

https://doi.org/10.26637/MJM0804/0078

Neutrosophic $PRE - \alpha$, $SEM - \alpha$ and $PRE - \beta$ **irresolute open and closed mappings in neutrosophic topological spaces**

T. Rajesh Kannan^{1*} and S. Chandrasekar²

Abstract

Aim of this present paper is, the notions of Neutrosophic pre- α -irresolute open & closed mappings, Neutrosophic α -irresolute open & closed mappings, Neutrosophic semi- α -irresolute open & closed mappings and Neutrosophic pre-β-irresolute open & closed mappings are introduced and Besides giving characterizations of these mappings and several interesting properties of these mappings are also discussed.

Keywords

Neutrosophic α -irresolute, Neutrosophic pre α -irresolute, Neutrosophic β-irresolute, Neutrosophic α -closed sets; Neutrosophic topological spaces.

AMS Subject Classification

03E72.

1,2*PG & Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India.* ***Corresponding author**: 1 rajeshkannan03@yahoo.co.in; ²chandrumat@gmail.com **Article History**: Received **19** August **2020**; Accepted **14** October **2020** ©2020 MJM.

1 [Introduction](#page-0-0) . 1795 2 [Preliminaries](#page-0-1) . 1795 3 [Neutrosophic PRE-](#page-2-0)α**,SEMI-**α **and PRE-**β **Irresolute [Open Mappings](#page-2-0) . 1797 4 [Properties and Characterizations.](#page-6-0)1801 5 [Properites of Neutrosophic PRE-](#page-9-0)**α**, SEMI-**α **and PRE**β **[Irresolute closed Mappings](#page-9-0) 1804 6 [Conclusion](#page-10-0). 1805 [References](#page-10-1) . 1805**

Contents

1. Introduction

C.L. Chang [\[7\]](#page-11-0) was introduced fuzzy topological space by using . Zadeh's L.A [\[23\]](#page-11-1) (uncertain) fuzzy sets. Further Coker [\[8\]](#page-11-2) was developed the notion of intuitionistic fuzzy topological spaces by using Atanassov's [\[1\]](#page-11-3) Smarandache [\[7\]](#page-11-0) was defined the Neutrosophic set of three component (t, f, i) = (Truth, Falsehood, Indeterminacy). The Neutrosophic crisp set concept converted to Neutrosophic topological spaces by A.A. Salama [\[20\]](#page-11-4). I. Arokiarani [\[2\]](#page-11-5) et al, introduced Neutrosophic α -closed sets. K. Bageerathi [\[11\]](#page-11-6) was developed to the concept of semiopen set and V.

Venkateswara Rao [\[22\]](#page-11-7) et.al., are introduced by pre open sets in Neutrosophic topological space.

In this paper, the concepts of Neutrosophic pre- α -irresolute open and closed mappings, Neutrosophic α -irresolute open and closed mappings, Neutrosophic semi- α -irresolute open and closed mappings and Neutrosophic pre-β-irresolute open and closed mappings are introduced and studied. Besides giving characterizations of these mappings, several interesting properties of these mappings are also given.

2. Preliminaries

In this section, we introduce the basic definition for Neutrosophic sets and its operations.

Definition 2.1 ([\[8\]](#page-11-2)). Let \mathscr{S}_N^1 be a non-empty fixed set. A N eutrosophic set $A_{\mathscr{S}^1_N}$ is the form

$$
A_{\mathscr{S}_N^1} = \{ \langle \xi^*, \mu_{A_{\mathscr{S}_N^1}}(\xi^*), \sigma_{A_{\mathscr{S}_N^1}}(\xi^*), \gamma_{A_{\mathscr{S}_N^1}}(\xi^*) \rangle : \xi^* \in \mathscr{S}_N^1 \}.
$$

 $Where \mu_{\mathscr{S}_{N}^{1}}(\xi^{*}): \mathscr{S}_{N}^{1} \to [0,1], \sigma_{A_{\mathscr{S}_{N}^{1}}}(\xi^{*}): \mathscr{S}_{N}^{1} \to [0,1],$ $\gamma_{A_{R^1_N}}(\xi^*) : \mathscr{S}_N^1 \to [0,1]$ are represent Neutrosophic of the *N degree of membership function, the degree indeterminacy and*

the degree of non membership function respectively of each ϵ *element* $\xi^* \in \mathscr{S}_N^1$ to the set $A_{\mathscr{S}_N^1}$ with

$$
0\leq \mu_{A_{\mathscr{S}_{\mathcal{N}}^{J}}}(\xi^{\ast})+\sigma_{A_{\mathscr{S}_{\mathcal{N}}^{J}}}(\xi^{\ast})+\gamma_{A_{\mathscr{S}_{\mathcal{N}}^{J}}}(\xi^{\ast})\leq 1.
$$

This is called standard form generalized fuzzy sets. But also Neutrsophic set may be

$$
0\leq \mu_{A_{\mathscr{S}_N^1}}(\xi^*)+\sigma_{A_{\mathscr{S}_N^1}}(\zeta^*)+\gamma_{A_{\mathscr{S}_N^1}}(\xi^*)\leq 3.
$$

Definition 2.2 ([\[8\]](#page-11-2)). *Each Intuitionistic fuzzy set* $A_{\mathscr{S}_{N}^1}$ *is a* non-empty set in \mathscr{S}^1_N is obviously on Neutrosophic set having *the form*

$$
\begin{split} A_{\mathscr{S}_N^1} = \{&<\xi^*, \mu_{A_{\mathscr{S}_N^1}}(\xi^*), (1-(\mu_{A_{\mathscr{S}_N^1}}(\xi^*)+\gamma_{A_{\mathscr{S}_N^1}}(\xi^*))),\\ \gamma_{A_{\mathscr{S}_N^1}}(\xi^*)&>\colon \xi^* \in \mathscr{S}_N^1\}. \end{split}
$$

Definition 2.3 ([\[8\]](#page-11-2)). *We must introduce the Neutrosophic set* 0_N *and* 1_N *in* \mathscr{S}_N^1 *as follows:*

$$
0_N = \{ \langle \xi^*, 0, 0, 1 \rangle : \xi^* \in \mathcal{S}_N^1 \}
$$

and

$$
1_N = \{ \langle \xi^*, 1, 1, 0 \rangle : \xi^* \in \mathcal{S}_N^1 \}.
$$

Definition 2.4 ([\[8\]](#page-11-2)). Let \mathscr{S}_N^1 be a non-empty set and N eutrosophic sets $A_{\mathscr{S}^1_N}$ and $B_{\mathscr{S}^1_N}$ in the form NS

$$
A_{\mathscr{S}_N^1} = \{ \langle \xi^*, \mu_{A_{\mathscr{S}_N^1}}(\xi^*), \sigma_{A_{\mathscr{S}_N^1}}(\xi^*), \gamma_{A_{\mathscr{S}_N^1}}(\xi^*) \rangle \colon \xi^* \in \mathscr{S}_N^1 \}
$$

and

$$
B_{\mathscr{S}_N^1} = \{<\xi^*,\ \mu_{B_{\mathscr{S}_N^1}}(\xi^*),\sigma_{B_{\mathscr{S}_N^1}}(\xi^*),\gamma_{B_{\mathscr{S}_N^1}}(\xi^*)>\colon \xi^*\in \mathscr{S}_N^1\}
$$

defined as:

