak{I}^3_N)$ is Neutrosophic pre- α -irresolute (Neutrosophic α -irresolute and Neutrosophic semi- α -irresolute, resp.) open mapping.

- If λ^N_⊣ is Neutrosophic pre open (Neutrosophic α-open and Neutrosophic semi open, resp.) mapping and μ^N_⊣ is an Neutrosophic pre-α-irresolute (Neutrosophic α -irresolute and Neutrosophic semi-α-irresolute, resp.) open mapping then μ^N_⊣ ∘ λ^N_⊣ : (ℜ¹_N, ℑ¹_N) → (ℜ³_N, ℑ³_N) is an Neutrosophic-open mapping.
- 3. If λ_{\dashv}^{N} is Neutrosophic pre irresolute open and μ_{\dashv}^{N} is Neutrosophic pre- β -irresolute open then $\mu_{\dashv}^{N} \circ \lambda_{\dashv}^{N} : (\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \to (\mathfrak{R}_{N}^{3}, \mathfrak{I}_{N}^{3})$ is Neutrosophic pre- β -irresolute open mapping.
- 4. If λ_{\dashv}^{N} is Neutrosophic pre open mapping and μ_{\dashv}^{N} is Neutrosophic pre- β -irresolute open mapping then $\mu_{\dashv}^{N} \circ \lambda_{\dashv}^{N}$: $(\mathfrak{R}_{N}^{1}, \mathfrak{I}_{N}^{1}) \rightarrow (\mathfrak{R}_{N}^{3}, \mathfrak{I}_{N}^{3})$ is an Neutrosophic- β -open mapping.
- *Proof.* 1. Let *B_N* be an *N^POS*ℜ¹_N(*N^αOS*ℜ¹_N and *N^{S'}OS*ℜ¹_N, resp.) in ℜ¹_N. Since λ^N_⊣ is Neutrosophic pre-α-irresolute (Neutrosophic α-irresolute and Neutrosophic semi-α-irresolute, resp.) open, λ^N_⊣(*B_N*) is an *N^αOS* in ℜ²_N. Now (μ^N_⊣ ∘ λ^N₊)(*B_N*) = μ^N_⊣(λ^N_⊣(*B_N*)). Also μ^N_⊣ is Neutrosophic-α-irresolute open, μ^N_⊣(λ^N_⊣(*B_N*)) is *N^αOS*ℜ³_N in ℜ³_N. Hence μ^N_⊣ ∘ λ^N_⊣ is Neutrosophic irresolute and Neutrosophic semi-α-irresolute (Neutrosophic-irresolute, resp.) open mapping.
 - 2. Let B_N be an in $NOS\Re_N^1$. Since λ_{\dashv}^N is Neutrosophic pre open (Neutrosophic α -open and Neutrosophic semi open, resp.), $\lambda_{\dashv}^N(B_N)$ is $N^POS\Re_N^2(N^\alpha OS\Re_N^2)$ and $N^{SOS}\Re_N^2$, resp.) in \Re_N^2 . Now $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N(B_N) = \mu_{\dashv}^N(\lambda_{\dashv}^N(B_N))$. As μ_{\dashv}^N is Neutrosophic pre- α (Neutrosophic α and Neutrosophic semi- α resp.)-irresolute open, $\mu_{\dashv}^N(\lambda_{\dashv}^N(B_N))$ is $N^\alpha OS\Re_N^2$ in \Re_N^3 . Hence $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic α -open mapping.
 - 3. Let A_N be an $N^P OS \mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Since λ_{\dashv}^N is Neutrosophic pre irresolute open $\lambda_{\dashv}^N (A_N)$ is an $N^P OS \mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Now $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N)(A_N) = \mu_{\dashv}^N (\lambda_{\dashv}^N (A_N))$. But μ_{\dashv}^N is Neutrosophic pre- β -irresolute open, $\mu_{\dashv}^N (\lambda_{\dashv}^N A_N)$ is $N^\beta OS \mathfrak{R}_N^2$ in \mathfrak{R}_N^3 . Hence $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic pre- β -irresolute open mapping.
 - 4. Let B_N be an in $NOS\mathfrak{R}_N^1$. Since λ_{\dashv}^N is Neutrosophic preopen, $\lambda_{\dashv}^N(B_N)$ is an $N^POS\mathfrak{R}_N^2$. Now $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N)(B_N) = \mu_{\dashv}^N(\lambda_{\dashv}^N(B_N))$. But μ_{\dashv}^N is Neutrosophic pre- β -irresolute open, $\mu_{\dashv}^N(\lambda_{\dashv}^N(B_N))$ is $N^\beta OS\mathfrak{R}_N^3$ in \mathfrak{R}_N^3 . Hence $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic β open mapping.

Theorem 4.5. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$) be two Neutrosophic Topological spaces and let $\lambda_{\dashv}^N : (\mathfrak{R}_N^1, \mathfrak{I}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be a mapping. Then the following conditions are equivalent:

- 1. λ_{\dashv}^{N} is Neutrosophic pre- α -irresolute open mapping.
- 2. $\mu_{\dashv}^{N}(\underset{Neu}{\overset{Pre}{}} int A_{N}) \subseteq \underset{Neu}{\overset{\alpha}{}} int \mu_{\dashv}^{N}(A_{N})$ for each Neutrosophic set A_{N} in \mathfrak{R}_{N}^{1} .
- 3. $\frac{Pre}{Neu} int (\lambda_{\dashv}^{N^{-1}}(B_N)) \subseteq \lambda_{\dashv} N^{-1} (\overset{\alpha}{Neu} int B_N)$ for each Neutrosophic set B_N in \mathfrak{R}^2_N .
- 4. For any NS, A_N in \mathfrak{R}^1_N and NSB_N in \mathfrak{R}^2_N and let A_N be $N^P CS\mathfrak{R}^1_N$ such that $\lambda^{N^{-1}}_{\dashv}(B_N) \subseteq A_N$. Then there exists an $C_N \varepsilon N^{\alpha} CS\mathfrak{R}^2_N$ in \mathfrak{R}^2_N and $B_N \subseteq C_N$ such that $\lambda^{N^{-1}}_{\dashv}(C_N) \subseteq A_N$.