\n- \n
$$
A_{\mathcal{S}_N^1} \subseteq B_{\mathcal{S}_N^1} \Leftrightarrow \mu_{A_{\mathcal{S}_N^1}}(\xi^*) \leq \mu_{B_{\mathcal{S}_N^1}}(\xi^*), \sigma_{A_{\mathcal{S}_N^1}}(\xi^*), \leq \sigma_{B_{\mathcal{S}_N^1}}(\xi^*)
$$
\n
\n- \n $\sigma_{B_{\mathcal{S}_N^1}}(\xi^*)$ \n
\n- \n $A_{\mathcal{S}_N^1}(\xi^*) \geq \gamma_{B_{\mathcal{S}_N^1}}(\xi^*)$ \n
\n- \n $A_{\mathcal{S}_N^1} = \{ \langle \xi^*, \gamma_{A_{\mathcal{S}_N^1}}(\xi^*), \sigma_{A_{\mathcal{S}_N^1}}(\xi^*), \mu_{A_{\mathcal{S}_N^1}}(\xi^*) \rangle \}$ \n
\n

$$
\begin{array}{lll}3. &A_{\mathscr{S}_{N}^1} \cap B_{\mathscr{S}_{N}^1} & = & \{<\xi^*, \quad \mu_{A_{\mathscr{S}_{N}^1}}(\xi^*)) \quad \wedge \mu_{B_{\mathscr{S}_{N}^1}}(\xi^*), \\ & \sigma_{A_{\mathscr{S}_{N}^1}}(\xi^*)) \land \sigma_{B_{\mathscr{S}_{N}^1}}(\xi^*), \ \gamma_{A_{\mathscr{S}_{N}^1}}(\xi^*) \ \vee \ \gamma_{B_{\mathscr{S}_{N}^1}}(\xi^*) >: \xi^* \\ & \in R_N^1\}\end{array}
$$

4. A^S ¹ *N* ∪*B*^S ¹ *N* = {< ξ ∗ , ^µ*A*^S ¹ *N* (ξ ∗) [∨]µ*B*^S ¹ *N* (^ξ), ^σ*A*^S ¹ *N* (ξ ∗) [∨] ^σ*B*^S ¹ *N* (ξ ∗)*,* ^γ*A*^S ¹ *N* (ξ ∗) [∧] ^γ*B*^S ¹ *N* (ξ ∗) >: ξ [∗] ∈ S ¹ *N* }*.*

Proposition 2.5 ([\[8\]](#page-11-2)). For all $A_{\mathscr{S}_{N}^{1} and} B_{\mathscr{S}_{N}^{1}}$ are two *Neutrosophic sets then the following condition are true:*

I. $(A_{\mathscr{S}_{N}^{1}} \cap B_{\mathscr{S}_{N}^{1}})^{c} = (A_{\mathscr{S}_{N}^{1}})^{c} \cup (B_{\mathscr{S}_{N}^{1}})^{c}$. 2. $(A_{\mathscr{S}_N^1} \cup B_{\mathscr{S}_N^1})^{c} = (A_{\mathscr{S}_N^1})^c \cap (B_{\mathscr{S}_N^1})^c$. Definition 2.6 ([\[18\]](#page-11-9)). *A Neutrosophic topology is a non* e mpty set \mathscr{S}^1_N is a family $\tau_{N_{\mathscr{S}^1_N}}$ of Neutrosophic subsets in \mathscr{S}^1_N *N satisfying the following axioms:*

$$
l. \ \ 0_N, 1_N \in \tau_{N_{\mathscr{S}^1_N}}
$$

2.
$$
G_{\mathscr{S}_N^1} \cap H_{\mathscr{S}_N^1} \in \tau_{N_{\mathscr{S}_N^1}} \text{ for any } G_{\mathscr{S}_1^N}, H_{\mathscr{S}_1^N} \in \tau_{N_{\mathscr{S}_N^1}}
$$

3.
$$
\bigcup_i Gi_{\mathscr{S}_N^1} \in \tau_{N_{\mathscr{S}_N^1}} \text{ for every } Gi_{\mathscr{S}_N^1} \in \tau_{N_{R_N^1}} \text{, } i \in J.
$$

The pair $(\mathscr{S}_N^1, \tau_{N_{\mathscr{S}_N^1}})$ *is called a Neutrosophic topological space.*

The element Neutrosophic topological spaces of $\tau_{N_{\mathscr{S}^1_\lambda}}$ are *called Neutrosophic open sets. It is denoted by* $NOS\mathscr{S}_{N}^1$ *.*

A Neutrosophic set
$$
A_{\mathcal{S}_{N}^1}
$$
 is closed if and only if $A_{\mathcal{S}_{N}^1}^C$ is
Neutrosophic open. It is denoted by $NCS\mathcal{S}_{N}^1$.

Definition 2.7 ([\[20\]](#page-11-4)). Let $(\mathscr{S}^1_N, \tau_{N_{\mathscr{S}^1_N}})$ be Neutrosophic *topological spaces.*

$$
A_{\mathscr{S}_N^1} = \{ \langle \xi^*, \mu_{A_{\mathscr{S}_N^1}}(\xi^*), \sigma_{A_{\mathscr{S}_N^1}}(\xi^*), \gamma_{A_{\mathscr{S}_N^1}}(\xi^*) \rangle \; \text{in} \; \xi^* \in \mathscr{S}_N^1 \}
$$

be a Neutrosophic set in \mathscr{S}^1_N

- *1. Neu-C1*($A_{\mathscr{S}_{N}^{1}}$) = \cap { $K_{\mathscr{S}_{N}^{1}}$ *is a Neutrosophic closed set in* \mathscr{S}_{N}^{1} and $A_{\mathscr{S}_{N}^{1}} \subseteq K_{\mathscr{S}_{N}^{1}}$ *}. It is denoted by* $\frac{Cl}{Neu}A_{\mathscr{S}_{N}^{1}}$.
- 2. *Neu-Int* $(A_{\mathscr{S}^1_N}) = \cup \{G_{\mathscr{S}^1_N} : G_{\mathscr{S}^1_N}$ is a Neutrosophic open set in \mathscr{S}_{N}^{1} and $G_{\mathscr{S}_{N}^{1}} \subseteq A_{\mathscr{S}_{N}^{1}}$. It is denoted by $_{Neu}^{Int}A_{\mathscr{S}_{N}^{1}}$.
- *3. Neutrosophic semi-open if* $A_{\mathscr{S}_N^1} \subseteq \mathbb{C}^l_{\text{Neu}}(\mathbb{C}^{int}_{N \in \mathcal{A}} \mathscr{S}_N^{1})$ *). It is* d *enoted by* N^S 0S \mathscr{S}^1_N .
- *4. The complement of Neutrosophic semi-open set is called Neutrosophic semi-closed.*
- *5. Neus-Cl*($A_{\mathscr{S}_N^1}$) = \cap { $K_{\mathscr{S}_N^1}/K_{\mathscr{S}_N^1}$ is a Neutrosophic semi $\bigcap_{N}^{N} S_{N}^{N}$ and $A_{S_{N}^{1}} \subseteq K_{S_{N}^{1}}$. It is denoted by *SCl*, *A*_{S/}*y*₁.
- *6. Neus-* $Int(A_{\mathscr{S}^1_N}) = \cup \{G_{\mathscr{S}^1_N} : G_{\mathscr{S}^1_N} \text{ is a Neutrosophic semi} \}$ *open set in* \mathscr{S}_N^1 and $G_{\mathscr{S}_N^1} \subseteq A_{\mathscr{S}_N^1}$. It is denoted by $\frac{Sint}{Neu} A_{\mathscr{S}^1_N}$.
- *7. Neutrosophic* α -*open set if* $A_{\mathscr{S}_N^1} \subseteq \text{int}_{\text{Neu}}^{\text{int}}(\text{C}^1 \text{C}_{\text{Neu}}^{\text{int}} A_{\mathscr{S}_N^1})$. *It is denoted by* N^{α} 0 *S* \mathscr{S}_{N}^{1} *.*
- *8. The complement of Neutrosophic* α*-open set is called Neutrosophic* α*-closed.*
- $9.$ *Neu* α $C1(A_{\mathscr{S}^1_N}) = \cap \{K_{\mathscr{S}^1_N} : K_{A_{\mathscr{S}^1_N}} \text{ is a Neutrosophic }\}$ α -*closed set in* \mathscr{S}_N^1 and $A_{\mathscr{S}_N^1} \subseteq K_{\mathscr{S}_N^1}$. It is denoted by α cl_{*N*} A _S_{1}.
- *10. Neuα* − *Int*($A_{R_N^1}$) = ∪{ $G_{\mathscr{S}_N^1}$: $G_{\mathscr{S}_N^1}$ is a Neutrosophic α -open set in \mathscr{S}_{N}^{1} and $G_{\mathscr{S}_{N}^{1}} \subseteq A_{\mathscr{S}_{N}^{1}}$. It is denoted by $\alpha^{int}_{Neq}A_{\mathscr{S}_{N}^{1}}.$
- *11. Neutrosophicpre open set if* $A_{\mathscr{S}_N^1} \subseteq \text{N}^{\text{int}}_{\text{Neu}}(^{Cl}A_{\mathscr{S}_N^1})$ *. It is denoted by* N^P 0*S* \mathscr{S}_{N}^1 .
- *12. The complement of Neutrosophic pre-open set is called Neutrosophic pre-closed.*
- *13. Neup-C1*($A_{\mathscr{S}_{N}^1}$) = \cap { $K_{A_{\mathscr{S}_{N}^1}}$ *is a Neutrosophic p-closed set in* \mathscr{S}_N^1 and $A_{\mathscr{S}_N^1} \subseteq K_{\mathscr{S}_N^1}$. It is deoted by $\frac{pcl}{Neu}A_{\mathscr{S}_{N}^{1}}$.
- *14. Neup-Int* $(A_{R_N^1}) = \cup \{G_{A_{\mathscr{S}_N^1}} : G_{A_{\mathscr{S}_N^1}} \text{ is a Neutrosophic }\}$ *p -open set in* \mathscr{S}_N^1 *and* $G_{\mathscr{S}_N^1} \subseteq A_{\mathscr{S}_N^1}$ *}. It is denoted by* $\frac{pint}{Neu} A_{\mathscr{S}_{N}^{1}}.$

Definition 2.8 ([\[9\]](#page-11-10)). *Take* Σ'_1 , Σ'_2 , Σ'_3 *are belongs to real numbers* 0 *to* 1 *such that* $0 \le \sum_{1}^{\prime} + \sum_{2}^{\prime} + \sum_{3}^{\prime} \le 1$ *. An Neutrosophic point* $f(\Sigma_1', \Sigma_2', \Sigma_3')$ *is Neutrosophic set defined by*

$$
f(\Sigma'_1, \Sigma'_2, \Sigma'_3) = \begin{cases} (\Sigma'_1, \Sigma'_2, \Sigma'_3), & \text{if } \Sigma = f \\ (0, 0, 1), & \text{if } \Sigma \neq f. \end{cases}
$$

Take $(\Sigma_1, \Sigma_2, \Sigma_3) = \langle f_{\Sigma_1}, f_{\Sigma_2}, f_{\Sigma_3} \rangle$, where $f_{\Sigma_1}, f_{\Sigma_2}, f_{\Sigma_3}$ are *represent Neutrosophic the degree of membership function, the degree indeterminacy and the degree of non-membership function respectively of each element* $\Sigma^* \in \mathscr{S}_N^1$ *to the set* $A_{\mathscr{S}^1_N}$.

Definition 2.9 ([\[9\]](#page-11-10)). Let \mathscr{S}_{N}^{1} and \mathscr{S}_{N}^{2} be two finite sets. Define $\psi_1 : \mathscr{S}_N^1 \to \mathscr{S}_N^2$. If

$$
A_{\mathscr{S}_N^2} = \{ \langle \theta, \mu_{A_{\mathscr{S}_N^2}}(\theta), \sigma_{A_{\mathscr{S}_N^2}}(\theta), \gamma_{A_{\mathscr{S}_N^2}}(\theta) \rangle \; \forall i \; \theta \in \mathscr{S}_N^2 \}
$$

is an NS in \mathscr{S}_{N}^2 , then the inverse image(pre image) A $_{\mathscr{S}_{N}^2}$ under ψ¹ *is an NS defined by*

$$
\begin{split} &\psi_1^{-1}(A_{\mathscr{S}_N^2}) = \\ &< \xi^*, \psi_1^{-1}\mu_{A_{\mathscr{S}_N^2}}(\xi^*), \psi_1^{-1}\sigma_{A_{\mathscr{S}_N^2}}(\xi^*), \psi_1^{-1}\gamma_{A_{\mathscr{S}_N^2}}(\xi^*) : \xi^* \in \mathscr{S}_N^1>. \end{split}
$$