Proof. (i) \Rightarrow (ii):

Here $\frac{Pre}{Neu}$ int $A_N \subseteq A_N \Rightarrow \lambda_{\dashv}^N(\frac{Pre}{Neu}$ int $A_N) \subseteq \lambda_{\dashv}^N(A_N)$. But, $\frac{Pre}{Neu}$ int A_N is an $N^POS\mathfrak{R}_N^1$. And $\lambda_{\dashv}^N(\frac{Pre}{Neu}$ int $A_N)$ is an $N^{\alpha}OS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Hence

$$\lambda_{\dashv}^{N}(\stackrel{Pre}{_{Neu}}int A_{N}) = \stackrel{\alpha}{_{Neu}}int \lambda_{\dashv}^{N}(\stackrel{Pre}{_{Neu}}int A_{N}) \subseteq \stackrel{\alpha}{_{Neu}}int \lambda_{\dashv}^{N}$$

(ii) \Rightarrow (iii): Let $A_N = \lambda_{\dashv}^{N^{-1}}(B_N)$ By (ii),

$$\lambda_{\dashv}^{N}(\underset{Neu}{\overset{Pre}{int}}(\lambda_{\dashv}^{N^{-1}}(B_{N}))) \subseteq \underset{Neu}{\overset{\alpha}{int}} \lambda_{\dashv}^{N}(\lambda_{\dashv}^{N^{-1}}(B_{N})) \subseteq \underset{Neu}{\overset{\alpha}{int}}(B_{N})$$

which gives

$$\begin{aligned} & \stackrel{Pre}{Neu} int(\lambda_{\dashv}^{N^{-1}}(B_N)) \subseteq \lambda_{\dashv}^{N^{-1}}(\lambda_{\dashv}^{N}(\stackrel{Pre}{Neu} int(\lambda_{\dashv}^{N^{-1}}(B_N)))) \\ & \subseteq \lambda_{\dashv}^{N^{-1}}(\stackrel{\alpha}{Neu} int(B_N)). \end{aligned}$$

Thus $\underset{Neu}{Pre}_{Neu}int(\lambda_{\dashv}^{N^{-1}}(B_N)) \subseteq \lambda_{\dashv}^{N^{-1}}(\underset{Neu}{\alpha}int(B_N)).$ (iii) \Rightarrow (iv) :

Let A_N be $N^P CS$ in \mathfrak{R}^1_N and B_N be an Neutrosophic set in \mathfrak{R}^2_N . Such that $\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq A_N$. Then

$$\overline{\lambda_{\dashv}^{N^{-1}}(B_N)} \supseteq \overline{A_N} \Rightarrow \overline{A_N} \subseteq \overline{\lambda_{\dashv}^{N^{-1}}(B_N)} = \lambda_{\dashv}^{N^{-1}}(B_N).$$

But $\overline{A_N}$ is an $N^P OS \mathfrak{R}^1_N$. Thus

$$\overline{A_N} = \underset{Neu}{\overset{Pre}{\text{neu}}int(A_N) \subseteq \underset{Neu}{\overset{Pre}{\text{neu}}int(\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq (\lambda_{\dashv}^N)^{-1}(\underset{Neu}{\alpha}int(B_N)).}$$

Hence $\overline{(\lambda_{\dashv}^{N})^{-1}(\alpha_{Neu}int(\overline{B_N}))} = \lambda_{\dashv}^{N^{-1}}(\alpha cl(B_N)).$ Take $\alpha_{Neu}cl(B_N) = C_N$. Therefore $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N$. (iv) \Rightarrow (i) :

Let *D* be an $N^P OS\mathfrak{M}_N^1$. And $B_N = \overline{\lambda_{\dashv}^N(D)}$ and $A_N = \overline{D}$. Then *A* is an $N^P CS\mathfrak{M}_N^1$. Hence

$$\lambda_{\dashv}^{N^{-1}}(B_N) = \lambda_{\dashv}^{N^{-1}}(\overline{\lambda_{\dashv}^N(D))} = \overline{\lambda_{\dashv}^{N^{-1}}\lambda_{\dashv}^N(D))} \subseteq \overline{D} = A_N.$$

Then there exists an $N^{\alpha}CSC_N$ and $B_N \subseteq C_N$ such that $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N = \overline{D}$. Thus $D \subseteq \overline{\lambda_{\dashv}^{N^{-1}}(C_N)}$, which implies $\lambda_{\dashv}^N(D) \subseteq \lambda_{\dashv}^N(\lambda_{\dashv}^{N^{-1}}(\overline{C_N})) \subseteq \overline{C_N}$. On the other hand, by $B_N \subseteq C_N, \lambda_{\dashv}^N(D) = \overline{B_N} \supseteq \overline{C_N}$. Hence $\lambda_{\dashv}^N(D_N) = \overline{C_N}$. Since $\overline{C_N}$ is an $N^{\alpha}OS$, then $\lambda_{\dashv}^N(D_N)$ is an $N^{\alpha}OS\mathfrak{R}_N^2$. Therefore λ_{\dashv}^N is Neutrosophic pre- α -irresloute open mapping.

Theorem 4.6. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs and let $\lambda^N_{\dashv} : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ be a mapping. Then the following conditions are equivalent:

- 1. λ_{\dashv}^{N} is Neutrosophic α -irresolute open mapping.
- 2. $\lambda_{\dashv}^{N}(\underset{Neu}{\alpha}_{int}A_{N}) \subseteq \underset{Neu}{\alpha}_{int}\lambda_{\dashv}^{N}(A_{N})$ for each Neutrosophic setin \mathfrak{R}_{N}^{1} .
- 3. $\underset{Neu}{\alpha}_{Neu}int((\lambda_{\dashv}^{N})^{-1}) \subseteq \underset{Neu}{\alpha}_{Neu}int(\lambda_{\dashv}^{N})^{-1}(B_{N})$ for each Neutrosophic set B in \mathfrak{R}_{N}^{2} .
- 4. For any Neutrosophic set A_N in \mathfrak{R}^1_N . Neutrosophic set B_N in \mathfrak{R}^2_N and let A_N be $N^{\alpha}CS\mathfrak{R}^1_N$ such that $\lambda^{N^{-1}}_{\dashv}(B_N) \subseteq A_N$. Then there exists an $N^{\alpha}CS\mathfrak{R}^2_N$, C_N in \mathfrak{R}^2_N and $B_N \subseteq C_N$ such that $\lambda^N_{\dashv}(C_N) \subseteq A_N$.

Proof. (i) \Rightarrow (ii):

 $\begin{array}{l} \underset{Neu}{\alpha} \underset{Neu}{\alpha} int A_N \subseteq A_N \Rightarrow \lambda_{\dashv}^N(\underset{Neu}{\alpha} int A_N) \subseteq \lambda_{\dashv}^N(A_N). \quad \text{But } \underset{Neu}{\alpha} int A_N \\ \text{is an } N^{\alpha} OS \mathfrak{R}_N^1 \lambda_{\dashv}^N(\underset{Neu}{\alpha} int A_N) \text{ is an } N^{\alpha} OS \text{ in } \mathfrak{R}_N^2. \quad \text{Hence} \\ \lambda_{\dashv}^N(\underset{Neu}{\alpha} int A_N) = \underset{Neu}{\alpha} int \lambda_{\dashv}(\underset{Neu}{\alpha} int A_N) \subseteq \underset{Neu}{\alpha} int \lambda_{\dashv}^N(A_N). \\ (\text{ii}) \Rightarrow (\text{iii}): \\ \text{Let } A_N = \lambda_{\dashv}^{N^{-1}}. \qquad \text{By } (\text{ii}), \quad \lambda_{\dashv}^N(\underset{Neu}{\alpha} int(\lambda_{\dashv}^{N^{-1}}(B_N))) \end{array}$

Let $A_N = \lambda_{\dashv}^{\sim}$. By (ii), $\lambda_{\dashv}^{\sim}(\underset{Neu}{\overset{N}{int}}(\lambda_{\dashv}^{\sim}(B_N)))$ $\subseteq \underset{\dashv}{\overset{\alpha}{neu}int}(B_N)$ which implies $\underset{Neu}{\overset{\alpha}{int}}(\lambda_{\dashv}^{N^{-1}}(B_N))) \subseteq \lambda_{\dashv}^{(n)}(\lambda_{\dashv}^{N}(\alpha_{eu}int(\lambda_{\dashv}^{N^{-1}}(B_N))) \subseteq \lambda_{\dashv}(\alpha_{eu}intB_N).$ Thus, $\underset{neu}{\overset{\alpha}{int}}(\lambda_{\dashv}^{N^{-1}}(B_N)) \subseteq \lambda_{\dashv}^{N^{-1}}(\alpha_{eu}int(B_N)).$ (iii) \Rightarrow (iv):

Let A_N be $N^{\alpha}CS\mathfrak{R}_N^1$ and B_N be an Neutrosophic set in \mathfrak{R}_N^2 . Such that $\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq A_N$. Hence $\overline{\lambda_{\dashv}^{N^{-1}}(B_N)} \supseteq \overline{A_N} \Rightarrow \overline{A_N}$ $\subseteq \overline{\lambda_{\dashv}^{N^{-1}}(B_N)} = \lambda_{\dashv}^{N^{-1}}(\overline{B_N})$. But $\overline{A_N}$ is an $N^{\alpha}OS\mathfrak{R}_N^1$. Thus $\overline{A_N} = \stackrel{\alpha}{_{Neu}int}(\overline{A_N}) \subseteq \stackrel{\alpha}{_{Neu}int}(\lambda_{\dashv}^{N^{-1}}(B_N)) \subseteq \lambda_{\dashv}^{N^{-1}}(\stackrel{\alpha}{_{Neu}int}(\overline{B_N}))$. As $A_N \supseteq \overline{\lambda_{\dashv}^{N^{-1}}(\stackrel{\alpha}{_{Neu}int}(\overline{B_N}))} = \lambda_{\dashv}^{N^{-1}}(\alpha cl(B_N))$. Put $\alpha cl(B_N) = C_N$. Hence $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N$. (iv) \Rightarrow (i):

Let D be an $N^{\alpha}OS\mathfrak{R}_{N}^{1}$, $B_{N} = \lambda_{\dashv}^{N}(D)$ and $A_{N} = \overline{D}$. Then A_{N} is an $N^{\alpha}CS\mathfrak{R}_{N}^{1}$. Hence $\lambda_{\dashv}^{N^{-1}}(B_{N}) = \lambda_{\dashv}^{N^{-1}}(\overline{\lambda_{\dashv}^{N}(D)}) = \overline{\lambda_{\dashv}^{N^{-1}}(\lambda_{\dashv}^{N}(D))} = A_{N}$. Then, there exists an $N^{\alpha}CS\mathfrak{R}_{N}^{1}C_{N}$ and $B_{N} \subseteq C_{N}$. Such that $\lambda_{\dashv}^{N^{-1}}(C_{N}) \subseteq A_{N} = \overline{D}$. Thus, $D \subseteq (\lambda_{\dashv}^{N^{-1}}C_{N}) \Rightarrow \lambda_{\dashv}^{N}(D) \subseteq \lambda_{\dashv}^{N}(\lambda_{\dashv}^{N^{-1}}(C_{N})) \subseteq \overline{C_{N}}$. On the other hand by $B_{N} \subseteq C_{N}, \lambda_{\dashv}^{N}(D) = \overline{B_{N}} \supseteq \overline{C_{N}}$. Therefore $\lambda_{\dashv}^{N}(D) = \overline{C_{N}}$. As $\overline{C_{N}}$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{1}, \lambda_{\dashv}^{N}(D)$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{2}$ in \mathfrak{R}_{N}^{2} . Hence λ_{\dashv}^{N} is Neutrosophic α -irresloute open mapping.

Theorem 4.7. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs and let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ be a mapping. Then the following conditions are equivalent:

- 1. λ_{\dashv}^{N} is Neutrosophic semi- α -irresolute open mapping.
- 2. $\lambda^N_{\dashv}(\underset{Neu}{^{S}int}(A_N) \subseteq \underset{Neu}{^{\alpha}int} \lambda^N_{\dashv}(A_N)$ for each Neutrosophic set A_N in \mathfrak{R}^1_N .
- 3. $S_{Neu}^{S}int(\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq \lambda_{\dashv}^{N^{-1}}(\alpha_{Neu}^{\alpha}intB_N)$ for each Neutrosophic set B_N in \Re_N^2 .

4. For any Neutrosophic set in \mathfrak{R}^1_N , Neutrosophic set in \mathfrak{R}^2_N and let A_N be $N^{\mathscr{S}}CS\mathfrak{R}^1_N$ such that $\lambda^{N^{-1}}_{\dashv}(B_N) \subseteq A_N$. Then there exists an $N^{\alpha}CS\mathfrak{R}^2_N, C_N$ in \mathfrak{R}^2_N and $B_N \subseteq C_N$ such that $\lambda^{N^{-1}}_{\dashv}(C_N) \subseteq A_N$.

Proof. (i) \Rightarrow (ii):

$$\begin{split} & \sum_{N \in u} \inf A_N \subseteq A_N \Rightarrow \lambda_{\dashv}^N (\sum_{N \in u} \inf A_N) \subseteq \lambda_{\dashv}^N (A_N). \text{ But } \sum_{N \in u} \inf A_N \text{ is } \\ & \text{an } N^{\mathscr{C}} OS \mathfrak{R}_N^1, \lambda_{\dashv}^N (\sum_{N \in u} \inf A_N) \text{ is an } N^{\alpha} OS \mathfrak{R}_N^2 \text{ in } \mathfrak{R}_N^2. \text{ Hence } \\ & \lambda_{\dashv}^N (\sum_{N \in u} \inf A_N) = \sum_{N \in u}^{\alpha} \inf \lambda_{\dashv}^N (\sum_{N \in u} \inf A_N) \subseteq \sum_{N \in u}^{\alpha} \inf \lambda_{\dashv}^N (A_N). \\ & \text{(ii)} \Rightarrow (\text{iii): } \\ & \text{Let } A_N = \lambda_{\dashv}^{N^{-1}} (B_N). \text{ By (ii), } \lambda_{\dashv}^N (\sum_{N \in u} \inf \lambda_{\dashv}^{N^{-1}} (B_N))) \subseteq \\ & \sum_{N \in u}^{\alpha} \inf \lambda_{\dashv}^N (\lambda_{\dashv}^{N^{-1}} (B_N)) \subseteq \sum_{N \in u}^{\alpha} \inf (B_N) \text{ which implies } \\ & \sum_{N \in u}^{N} \inf (\lambda_{\dashv}^{N^{-1}} (B_N)) \subseteq \lambda_{\dashv}^{N^{-1}} (\lambda_{\dashv}^N (\sum_{N \in u} \inf (\lambda_{\dashv}^{N^{-1}} (B_N)))) \subseteq \lambda_{\dashv}^{N^{-1}} \\ & (\sum_{N \in u}^{\alpha} \inf (B_N)). \text{ Thus, } \sum_{N \in u}^{N} \inf (\lambda_{\dashv}^{N^{-1}} (B_N) \subseteq (\lambda_{\dashv}^N)^{-1} (\sum_{N \in u} \inf B_N). \\ & \text{(iii)} \Rightarrow (\text{iv): } \\ & \text{Let } A_N \text{ be } N^{\mathscr{C}} CS \mathfrak{R}_N^1 \text{ and } B_N \text{ be an Neutrosophic set in } \mathfrak{R}_N^2 \\ & \text{such that } \lambda_{\dashv}^{N^{-1}} (B_N) \subseteq A_N. \text{ Hence } \overline{\lambda_{\dashv}^{N^{-1}} (B_N)} \supseteq \overline{A_N} \Rightarrow \\ & \overline{A_N} \subseteq \overline{\lambda_{\dashv}^{N^{-1}} (B_N)} = \lambda_{\dashv}^{N^{-1}} (\overline{B_N}). \text{ But } \overline{A_N} \text{ is an } N^{\mathscr{C}} OS \mathfrak{R}_N^1. \text{ Thus, } \\ & \overline{A_N} = \sum_{N \in u}^{N} \inf (\overline{A_N}) \subseteq \sum_{N \in u}^{N} int (\overline{A_N}) = \lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{B_N})). \\ & \text{Hence } A_N \supseteq \overline{\lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{B_N}))} = \lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{B_N})). \\ & \text{Hence } A_N \supseteq \overline{\lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{A_N}) \subseteq A_N} = \lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{B_N})). \\ & \text{Hence } A_N \supseteq \overline{\lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{A_N}) \subseteq A_N} = \lambda_{\dashv}^{N^{-1}} (\sum_{N \in u} int (\overline{B_N})). \\ & \text{ put } (i): \\ & \xrightarrow{N \in U} ($$