Also define image NS

$$
U=<\xi^*,\mu_U(\xi^*),\sigma_U(\xi^*),\gamma_U(\xi^*):\xi^*\in\mathscr{S}_N^1:>
$$

under ψ_1 *is an NS defined by*

$$
\psi_1(U) = \\ <\theta, \psi_1(\mu_{A_{\mathscr{S}_{\tilde{N}}^2}}(\theta)), \psi_1(\sigma_{A_{\mathscr{S}_{\tilde{N}}^2}}(\theta)), \psi_1(\gamma_{A_{\mathscr{S}_{\tilde{N}}^2}}(\theta) : \theta \in \mathscr{S}_{N}^2>
$$

where

$$
\psi_1(\mu_{A_{\mathscr{S}_N^2}}(\theta)) = \begin{cases} \sup \mu_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if } \psi_1^{-1}(\theta) \neq \phi, \\ 0, & \text{elsewhere} \end{cases}
$$

$$
\psi_1(\sigma_{A_{\mathscr{S}_N^2}}(\theta)) = \begin{cases} \sup \sigma_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if } \psi_1^{-1}(\theta) \neq \phi, \\ 0, & \text{elsewhere} \end{cases}
$$

$$
\psi_1(\gamma_{A_{\mathscr{S}_N^2}}(\theta)) = \begin{cases} \inf (\gamma_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if } \psi_1^{-1}(\theta) \neq \phi, \\ 0, & \text{elsewhere} \end{cases}
$$

$$
\psi_1(\gamma_{A_{\mathscr{S}_N^2}}(\theta)) = \begin{cases} \inf (\gamma_{A_{\mathscr{S}_N^2}}(\xi^*), & \text{if } \psi_1^{-1}(\theta) \neq \phi, \\ 0, & \text{elsewhere} \end{cases}
$$

Definition 2.10 ([\[2\]](#page-11-5)). *A mapping* $\psi_1: (\mathscr{S}_N^1, \tau_{N_{\mathscr{S}_N^1}}) \to (\mathscr{S}_N^2, \tau_{N_{\mathscr{S}_N^2}})$ is called a

- *1. Neutrosophic continuous (Neu-continuous) if* $\psi_1^{-1}(A_{\mathscr{S}_N^2}) \in NCS\mathscr{S}_N^1$ whenever $A_{\mathscr{S}_N^2} \in NCS\mathscr{S}_N^2$.
- *2. Neutrosophic* α*-continuous (Neu* α−*continuous) if* $\psi_1^{-1}(A_{\mathscr{S}_N^2}) \in N^{\alpha}CS\mathscr{S}_N^1$ whenever $A_{\mathscr{S}_N^2} \in NCS\mathscr{S}_N^2$.
- *3. Neutrosophic semi-continuous (Neu semi-continuous)* $if \psi_1^{-1}(A_{\mathscr{S}_N^2}) \in N^sCS\mathscr{S}_N^1$ whenever $A_{\mathscr{S}_N^2} \in NCS\mathscr{S}_N^2$.

Definition 2.11 ([\[2\]](#page-11-5)). *A mapping* $\psi_1: (\mathscr{S}_N^1, \tau_{N_{\mathscr{S}_N^1}}) \to (\mathscr{S}_N^2, \tau_{N_{\mathscr{S}_N^2}})$ is called a

- *1. Neutrosophic open map if* $\psi_1(A_{\mathscr{S}_N^1}) \in NOS\mathscr{S}_N^2$ whenever $A_{\mathscr{S}^1_N} \in NOS\mathscr{S}^1_N$.
- 2. *Neutrosophic* α -open map if $\psi_1(A_{\mathscr{S}_N^1}) \in N^{\alpha}OS\mathscr{S}_N^2$ whenever $A_{\mathscr{S}^1_N} \in NOS\mathscr{S}^1_N$.
- *3. Neutrosophic pre -open map if* $\psi_1(A_{\mathscr{S}_N^1}) \in N^P$ 0*S* \mathscr{S}_N^2 whenever $A_{\mathscr{S}^1_N} \in NOS\mathscr{S}^1_N$.
- 4. *Neutrosophic β-open map if* $ψ_1(A_{\mathscr{S}^1_N}) \in N^\beta O S \mathscr{S}^2_N$ $whenever A \in NOS\mathscr{S}_N^1$.

3. Neutrosophic PRE-α**,SEMI-**α **and PRE-**β **Irresolute Open Mappings**

In this section, we introduce the Neutrosophic PRE- α , SEMI- α and PRE- β Irresolute Open Mappings and its properties.

Definition 3.1. A mapping λ^N_+ : $(\Re^1_N, \Im^1_N) \rightarrow (\Re^2_N, \Im^2_N)$ and λ^N_+ is said to be

*1. Neutrosophic Pre-*α *irresolute open (Neutrosophic* $pre-\alpha$ *-irresolute closed.*) mapping if $\lambda^N_+(V_1)$ is an N^{α} *OS*(N^{α} *CS*) *in* (\mathfrak{R}_N^2 , \mathfrak{S}_N^2) *for every* N^P *OS*(N^P *CS*) V_1 $in \ (\Re_N^1, \Im_N^1)$.

- *2. Neutrosophic* α*-irresolute open mapping (Neutrosophic* α *-irresolute closed) mapping if* $\lambda^N_+(V_1)$ *is an* $N^{\alpha}OS(N^{\alpha}CS)$ *in* (\Re_N^2, \Im_N^2) *for every* N^{α} *OS*(*CS*)*V*₁ *in* (\mathfrak{R}_N^1 , \mathfrak{I}_N^1)*.*
- *3. Neutrosophic semi-* α*-irresolute open (Neutrosophic* $semi$ - α -irresolute closed.) mapping. if $\lambda^N_+(V_1)$ is an N^{α} *OS*(N^{α} *CS*) *in* (\mathfrak{R}_N^2 , \mathfrak{S} $\binom{2}{N}$ *for every* $N^{\mathscr{S}}$ OS($N^{\mathscr{S}}$ CS) V_1 in $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$.
- *4. Neutrosophic pre-*β*-irresolute open (Neutrosophic* $\mathsf{pre}\text{-}\mathsf{\beta}$ *-irresolute closed.*) mapping if $\lambda^N_+(V_1)$ is an N^{β} *OS*(N^{β} *CS*) *in* (\mathfrak{R}_N^2 , \mathfrak{S}_N^2) *for every* N^P *OS*(N^P *CS*) V_1 $in \ (\mathfrak{R}^1_N, \mathfrak{S}^1_N).$

Proposition 3.2. *Every Neutrosophic Pre-*α *(Neutrosophic* α *and Neutrosophic semi-*α*) irresolute open mapping is Neutrosophic* α*-open mapping.*