Let D be an $N^{\mathscr{S}}OS\mathfrak{R}_{N}^{1}$, $B_{N} = \overline{\lambda_{\dashv}^{N}(D)}$ and $A_{N} = \overline{D}$. Then A_{N} is an $N^{\mathscr{S}}CS\mathfrak{R}_{N}^{1}$. Hence $\lambda_{\dashv}^{N-1}(B_{N}) = \lambda_{\dashv}^{N-1}(\overline{\lambda_{\dashv}^{N}(D)})$ $= \overline{\lambda_{\dashv}^{N-1}(\lambda_{\dashv}^{N}(D))}$. Then, there exists an $N^{\alpha}CS\mathfrak{R}_{N}^{1}$, C_{N} and $B_{N} \subseteq C_{N}$. Such that $\lambda_{\dashv}^{N-1}(C_{N}) \subseteq A_{N} = \overline{D}$, thus, $D \subseteq \overline{\lambda_{\dashv}^{N-1}(C_{N})} \Rightarrow \lambda_{\dashv}^{N}(D) \subseteq \lambda_{\dashv}^{N}(\lambda_{\dashv}^{N-1}(\overline{C_{N}})) \subseteq \overline{C_{N}}$. On the other hand by $B_{N} \subseteq C_{N}$, $\lambda_{\dashv}^{N}(D) = \overline{B_{N}} \supseteq \overline{C_{N}}$. Hence $\lambda_{\dashv}^{N}(D) = \overline{C_{N}}$. Since $\overline{C_{N}}$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{1}, \lambda_{\dashv}^{N}(D)$ is an $N^{\alpha}OS\mathfrak{R}_{N}^{2}$. Therefore λ_{\dashv}^{N} is Neutrosophic semi $-\alpha$ irresloute open mapping. \Box

Theorem 4.8. Let $(\mathfrak{R}_N^1, \mathfrak{T}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{T}_N^2)$ be twoNTSs and let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ be a mapping. Then the following conditions are equivalent:

- 1. λ_{\dashv}^{N} is an Neutrosophic pre- β -irresolute open mapping.
- 2. $\lambda_{\dashv}^{N}(\underset{Neu}{\overset{Pre}{}} intA_{N}) \subseteq \underset{Neu}{\overset{\beta}{}} int\lambda_{\dashv}^{N}(A_{N})$ for each Neutrosophic set in \mathfrak{R}_{N}^{1} .
- 3. $\frac{Pre}{Neu}int(\lambda_{\dashv}^{N^{-1}}(B_N)) \subseteq \lambda_{\dashv}^{N^{-1}}(\overset{\beta}{Neu}intB)$ for each Neutrosophic set B_N in \mathfrak{R}^2_N .
- 4. For any Neutrosophic set A_N in \mathfrak{R}_N^1 , Neutrosophic set B_N in \mathfrak{R}_N^2 and let A_N be $N^P CS\mathfrak{R}_N^1$ such that $\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq A_N$. Then there exists an $N^\beta CS\mathfrak{R}_N^2$, C_N in \mathfrak{R}_N^2 and $B_N \subseteq C_N$ such that $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N$.

Proof. (i) \Rightarrow (ii):

 $\sum_{N=u}^{Pre} int A_N \subseteq A_N \Rightarrow \lambda_{\dashv}^N(\sum_{N=u}^{Pre} int A_N) \subseteq \lambda_{\dashv}^N(A_N). \text{ But } \sum_{N=u}^{Pre} int A_N \text{ is an } N^P OS \text{ in } \mathfrak{R}_N^1, \lambda_{\dashv}^N(\sum_{N=u}^{Pre} int A_N) \text{ is an Neutrosophic } N^\beta OS \text{ in }$

 $\begin{aligned} \mathfrak{R}_{N}^{2}. & \text{Hence } \lambda_{\dashv}^{N} \binom{Pre}{Neu} int A_{N} \rangle = \beta int \lambda_{\dashv}^{N} \binom{Pre}{Neu} int A_{N} \rangle \subseteq \\ \beta_{Neu} int \lambda_{\dashv}^{N}(A_{N}). \\ (\text{ii}) \Rightarrow (\text{iii}): \\ \text{Let } A_{N} = \lambda_{\dashv}^{N^{-1}}. & \text{By } (\text{ii}), \ \lambda_{\dashv}^{N} \binom{Pre}{Neu} int (\lambda_{\dashv}^{N^{-1}}(B_{N}))) \subseteq \\ \beta_{Neu} int \lambda_{\dashv}^{N} (\lambda_{\dashv}^{N^{-1}}(B_{N}) \subseteq \beta_{Neu} int (B_{N}) \text{ which implies} \\ \frac{Pre}{Neu} int (\lambda_{\dashv}^{N^{-1}}(B_{N}) \subseteq \lambda_{\dashv}^{N^{-1}} (\lambda_{\dashv}^{N} \binom{Pre}{Neu} int (\lambda_{\dashv}^{N^{-1}}(B_{N})))) \subseteq \lambda_{\dashv}^{N^{-1}} \\ (\beta_{Neu} int (B_{N})). & \text{Thus } \frac{Pre}{Neu} int (\lambda_{\dashv}^{N^{-1}}(B_{N})) \subseteq \lambda_{\dashv}^{N^{-1}} (\beta_{Neu} int B). \\ (\text{iii}) \Rightarrow (\text{iv}): \end{aligned}$