Proof. Let $\lambda^N_+ : (\Re^1_N, \Im^1_N) \to (\Re^2_N, \Im^2_N)$. Assume that λ^N_+ is Neutrosophic pre- α (Neutrosophic α and Neutrosophic semi- α) -irresolute open mapping. Let *V*₁ be *NOS* \mathfrak{R}_N^1 . Since every *NOSS*R¹ is an N^P *OSS*R_N¹ $(N^{\alpha}$ *OSS*R_N₂ and $N^{\mathscr{S}}$ *OSS*R_N₂. Take V_1 is an $N^POS\mathfrak{R}_N^1(N^{\mathcal{S}}OS\mathfrak{R}_N^1$ and $N^{\mathcal{S}}OS\mathfrak{R}_N^1$). As λ^N_{\dashv} is an Neutrosophic pre- α (Neutrosophic- α and Neutrosophic semi- α , resp.) irresolute open mapping. $\lambda^N_+(V_1)$ is an N^{α} *OS* \mathfrak{R}^2_N Hence λ^N_+ is Neutrosophic α – *open* (Neutrosophic α and Neutrosophic semi- α) mapping. \Box

Remark 3.3. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Example 3.4. Let $\mathfrak{R}_N^1 = \{a_n b_n c_n\} = \mathfrak{R}_N^2$ then $\mathfrak{A}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2 U} C_{\mathfrak{R}_N^2},$ $B_{\mathfrak{R}_N^2} \cap C_{\mathfrak{R}_N^2}, \ 1_N\}$ are Neutrosophic Ts on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 where

- $A_{\mathfrak{R}_{N}^{1}} = \{ \langle x, (a_{n}, 0.5, 0.5, 0.5), (b_{n}, 0.4, 0.5, 0.6), (c_{n}, 0.6, 0.5, 0.4) \rangle \}$ >; *x*∈ \mathfrak{R}_N^1 }
- $B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.5, 0.5, 0.5), (b_n, 0.3, 0.5, 0.7), (c_n, 0.6, 0.5, 0.4) \}$ >; *y*∈ \mathfrak{R}_N^1 }
- $C_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.2, 0.5, 0.7), (b_n, 0.4, 0.5, 0.6), (c_n, 0.3, 0.5, 0.7) \}$ >; *y*∈R¹ *N*}
- $D_{\mathfrak{R}_{N}^{1}} = \{ \langle x, (a_{n}, 0.5, 0.5, 0.4), (b_{n}, 0.4, 0.5, 0.5), (c_{n}, 0.6, 0.5, 0.4) \rangle \}$ >; $x \in \mathfrak{R}_N^1$.

Define an Neutrosophic mapping λ_{\perp}^N : $(\mathfrak{R}_N^1, \mathfrak{S}_N^1) \rightarrow (\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ by $\lambda_{\perp}^N(a_n) = a_n$, $\lambda_{\perp}^N(b_n) = b_n$, $\lambda^N_+(c_n) = c_n$. Then $\lambda^N_+(D_{\mathfrak{R}^1_N})$ is an $N^{\alpha}OS\mathfrak{R}^2_N$ and $\lambda^N_+(D_{\mathfrak{R}^1_N})$ is an N^{β} OS \mathfrak{R}_N^2 . Therefore λ^N_{\dashv} is Neutrosophi $\alpha-$ open mapping and Neutrosophic-open mapping. $D_{\mathfrak{R}^1_N}$ is an *Neutrosophic in* \mathfrak{R}_N^1 *. Also* $D_{\mathfrak{R}_N^1}$ *is* $N^{\alpha}O\mathfrak{SR}_N^1$ *. Thus* $D_{\mathfrak{R}_N^1}$ *is* N^{β} *OS* \mathfrak{R}_N^1 and $N^{\mathscr{S}}$ *OS* \mathfrak{R}_N^1 . $\lambda_{\dashv}^N(D_{\mathfrak{R}_N^1})$ is not N^{α} 0*S* \mathfrak{R}_N^2 . Hence λ *N* a *is not Neutrosophic* α*-irresolute open mapping, not Neutrosophic pre-* α *-irresolute open mapping and not Neutrosophic Semi-* α− *irresolute open mapping.*

Proposition 3.5. *Every Neutrosophic Pre-*α *Neutrosophic and Neutrosophic semi-*α*, resp.)-irresolute open mapping is Neutrosophic-open mapping.*

Proof. Let $\lambda^N_+ : (\Re^1_N, \Im^1_N) \to (\Re^2_N, \Im^2_N)$. Assume that λ^N_+ is Neutrosophic pre- α (Neutrosophic α and Neutrosophic semi- α .)-irresolute open mapping. Let *V*₁ be *NOS* \mathfrak{R}^1_N . Since every *NOSS* \mathbb{R}_{N}^{1} is an N^{P} *OSS* \mathbb{R}_{N}^{1} (N^{α} *OSS* \mathbb{R}_{N}^{1} and N^{β} *OSS* \mathbb{R}_{N}^{1} , resp) *V*₁ is an $N^POS\mathfrak{R}_N^1(N^\alpha OS\mathfrak{R}_N^1$ and $N^\mathscr{S}OS\mathfrak{R}_N^1$). As λ_+^N is an Neutrosophic pre- α (Neutrosophic α – and Neutrosophic semi- α -, resp.) irresolute open mapping. $\lambda^N_+(V_1)$ is an N^{α} OS in \mathfrak{R}_N^2 . Hence $\lambda^N_+(V_1)$ is an N^{β} *OS* in \mathfrak{R}_N^2 . Hence λ^N_+ is Neutrosophic β-open(Neutrosophic α and Neutrosophic semi- α) mapping. П

Remark 3.6. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Example 3.7. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and let $\mathfrak{A}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \quad \mathfrak{A}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ be a two Neutrosophic Topological spaces on \mathfrak{R}^1_N and \mathfrak{R}^2_N . Where

- $A_{\mathfrak{R}_{N}^{1}} = \{ \langle x, (a_{n}, 0.5, 0.5, 0.3), (b_{n}, 0.3, 0.5, 0.5), (c_{n}, 0.4, 0.5, 0.6) \rangle \}$ >; *x*∈ \mathfrak{R}_N^1 },
- $B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.4, 0.5, 0.6), (b_n, 0.4, 0.5, 0.3), (c_n, 0.2, 0.5, 0.6) \}$ >; *y*∈ \mathfrak{R}_N^1 },

Define an Neutrosophic mapping $\lambda^N_{\pm} : (\Re^1_N, \Im^1_N) \rightarrow (\Re^2_N, \Im^2_N)$ by $\lambda^N_{\pm}(a_n) = a_n$, $\lambda^N_{\pm}(b_n) = b_n$, $\lambda^N_+(c_n) = c_n$. Take $A_{\mathfrak{R}^1_N}$ is Neutrosophic Open set in \mathfrak{R}^1_N . Then $\lambda_{\dashv}^{N}(A_{N})$ is an N^{β} OS \mathfrak{R}_{N}^{2} . Thus λ_{\dashv}^{N} is Neutrosophic-open *mapping. But not Neutrosophic Pre-*α *(Neutrosophic and Neutrosophic semi-*α*)-irresolute open mapping.*

Proposition 3.8. *Every Neutrosophic pre-*α *(Neutrosophic semi-*α*) irresolute open mapping is Neutrosophic- irresolute open mapping.*