Let A_N be $N^P CS\mathfrak{R}_N^1$ and B_N be an Neutrosophic set in \mathfrak{R}_N^2 . Such that $\lambda_{\dashv}^{N-1}(B_N) \subseteq A_N$. Therefore $\overline{\lambda_{\dashv}^{N-1}(B_N)} \supseteq \overline{A_N}$ which implies $\overline{A_N} \subseteq \overline{\lambda_{\dashv}^{N-1}(B_N)} = \lambda_{\dashv}^{N-1}(\overline{B_N})$. But $\overline{A_N}$ is an $N^P OS\mathfrak{R}_N^1$. Thus, $\overline{A_N} = \frac{Pre}{Neu}int(\overline{A_N}) \subseteq \frac{Pre}{Neu}int(\lambda_{\dashv}^{N-1}(\overline{B_N})) \subseteq$ $\lambda_{\dashv}^{N-1}(\beta_{Neu}int(\overline{B_N}))$. Hence $A_N \supseteq \overline{\lambda_{\dashv}^{N-1}(\beta_{Neu}int(\overline{B_N}))} = \lambda_{\dashv}^{N-1}(\beta_{Neu}Cl(B_N))$. Take $\beta_{Neu}Cl(B_N) = C_N$. Therefore $\lambda_{\dashv}^{N-1}(C_N) \subseteq A_N$. (iv) \Rightarrow (i):

Let D be an $N^P OS$ in \mathfrak{R}_N^1 , $B_N = \overline{\lambda_{\dashv}^N(D)}$ and $A_N = \overline{D}$. Then A_N is an $N^P CS \mathfrak{R}_N^1$. Hence $\lambda_{\dashv}^{N^{-1}}(B_N) = \lambda_{\dashv}^{N^{-1}} \overline{(\lambda_{\dashv}^N(D))} = \overline{\lambda_{\dashv}^{N^{-1}}(\lambda_{\dashv}^N(D))} \subseteq \overline{D} = A_N$. Then there exists an $N\beta CSC_N$ and $B_N \subseteq C_N$ such that $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N = \overline{D}$. Thus $D \subseteq \overline{\lambda_{\dashv}^{N^{-1}}(C_N)} \Rightarrow \lambda_{\dashv}^N(D) \subseteq \lambda_{\dashv}^N(\lambda_{\dashv}^{N^{-1}}(C_N)) \subseteq C_N$. On the other hand by $B_N \subseteq C_N$, $\lambda_{\dashv}^N(D) = \overline{B_N} \supseteq \overline{C_N}$. Hence $\lambda_{\dashv}^N(D) = \overline{C}$. Since \overline{C} is an $N^\beta OS$, $\lambda_{\dashv}^N(D)$ is an $N^\beta OS$ in \mathfrak{R}_N^2 . Therefore λ_{\dashv}^N is Neutrosophic pre- β -irresloute open mapping. \Box

5. Properites of Neutrosophic PRE- α , SEMI- α and PRE- β Irresolute closed Mappings

Theorem 5.1. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs. A function let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ Neutrosophic pre- α -irresolute closed mapping if and only if ${}_{Neu}^{\alpha}cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N({}_{Neu}^{pre}clA_N)$ for each $N^{\mathscr{S}}$, A_N in $NT\mathfrak{R}_N^1$.

Proof. Let λ_{\dashv}^{N} be Neutrosophic pre- α -irresolute closed mapping, then $\lambda_{\dashv}^{N} \begin{pmatrix} pre \\ Neu} clA_N \end{pmatrix}$ is $N^{\alpha}CS\Re_{N}^{2}$. Therefore $\lambda_{\dashv}^{N} \begin{pmatrix} pre \\ Neu} clA_N \end{pmatrix} = \overset{\alpha}{\underset{Neu}{N}} cl\lambda_{\dashv}^{N} \begin{pmatrix} pre \\ Neu} clA_N \end{pmatrix}$ and $\lambda_{\dashv}^{N} (A_N) \subseteq \lambda_{\dashv}^{N}$ $\begin{pmatrix} \alpha \\ Neu} clA_N \end{pmatrix}$. Thus $\overset{\alpha}{\underset{Neu}{N}} cl\lambda_{\dashv}^{N} (A_N) \subseteq \overset{\alpha}{\underset{Neu}{N}} cl\lambda_{\dashv}^{N} \begin{pmatrix} pre \\ Neu} clA_N \end{pmatrix} = \lambda_{\dashv}^{N}$ $\begin{pmatrix} neu \\ N$

Conversely, Let A_N be an $N^P CS\mathfrak{R}_N^1$. Then $\stackrel{\alpha}{\underset{Neu}{\alpha}} cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(\stackrel{pre}{\underset{Neu}{\alpha}} clA_N) = \lambda_{\dashv}^N(A_N)$. Thus $\stackrel{\alpha}{\underset{Neu}{\alpha}} cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N$. But $\lambda_{\dashv}^N(A_N) \subseteq \stackrel{\alpha}{\underset{Neu}{\alpha}} cl\lambda_{\dashv}^N(A_N)$. So $\stackrel{\alpha}{\underset{Neu}{\alpha}} cl\lambda_{\dashv}^N(A_N) = \lambda_{\dashv}^N(A_N)$. Therefore $\lambda_{\dashv}^N(A_N)$ is an $N^{\alpha}CS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Hence λ_{\dashv}^N is Neutrosophic pre $-\alpha$ -irresolute closed mapping.

Theorem 5.2. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs. A function let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ is Neutrosophic α -irresolute closed mapping if and only if ${}_{Neu}^{\alpha} cl \lambda_{\dashv}^N (A_N) \subseteq \lambda_{\dashv}^N ({}_{Neu}^{\alpha} cl A_N)$ for each Neutrosophic set A_N in NTS \mathfrak{R}_N^1 .

Proof. Let λ_{\dashv}^{N} is Neutrosophic α -irresolute closed mapping, then $\lambda_{\dashv}^{N}(\underset{Neu}{\alpha} clA_{N})$ is $N^{\alpha}CS\mathfrak{R}_{N}^{2}$ in \mathfrak{R}_{N}^{2} . Therefore λ_{\dashv}^{N} $\begin{pmatrix} \alpha_{Neu}clA_N \end{pmatrix} = & \alpha_{Neu}cl\lambda_{\dashv}^N & (\alpha_{Neu}clA_N) & \text{and} & \lambda_{\dashv}^N(A_N) & \subseteq & \lambda_{\dashv}^N \\ \begin{pmatrix} \alpha_{Neu}clA_N \end{pmatrix}. & \text{Thus} & \alpha_{Neu}cl\lambda_{\dashv}^N(A_N) & \subseteq & \lambda_{\dashv}^N & (\alpha_{Neu}clA_N). \end{pmatrix}$

Conversely, Let A_N be an $N^{\alpha}CS\Re_N^1$. Then $\underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(\underset{Neu}{\alpha}clA_N) = \lambda_{\dashv}^N(A_N)$. Thus $\underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(A_N)$. But $\lambda_{\dashv}^N(A_N) \subseteq \underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N)$ obtain $\underset{Neu}{\alpha}cl\lambda_{\dashv}^N(N) = \lambda_{\dashv}^N(A_N)$. Therefore $\lambda_{\dashv}^N(A_N)$ is an $N^{\alpha}CS\Re_N^{\gamma}$. Hence λ_{\dashv}^N is Neutrosophic α - irresolute closed mapping. \Box

Theorem 5.3. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs. A function $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ is Neutrosophic semi- α -irresolute closed mapping if and only if $_{Neu}^{\alpha} cl \lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N({}_{Neu}^{S} cl A_N)$ for each Neutrosophic set A_N in NTS \mathfrak{R}_N^1 .

Proof. Let λ_{\dashv}^{N} Neutrosophic semi- α -irresolute closed mapping, then $\lambda_{\dashv}^{N}(\underset{Neu}{S}clA_{N})$ in $N^{\alpha}CS\Re_{N}^{2}$ in \Re_{N}^{2} . Therefore $\lambda_{\dashv}^{N}(\underset{Neu}{S}clA_{N}) = \underset{Neu}{\alpha}cl\lambda_{\dashv}^{N}(\underset{Neu}{S}clA_{N})$ also $\lambda_{\dashv}^{N}(A_{N}) \subseteq \lambda_{\dashv}^{N}(\underset{Neu}{S}clA_{\parallel})$. Thus $\underset{Neu}{\alpha}cl\lambda_{\dashv}^{N}(A_{N}) \subseteq \underset{Neu}{\alpha}cl\lambda_{\dashv}^{N}(\underset{Neu}{S}cclA_{N}) = \lambda_{\dashv}^{N}(\underset{Neu}{S}cclA_{\parallel})$. Hence $\underset{Neu}{\alpha}cl\lambda_{\dashv}^{N}(A_{N}) \subseteq \lambda_{\dashv}^{N}(\underset{Neu}{S}cclA_{N})$.

Conversely, let A_N be an $N^{\mathscr{S}}CS\mathfrak{R}_N^1$. Then $\underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(\underset{Neu}{S}clA_N) = \lambda_{\dashv}^N(A_N)$. Thus $\underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N$. But $\lambda_{\dashv}^N(A_N) \subseteq \underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N)$ obtain $\underset{Neu}{\alpha}cl\lambda_{\dashv}^N(A_N) = \lambda_{\dashv}^N(A_N)$. Thus $\lambda_{\dashv}^N(A_N)$ is an $N^{\alpha}CS\mathfrak{R}_N^2$ in \mathfrak{R}_N^N . Hence λ_{\dashv}^N is Neutrosophic semi- α -irresolute closed mapping. \Box

Theorem 5.4. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs. A function let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ is Neutrosophic pre- β -irresolute closed mapping if and only if $_{Neu}^{\beta} Cl\lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(_{Neu}^{Pre} clA_N)$ for each Neutrosophic set A_N in NTS \mathfrak{R}_N^1 .

Proof. Let λ_{\dashv}^{N} be Neutrosophic pre-β -irresolute closed mapping, then $\lambda_{\dashv}^{N} \binom{pre}{Neu} clA_N$ is Neutrosophic $N^{\beta}CS$ in \Re_N^2 . Therefore $\lambda_{\dashv}^{N} \binom{pre}{Neu} clA_N = \frac{\beta}{Neu} Cl\lambda_{\dashv}^{N} \binom{pre}{Neu} clA_N$. Also $\lambda_{\dashv}^{N}(A_N)$ $\subseteq \lambda_{\dashv}^{N} \binom{pre}{Neu} clA_N$. Thus $\frac{\beta}{Neu} Cl\lambda_{\dashv}^{N}(A_N) \subseteq \frac{\beta}{Neu} Cl\lambda_{\dashv}^{N}$ $\binom{p}{Neu} clA_N = \lambda_{\dashv}^{N} \binom{pre}{Neu} clA_N$. Hence $\frac{\beta}{Neu} Cl\lambda_{\dashv}^{N}(A_N) \subseteq \lambda_{\dashv}^{N}$ $\binom{p}{Neu} clA_N$. Conversely, Let A_N be an $N^P CS\Re_N^1$ in \Re_N^1 . Then $\frac{\beta}{Neu} Cl\lambda_{\dashv}^{N}(A_N) \subseteq \lambda_{\dashv}^{N} \binom{pre}{Neu} clA_N = \lambda_{\dashv}^{N}(A_N)$. Thus $\beta_{Neu} Cl\lambda_{\dashv}^{N}(A_N) \subseteq \lambda_{\dashv}^{N}(A_N)$. But $\lambda_{\dashv}^{N}(A_N) \subseteq \frac{\beta}{Neu} Cl\lambda_{\dashv}^{N}(A_N)$. So, $\frac{\beta}{Neu} Cl\lambda_{\dashv}^{N}(A_N) = \lambda_{\dashv}^{N}(A_N)$. Therefore $\lambda_{\dashv}^{N}(A_N)$ is an Neutrosophic $N^{\beta} CS\Re_N^{N}$ in \Re_N^2 . Hence λ_{\dashv}^{N} is Neutrosophic pre-β -irresolute closed mapping.

Theorem 5.5. Let $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs. A function let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ is Neutrosophic pre- α -irresolute (Neutrosophic α -irresolute and Neutrosophic semi- α -irresolute, resp.) closed mapping if and only if for each Neutrosophic set B_N in \mathfrak{R}_N^2 and each $N^P OS\mathfrak{R}_N^2 (N^\alpha OS\mathfrak{R}_N^2)$ and $N^{\mathscr{S}} OS\mathfrak{R}_N^2$, resp.) A_N in \mathfrak{R}_N^1 with $A_N \supseteq (\lambda_{\dashv}^N)^{-1}(B_N)$ there exists an $N^\alpha OS\mathfrak{R}_N^2, C_N$ in \mathfrak{R}_N^2 with $C_N \supseteq B_N$ such that $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N$.

Proof. Let A_N be any arbitrary $N^P OS\mathfrak{R}_N^1(N^\alpha OS\mathfrak{R}_N^1)$ and $N^{\mathscr{S}} OS\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . With $A_N \supseteq \lambda_{\dashv}^{N^{-1}}(B_N)$ where B_N is an Neutrosophic set in \mathfrak{R}_N^2 . Then $\overline{A_N}$ is an