Proof. Consider, λ^N_+ : (\Re^1_N, \Im^1_N) \rightarrow (\Re^2_N, \Im^2_N)) is Neutrosophic pre- α (Neutrosophic semi- α .) - irresolute open mapping. Let V_1 be $N^{\alpha}OS\Re_N^1$. Since every $N^{\alpha}OS\Re_N^1$ is an N^P *OS* \mathfrak{R}_N^1 $(N^S$ *OS* \mathfrak{R}_N^1). Then *V*₁ is an N^P *OS* \mathfrak{R}_N^1 $(N^S$ ^{*OS* \mathfrak{R}_N^1}). As λ^N_+ is an Neutrosophic pre- α (Neutrosophic semi- α resp.) -irresolute open mapping, $\lambda^N_+(V_1)$ is an N^{α} *OS* \mathfrak{R}^2_N . Hence λ^N_+ is Neutrosophic-irresolute open mapping. \Box

Remark 3.9. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Example 3.10. Let $\mathfrak{R}_{N}^{1} = \{a_n, b_n, c_n\} = \mathfrak{R}_{N}^{2}$ and take, $\mathfrak{R}_{N}^{1} = \{a_n, b_n\}$ $\{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{S}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ are a two Neutrosophic *Topological spaces on* \mathfrak{R}^1_N *and* \mathfrak{R}^2_N *where*

$$
A_{\mathfrak{R}_{N}^{1}} = \{ \langle x, (a_{n}, 0.5, 0.5, 0.3), (b_{n}, 0.3, 0.5, 0.5),
$$

\n
$$
(c_{n}, 0.4, 0.5, 0.6) >; x \in \mathfrak{R}_{N}^{1} \},
$$

\n
$$
B_{\mathfrak{R}_{N}^{2}} = \{ \langle y, (a_{n}, 0.4, 0.5, 0.6), (b_{n}, 0.4, 0.5, 0.3),
$$

\n
$$
(c_{n}, 0.2, 0.5, 0.6) >; y \in \mathfrak{R}_{N}^{1} \},
$$

\n
$$
C_{\mathfrak{R}_{N}^{1}} = \{ \langle x, (a_{b}, 0.4, 0.5, 0.5), (b_{n}, 0.6, 0.5, 0.3),
$$

\n
$$
(c_{n}, 0.7, 0.5, 0.3) >; x \in \mathfrak{R}_{N}^{1} \}
$$

Define an Neutrosophic mapping $\lambda_{\pm}^N : (\Re_N^1, \ \Im_N^1) \to (\Re_N^2, \ \Im_N^2), \ \lambda_{\pm}^N(a_n) = a_n, \ \lambda_{\pm}^N(b_n) = b_n,$ $\lambda^N_-(c_n) = c_n A_{\mathfrak{R}^1_N is}$ an Neutrosophic Open set and $N^{\alpha}O\mathfrak{SR}^1_N$. *Hence* $\lambda^N_+(A_{\mathfrak{R}^1_N})$, is an $N^{\alpha}O\mathcal{S}\mathfrak{R}^2_N$ *a Ihus* λ^N_+ *is Neutrosophic-irresolute open mapping. Then* $C_{\mathfrak{R}^1_N}$ *is* N^P *OS* \mathfrak{R}_N^1 and $\lambda^N_+(C_{\mathfrak{R}_N^1})$ *is an* N^{β} *OS* \mathfrak{R}_N^2 *. Thus* λ^N_+ *is Neutrosophic pre-β-irresolute open mapping. But* $\lambda^N_+(C_{\mathfrak{R}^1_N})$ i *s not* N^{α} *OS* \mathfrak{R}^2_N *. Hence* λ *N* a *is not Neutrosophic pre-*α*-irresolute open mapping.*

Example 3.11. Let $\mathfrak{R}_N^1 = \{a_n, b_n\}$, $\mathfrak{R}_N^2 = \{c_n, d_n\}$ and take,

$$
\mathfrak{I}_N^1 = \{0_{Nr}A_{\mathfrak{R}_{N'}^1}1_N\}, \qquad \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}
$$

are two Neutrosophic Topological spaces on \mathfrak{R}^1_N and \mathfrak{R}^2_N *where*

$$
A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.3, 0.5, 0.6) \rangle ;
$$

\n
$$
x \in \mathfrak{R}_N^1 \},
$$

\n
$$
B_{\mathfrak{R}_N^2} = \{ \langle y, (c_n, 0.3, 0.5, 0.6), (d_n, 0.4, 0.5, 0.5) \rangle ;
$$

\n
$$
y \in \mathfrak{R}_N^1 \},
$$

\n
$$
C_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3) \rangle ;
$$

\n
$$
x \in \mathfrak{R}^{1_N} \}
$$

is in Neutrosophic R1*^N . Define an Neutrosophic mapping* $\lambda^N_+:(\mathfrak{R}^{1_N}, \ \mathfrak{S}^{1_N})\rightarrow (\mathfrak{R}^2_N, \ \mathfrak{S}^2_N)\lambda^N_+(a_n)=c_n, \lambda^N_+(b_n)=d_n.$ *Then* $A_{\mathfrak{R}^1_N}$ is an $NOS\mathfrak{R}^1_N$ and $N^{\alpha}OS\mathfrak{R}^1_N$. Therefore λ^N_+ is *Neutrosophic α-irresolute open mapping. and also* $C_{\mathfrak{R}_N^1}$ *is an* $N^{\mathscr{S}}O\mathcal{S}\mathfrak{R}_N^1$. Hence $\lambda_{\dashv}^N(C_{\mathfrak{R}_N^1})$ is not in $N^{\alpha}O\mathcal{S}\mathfrak{R}_N^2$ and λ_{\dashv}^N is *not Neutrosophic semi-*α*-irresolute open mapping.*

Proposition 3.12. *Every Neutrosophic pre-*α *irresolute open mapping is Neutrosophic pre-*β*-irresolute open mapping.*

Proof. Consider, λ^N_+ : $(\Re^1_N, \Im^1_N) \rightarrow (\Re^2_N, \Im^2_N)$ is Neutrosophic pre- α irresolute open mapping. Let V_1 be *N*^{*P*}*OS*^{\mathcal{R}_N^1 . As λ_+^N is an Neutrosophic pre-α irresolute open} mapping, $\lambda^N_+(V_1)$ is an N^{α} *OS* \mathfrak{R}_N^2 . Hence $\lambda^N_+(V_1)$ is an N^{β} *OS* \mathfrak{R}_N^2 . Hence λ^N_{\dashv} is Neutrosophic pre β-irresolute open mapping.