 $N^P CS\mathfrak{R}^1_N(N^{\alpha} CS\mathfrak{R}^1_N \text{ and } N^{\mathscr{S}} CS\mathfrak{R}^1_N, \text{ resp.})$ in \mathfrak{R}^1_N . Since λ^N_{+} is Neutrosophic pre- α -irresolute (Neutrosophic α -irresolute and Neutrosophic semi- α irresolute, resp.) closed mapping $\lambda_{\dashv}^N(\overline{A_N})$ is $N^{\alpha}CS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Then $\lambda_{\dashv}^N(A_N) = C_N$ (say) is $N^{lpha}OS\mathfrak{R}^2_N$ in \mathfrak{R}^2_N . Since $\lambda^{N^{-1}}_{\dashv}(B_N) \subseteq A_N, \ B_N \subseteq C_N$. Moreover, obtain $\lambda_{\neg}^{N^{-1}}(C_N) = \lambda_{\neg}^{N^{-1}}(\overline{\lambda_{\neg}^{N^{-1}}(\overline{A_N})})$ $=\overline{\lambda_{\dashv}^{N^{-1}}(\overline{\lambda_{\dashv}^{N}(A_{N})})}\subseteq A_{N}. \text{ Thus } \lambda_{\dashv}^{N^{-1}}(C_{N})\subseteq A_{N}. \text{ Conversely}$ Let A_N be $N^P CS\mathfrak{R}_N^1(N^{\alpha} CS\mathfrak{R}_N^1 \text{ and } N^{\mathscr{S}} CS\mathfrak{R}_N^1, \text{ resp.})$ in \mathfrak{R}_N^1 . Then $\lambda_{\dashv}^{N}(A_{N}) = B_{N}(\text{say})$ is an Neutrosophic set in \mathfrak{R}_{N}^{2} and $\overline{A_N}$ is $N^P OS\mathfrak{R}^1_N(N^{\alpha} OS\mathfrak{R}^1_N \text{ and } N^{\mathscr{S}} OS\mathfrak{R}^1_N, \text{ resp.})$ in \mathfrak{R}^1_N . Such $that \lambda_{\dashv}^{N^{-1}}(B_N) \subseteq \overline{A_N}$. By hypothesis, there is an $N^{\alpha}OS\mathfrak{R}^2_N, C_N$ of \mathfrak{R}^2_N . Such that $B_N \subseteq C_N$ and $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq \overline{A_N}$. Therefore, $A_N \subseteq \lambda_{\dashv}^{N^{-1}}(C_N)$. Hence $\overline{C_N} \subseteq \overline{B_N} = \lambda^N_{\dashv}(A_N) \subseteq \lambda^N_{\dashv}(\overline{\lambda^{N^{-1}}_{\dashv}(C_N)})\lambda^N_{\dashv}(A_N) = \overline{C_N}.$ Since $\overline{C_N}$ is $N^{\alpha}CS\mathfrak{R}^2_N$ in $\mathfrak{R}^2_N, \lambda^N_{+}(A_N)$ is $N^{\alpha}CS\mathfrak{R}^2_N$. Hence λ^N_{+} is Neutrosophic pre- α -irresolute (Neutrosophic α - irresolute and Neutrosophic semi- α - irresolute, resp.) closed mapping.

Theorem 5.6. $(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$ be two NTSs. A function let $\lambda_{\mathcal{H}}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ is Neutrosophic pre- β -irresolute closed mapping if and only if for each Neutrosophic set B_N in \mathfrak{R}_N^2 and each $N^{POS}A_N$ in \mathfrak{R}_N^1 with $A_N \supseteq \lambda_{\mathcal{H}}^{N-1}(B_N)$ there exists an $N^{\beta}OS$, C_N in \mathfrak{R}_N^2 with $C_N \supseteq B_N$ such that $\lambda_{\mathcal{H}}^{N-1}(C_N) \subseteq A_N$.

Proof. Let A_N be any arbitrary $N^P OS\mathfrak{R}_N^1$ in \mathfrak{R}_N^1 with $A_N \supseteq \lambda_{\dashv}^{N^{-1}}(B_N)$ where B_N is an Neutrosophic set in \mathfrak{R}_N^2 . Then $\overline{A_N}$ is an $N^P CS\mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Since λ_{\dashv}^N is Neutrosophic pre- β irresolute closed mapping $\lambda_{\dashv}^N(\overline{A_N})$ is Neutrosophic $N^\beta CS\mathfrak{R}_N^2$.
Then $\overline{\lambda_{\dashv}^N(A_N)} = C_N(\text{say})$ is Neutrosophic $N^\beta OS$ in \mathfrak{R}_N^2 . Since $\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq A_N$, $B_N \subseteq C_N$. Moreover we have $\lambda_{\dashv}^{N^{-1}}(C_N) = \lambda_{\dashv}^{N^{-1}}(\overline{\lambda_{\dashv}^N(\overline{A_N})} = \overline{\lambda_{\dashv}^{N^{-1}}(\lambda_{\dashv}^N(\overline{A_N}))}$. Thus $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq A_N$.

Conversely, Let B_N be $N^P CS$ in \mathfrak{R}_N^1 . Then $\overline{\lambda_{\dashv}^N(A_N)} = B_N(\text{say})$ is an Neutrosophic set in \mathfrak{R}_N^2 and $\overline{A_N}$ is $N^P OS \mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Such that $\lambda_{\dashv}^{N^{-1}}(B_N) \subseteq \overline{A_N}$. By hypothesis, there is an NeutrosophicOS C_N of \mathfrak{R}_N^2 Such that $B_N \subseteq C_N$ and $\lambda_{\dashv}^{N^{-1}}(C_N) \subseteq \overline{A_N}$. Therefore $A_N \subseteq \overline{\lambda_{\dashv}^{N^{-1}}(C_N)}$. Hence $\overline{C_N} \subseteq \overline{B_N} = \lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(\overline{\lambda_{\dashv}^{N^{-1}}(C_N)}) \subseteq \overline{C_N}$. $\lambda_{\dashv}^N(A_N) = \overline{C_N}$. Since $\overline{C_N}$ is Neutrosophic $N^\beta CS \mathfrak{R}_N^2$, $\lambda_{\dashv}^N(A_N)$ is $N^\beta CS$ in \mathfrak{R}_N^2 . Hence λ_{\dashv}^N is Neutrosophic pre- β – irresolute closed mapping. \Box

Theorem 5.7. Let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ be a bijective mapping from $NTS(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ To another $NTS(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$. Then the following statements are equivalent:

- 1. λ_{+}^{N} is an Neutrosophic α irresolute open mapping.
- 2. λ^N_+ is an Neutrosophic α -irresolute closed mapping.
- *3.* $\lambda_{\dashv}^{N^{-1}}$ *is an Neutrosophic* α *-irresolute function.*

Proof. (i) \Rightarrow (ii): Let A_N be $N^{\alpha}CS$ in \mathfrak{R}^1_N . Then $\overline{A_N}$ is an $N^{\alpha}OS\mathfrak{R}^1_N$. By hypothesis $\lambda_{\dashv}^{N}(\overline{A_{N}}) = \overline{\lambda_{\dashv}^{N}(A_{N})}$ is $N^{\alpha}OS\Re_{N}^{2}$. Hence $\lambda_{\dashv}^{N}(A_{N})$ is $N^{\alpha}CS\Re_{N}^{2}$. Thus λ_{\dashv}^{N} is Neutrosophic α -irresolute closed mapping.

 $(ii) \Rightarrow (iii):$

Let A_N be $N^{\alpha}CS$ in \mathfrak{R}_N^1 . Then, $\lambda_{\neg}^N(A_N)$ is $N^{\alpha}CS$ in \mathfrak{R}_N^2 . That is, $(\lambda_{\neg}^{N-1})^{-1}(A_N) = \lambda_{\neg}^N(A_N)$ is $N^{\alpha}CS$ in \mathfrak{R}_N^2 . Therefore λ_{\neg}^{N-1} is Neutrosophic α -irresolute function. (iii) \Rightarrow (i):

Let A_N be *NOS* in \mathfrak{R}^1_N and $\lambda_{\dashv}^{N^{-1}}$ is Neutrosophic-irresolute function. So $((\lambda_{\dashv}^{N^{-1}})^{-1}(A_N) = \lambda_{\dashv}^N(A_N)$ is $N^{\alpha}OS$ in \mathfrak{R}^2_N . Hence λ_{\dashv}^N is Neutrosophic α -irresolute open mapping. \Box

Theorem 5.8. Let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}_N^2$ be a mapping from Neutrosophic $TS(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ to another Neutrosophic $TS(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$. Then the following statements are equivalent:

- 1. λ^N_{\dashv} is an Neutrosophic pre- α (Neutrosophic semi- α , resp.)-irresolute open mapping.
- 2. λ_{\neg}^{N} is an Neutrosophic pre $-\alpha$ (Neutrosophic semi $-\alpha$, resp.)-irresolute closed mapping.

Proof. (i) \Rightarrow (ii):

Let A_N be $N^P CS\mathfrak{R}_N^1(N^{\mathscr{S}} CS\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . Then $\overline{A_N}$ is an $N^P OS\mathfrak{R}_N^1(N^{\mathscr{S}} OS\mathfrak{R}_N^1)$, resp.) in \mathfrak{R}_N^1 . By hypothesis $\lambda_{+}^N(A_N) = \overline{\lambda_{+}^N(A_N)}$ is $N^{\alpha} OS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Hence $\lambda_{+}^N(A_N)$ is $N^{\alpha} CS\mathfrak{R}_N^2$. Thus λ_{+}^N is Neutrosophic pre- α (Neutrosophic semi- α , resp.)-irresolute closed mapping. (ii) \Rightarrow (i):

Let A_N be $N^P OS\mathfrak{R}_N^1(N^{\mathscr{S}} OS\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . Then $\overline{A_N}$ is an $N^P CS\mathfrak{R}_N^1(N^{\mathscr{S}} CS\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . By hypothesis $\lambda_{\dashv}^N(A_N) = \overline{\lambda_{\dashv}^N(A_N)}$ is $N^{\alpha} CS\mathfrak{R}_N^2$. Hence $\lambda_{\dashv}^N(A_N)$ is $N^{\alpha} OS\mathfrak{R}_N^2$. Thus λ_{\dashv}^N is Neutrosophic pre- α (Neutrosophic semi- α , resp.)-irresolute open mapping.

Theorem 5.9. Let $\lambda_{\dashv}^N : \mathfrak{R}_N^1 \to \mathfrak{R}^{2_N}$ be a mapping from Neutrosophic $TS(\mathfrak{R}_N^1, \mathfrak{I}_N^1)$ to another Neutrosophic $TS(\mathfrak{R}_N^2, \mathfrak{I}_N^2)$. Then the following statements are equivalent:

- 1. λ_{\dashv}^{N} is an Neutrosophic pre- β -irresolute open mapping.
- 2. λ_{\dashv}^{N} is an Neutrosophic pre- β -irresolute closed mapping.

Proof. Proof is similar \Box

6. Conclusion

The concepts of Neutrosophic pre- α (Neutrosophic α , Neutrosophic semi- α and Neutrosophic α and β , resp.)irresolute open and closed mappings have been introduced and studied. The relationships between these mappings with other existing mappings in Neutrosophic topological spaces are investigated.

References

- K. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87-95.
- [2] I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala: On Some New Notions and Functions in NTSs, *Neutrosophic Sets and Systems*, 16(2017), 16–19.
- [3] A. Atkinswestley, S. Chandrasekar, Neutrosophic g*-Closed Sets and its maps, *Neutrosophic Sets and Systems*, 36(2020), 96–107.
- [4] A. Atkinswestley S. Chandrasekar, Neutrosophic Weakly G*closed sets, Advances in Mathematics: Scientific Aournal, 9(5), (2020), 2853–2861.
- [5] V. Banupriya, S.Chandrasekar, Neutrosophic αgs Continuity and Neutrosophic αgs Irresolute Maps, *Neutrosophic Sets and Systems*, 28(2019), 162–170.
- ^[6] V. Banu Priya, S. Chandrasekar, and M. Suresh, Neutrosophic Strongly α-Generalized Semi Closed Sets, *Advances in Mathematics: Scientific Journal*, 9(10), (2020), 8605–8613.
- [7] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl, 24(1), (1968), 182–190.
- D. Coker, An introduction to intuitionistic fuzzy Topological Spaces, *Fuzzy Sets and Systems*, 88(1997), 81–89.
- [9] Florentin Smarandache, Neutrosophic and Neutrosophic Logic, *First International Conference* On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- ^[10] Floretin Smarandache, Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, *Journal* of Defense Resources Management, 1(2010), 107–114.
- [11] P. Ishwarya, K. Bageerathi, On Neutrosophic semi open sets in NTSs, *International Jour. Of Math. Trends and Tech*, (2016), 214–223.
- [12] C. Maheswari, M. Sathyabama, S. Chandrasekar, Neutrosophic generalized b closed Sets In Neutrosophic Topological Spaces, *Journal of Physics Conf. Series*, (2018), 11–39.
- [13] C. Maheswari, S. Chandrasekar, Neutrosophic *gb* closed Sets and Neutrosophic *gb*-Continuity, *Neutrosophic Sets* and Systems, 29(2019), 89–99.
- [14] C. Maheswari and S. Chandrasekar, Neutrosophic bgclosed Sets and its Continuity, *Neutrosophic Sets and Systems*, 36(2020), 108–120.
- [15] T. Rajesh kannan, S.Chandrasekar, Neutosophic ωα closed sets in Neutrosophic topological space, *Journal Of Computer And Mathematical Sciences*, 9(10), (2018), 1400-1408.
- [16] T. Rajesh kannan, S.Chandrasekar, Neutosophic αcontinuous multifunction in Neutrosophic topological space, *The International Journal of Analytical and Experimental Modal Analysis*, XI(IX), (2019), 1360– 1367.
- ^[17] T. RajeshKannan, and S. Chandrasekar, Neutrosophic

 α -Irresolute Multifunction In Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, 32(1), (2020), 390–400.

- ^[18] T. Rajesh kannan , S. Chandrasekar, Neutrosophic Pre- α , Semi- α & Pre- β Irresolute Functions (Communicated).
- [19] A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic topological spaces, *Journal Computer Sci. Engineering*, 7(2012).
- [20] A.A. Salama and S.A. Alblowi, Neutrosophic set and Neutrosophic topological spaces, *ISOR J.mathematics*, 3(4), (2012), 31–35.
- [21] V.K. Shanthi, S. Chandrasekar, K. SafinaBegam, Neutrosophic Generalized Semi-closed Sets In NTSs, *International Journal of Research in Advent Technology*, 6(7), (2018), 1739–1743.
- [22] V. Venkateswara Rao, Y. Srinivasa Rao, Neutrosophic Preopen Sets and Pre-closed Sets in Neutrosophic Topology, *International Journal of Chem Tech Research*, 10(10), (2017), 449–458.
- [23] L. A. Zadeh, Fuzzy sets, *Information and Control*, 8(3), (1965), 338–353.

******* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******