Remark 3.13. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Example 3.14. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and take $\mathfrak{S}_N^1 =$ $\{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{S}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ are a two Neutrosophic Topological spaces on \mathfrak{R}^1_N and \mathfrak{R}^2_N where

$$
A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.3), (b_n, 0.3, 0.5, 0.5), (c_n, 0.4, 0.5, 0.6) >; x \in \mathfrak{R}_N^1 \},
$$

\n
$$
B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.4, 0.5, 0.6), (b_n, 0.4, 0.5, 0.3), (c_n, 0.2, 0.5, 0.6) >; y \in \mathfrak{R}_N^1 \},
$$

\n
$$
C_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3), (c_n, 0.7, 0.5, 0.3) >; x \in \mathfrak{R}_N^1 \}.
$$

is in neutrosophic R¹ *N . Define an Neutrosophic mapping* λ_{\pm}^N : $(\Re_N^1, \Im_N^1) \rightarrow (\Re_N^2, \Im_N^2)$ by $\lambda_{\pm}^N(a_n) = b_n$ $\lambda^N_+(b_n) = c_n, \lambda^N_+(c_n) = a_n$. Here $A_{\mathfrak{R}^1_N}$ is an $\emph{NeutronophicOpen set and, N^{\alpha}O\!S\mathfrak{R}^1_{N}.$ We get, $\lambda^{N}_{\dashv}(A_{\mathfrak{R}^1_{N}})$, is $an N^{\alpha}$ *OS* \mathfrak{R}_N^2 *in* \mathfrak{R}_N^2 *. Thus* λ_{\perp}^{Nis} *Neutrosophic- irresolute* p *open mapping. Finally* $C_{\mathfrak{R}^1_N}$ *is* $N^POS\mathfrak{R}^1_N$ *. We get* $\lambda^N_{\dashv}(C_{\mathfrak{R}^1_N})$ *is an N* ^β*OS*R² *N . Thus* λ *N* a *is Neutrosophic pre-*β*-irresolute open* mapping. And also $\lambda^N_{\dashv}(C_{\mathfrak{R}^1_N})$ is not $N^{\alpha}OS\mathfrak{R}^2_N$. Hence λ^N_{\dashv} is *not Neutrosophic Pre-*α*-irresolute open mapping.*

Proposition 3.15. *Every Neutrosophic semi-*α*-irresolute open mapping is Neutrosophic irresolute open mapping.*

Proof. Take λ^N_+ : (\Re^1_N, \Im^1_N) \to (\Re^2_N, \Im^2_N) from an Neutrosophic topological space. $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ to another Neutrosophic topological space $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ is Neutrosophic semi- α -irresolute open mapping. Let $C_{\mathfrak{R}^1_N}$ bein $N^{\mathscr{S}}$ *OS* \mathfrak{R}^1_N . As λ^N_+ is an Neutrosophic semi- α – irresolute open $\lambda^N_+(C_{\mathfrak{R}^1_N})$ is an N^{α} *OS* $\mathfrak{R}_{N_{\alpha}}^{2}$. Every N^{α} *OS* \mathfrak{R}_{N}^{2} is also in N^{S} *OS* \mathfrak{R}_{N}^{2} . So $\lambda^N_-(C_{\Re^1_N})$ is N^S *OS* \Re^2_N . Hence λ^N_+ is Neutrosophic irresolute open mapping. \Box

Remark 3.16. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Example 3.17. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$, then $\mathfrak{D}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2},$ $B_{\mathfrak{R}_N^2} \cap C_{\mathfrak{R}_N^2}, \ 1_N\}$ are Neutrosophic Ts on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 , where

$$
A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.5), (b_n, 0.4, 0.5, 0.6), (c_n, 0.6, 0.5, 0.4) \rangle; x \in \mathfrak{R}_N^1 \}
$$

\n
$$
B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.5, 0.5, 0.5), (b_n, 0.3, 0.5, 0.7), (c_n, 0.6, 0.5, 0.4) \rangle; y \in \mathfrak{R}_N^1 \}
$$

\n
$$
C_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.2, 0.5, 0.7), (b_n, 0.4, 0.5, 0.6), (c_n, 0.3, 0.5, 0.7) \rangle; y \in \mathfrak{R}_N^1 \}
$$

\n
$$
D_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.4), (b_n, 0.4, 0.5, 0.5), (c_n, 0.6, 0.5, 0.4) \rangle; x \in \mathfrak{R}_N^1 \}.
$$

 $\mathit{Define}\ an\ Neutrosophic\ mapping\ }_{\mathcal{M}}^{\mathcal{N}}:(\mathfrak{R}_N^1,\mathfrak{S}_N^1)\rightarrow(\mathfrak{R}_N^2,\mathfrak{S}_N^2)$ b *y* $\lambda^N_+(a_n) = a_n$, $\lambda^N_+(b_n) = b_n$, $\lambda^N_+(c_n) = c_n$.

Then $A_{\mathfrak{R}^1_N}$ and $D_{\mathfrak{R}^1_N}$ arein $N^SOS\mathfrak{R}^1_N$ and $\lambda^N_{\dashv}(A_{\mathfrak{R}^1_N})$ and $\lambda^N_{\dashv}(D_{\mathfrak{R}^1_N})$ are N^SOS in \mathfrak{R}^2_N . So λ^N_{\dashv} is Neutrosophic irresolute δ *open mapping. But* $\lambda^{N}_{\dashv}(D_{\mathfrak{R}^1_N})$ *is not* $N^{\alpha}OS$ *in* \mathfrak{R}^2_N *. Therefore* λ *N* a *is not Neutrosophic semi-*α*-irresolute open mapping.*

Proposition 3.18. *Every Neutrosophic pre-*β*-irresolute open mapping is Neutrosophic* β *-open mapping.*

Proof. Let λ^N_{\perp} be a map from an Neutrosophic topological space $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ to another Neutrosophic topological space $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and Neutrosophic pre- β -irresolute open mapping. Let $C_{\mathfrak{R}_N^1}$ be $NOS\mathfrak{R}_N^1$. Since every $NOS\mathfrak{R}_N^1$ is an $N^POS\mathfrak{R}_N^1$, hence $C_{\mathfrak{R}^1_N}$ is an *N^POS* \mathfrak{R}^1_N . As λ^N_{\dashv} is an Neutrosophic pre-β -irresolute open. we get $\lambda^N_+(C_{\mathfrak{R}^1_N})$ is an $N^{\beta}OS\mathfrak{R}^2_N$. Hence λ^N_+ is Neutrosophic β -open mapping. \Box

Remark 3.19. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Example 3.20. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ *, then* $\mathfrak{A}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, \ B_{\mathfrak{R}_N^2}, \ C_{\mathfrak{R}_N^2}, \ B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2},$ $B_{\mathfrak{R}_N^2} \cap C_{\mathfrak{R}_N^2}, \ 1_N\}$ are Neutrosophic Ts on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 , where

$$
A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.5), (b_n, 0.4, 0.5, 0.6),
$$

\n
$$
(c_n, 0.6, 0.5, 0.4) >; x \in \mathfrak{R}_N^1 \}
$$

\n
$$
B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.5, 0.5, 0.5), (b_n, 0.3, 0.5, 0.7),
$$

\n
$$
(c_n, 0.6, 0.5, 0.4) >; y \in \mathfrak{R}_N^1 \}.
$$

\n
$$
C_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.2, 0.5, 0.7), (b_n, 0.4, 0.5, 0.6),
$$

\n
$$
(c_n, 0.3, 0.5, 0.7) >; y \in \mathfrak{R}_N^1 \}
$$

\n
$$
D_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.4), (b_n, 0.4, 0.5, 0.5),
$$

\n
$$
(c_n, 0.6, 0.5, 0.4) >; x \in \mathfrak{R}_N^1 \}
$$

 \mathcal{D} efine an Neutrosophic mapping $\lambda^N_\pm: (\mathfrak{R}^1_N, \, \mathfrak{I}^1_N) \rightarrow (\mathfrak{R}^2_N, \, \mathfrak{I}^2_N)$ by $\lambda^N_+(a_n) = a_n$, $\lambda^N_+(b_n) = b_n$, $\lambda^N_+(c_n) = c_n$. Here $A_{\mathfrak{R}^1_Nis}$ and $NOS\Re_N^1$. We get λ^N_+ is an $N^{\beta}OS\Re_N^2$ which implies λ^N_+ is β p *open mapping. But* $D_{\mathfrak{R}^1_N}$ *is N^pOS in* \mathfrak{R}^1_N *and* $\lambda^N_{\dashv}(D_{\mathfrak{R}^1_N})$ *is not N* ^β*OS*R² *N . So,* λ *Nis* a *not Neutrosophic pre-*β *irresolute open mapping.*

Proposition 3.21. *Every Neutrosophic pre-*α*-irresolute open mapping is Neutrosophic pre irresolute open mapping.*

Proof. Let λ^N_+ : $(\Re^1_N, \Im^1_N) \rightarrow (\Re^2_N, \Im^2_N)$ from an Neutrosophic topological space to another Neutrosophic topological space and Neutrosophic pre- α -irresolute open mapping. Let $A_{\mathfrak{R}^1_N}$ be in $N^POS\mathfrak{R}^1_N$. As λ^N_{\dashv} is Neutrosophic pre- α-irresolute open. We get $\lambda^N_+(A_{\mathfrak{R}^1_N})$ is an $N^{\alpha}O\mathcal{S}\mathfrak{R}^2_N$. As every N^{α} *OS*R_N², is N^P *OS*R_N_N², finally $\lambda^N_+(A_{\Re^1_N})$ is an N^P *OS* \mathfrak{R}_N^2 . Hence λ^N_+ is Neutrosophic pre irrresolute open mapping. \Box Remark 3.22. *The above converse of the Proposition necessity not be true as shown by the following below examples.*

Remark 3.23. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ and take, $\mathfrak{S}_N^1 =$ $\{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \mathfrak{S}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, 1_N\}$ are a two Neutrosophic Topological spaces on \mathfrak{R}^1_N and \mathfrak{R}^2_N , where

$$
A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.3), (b_n, 0.3, 0.5, 0.5), (c_n, 0.4, 0.5, 0.6) >; x \in \mathfrak{R}_N^1 \},
$$
\n
$$
B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.4, 0.5, 0.6), (b_n, 0.4, 0.5, 0.3), (c_n, 0.2, 0.5, 0.6) >; y \in \mathfrak{R}_N^1 \},
$$
\n
$$
C_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.4, 0.5, 0.5), (b_n, 0.6, 0.5, 0.3), (c_n, 0.7, 0.5, 0.3) >; x \in \mathfrak{R}_N^1 \}
$$

 $\mathit{Define}\ an\ Neutronophic\ mapping\ }\lambda_{\dashv}^{N}:(\mathfrak{R}_{N}^{1},\mathfrak{S}_{N}^{1})\to(\mathfrak{R}_{N}^{2},\mathfrak{S}_{N}^{2})$ $\lambda^N_+(a_n) = b_n$, $\lambda^N_+(c_n) = b_n$, $\lambda^N_+(c_n) = a_n$. Then $A_{\mathfrak{R}^1_N}$ and $C_{\mathfrak{R}^1_N}$ a re N^P OS \mathfrak{R}^1_N and $\lambda^N_{\dashv} (A_{\mathfrak{R}^1_N})$ and $\lambda^N_{\dashv} (C_{\mathfrak{R}^1_N})$ are in N^P OS \mathfrak{R}^2_N . *Therefore* λ^N_+ is Neutrosophic pre irresolute open mapping. \mathcal{B} ut $\lambda^N_{\dashv}(C_{\mathfrak{R}^1_N})$ is not $N^{\alpha}O\mathcal{S}\mathfrak{R}^2_N$. Thus λ^N_{\dashv} is not Neutrosophic *pre-*α*-irresolute open mapping. Hence the converse of the above Proposition need not be true.*

Proposition 3.24. *Every Neutrosophic pre irresolute open mapping is Neutrosophic pre-*β*-irresolute open mapping.*

Proof. Take, λ^N_+ : $(\mathfrak{R}^1_N, \mathfrak{S}^1_N) \rightarrow (\mathfrak{R}^2_N, \mathfrak{S}^2_N)$ from an Neutrosophic topological space $(\mathfrak{R}_{N}^1, \mathfrak{S}_{N}^1)$ to another Neutrosophic topological space $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ is Neutrosophic pre irresolute open mapping. Let $A_{\mathfrak{R}_N^1}$ be in $N^POS\mathfrak{R}_N^1$. As λ^N_{\dashv} is Neutrosophic pre irresolute open $\lambda^N_{\dashv} (A_{\mathfrak{R}^1_N})$ is an N^P *OS*R²_{*N*}</sub>. As every N^P *OS*R²_{*N*}</sub> is N^{β} *OS*R²_{*N*}. Fianally we get $\lambda^N_{\dashv}(A_{\Re^1_N})$ is an N^{β} *OS* \Re^2_N . Hence λ^N_{\dashv} is Neutrosophic pre- β \overline{N} -irrresolute open mapping. □

Remark 3.25. Let $\mathfrak{R}_N^1 = \{a_n, b_n, c_n\} = \mathfrak{R}_N^2$ then $\mathfrak{D}_N^1 = \{0_N, A_{\mathfrak{R}_N^1}, 1_N\}, \ \mathfrak{I}_N^2 = \{0_N, B_{\mathfrak{R}_N^2}, C_{\mathfrak{R}_N^2}, B_{\mathfrak{R}_N^2} \cup C_{\mathfrak{R}_N^2}, \$ $B_{\mathfrak{R}_N^2} \cap C_{\mathfrak{R}_N^2}, \ 1_N\}$ are Neutrosophic Ts on \mathfrak{R}_N^1 and \mathfrak{R}_N^2 , where

$$
A_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.5), (b_n, 0.4, 0.5, 0.6), (c_n, 0.6, 0.5, 0.4) \rangle; x \in \mathfrak{R}_N^1 \}
$$

\n
$$
B_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.5, 0.5, 0.5), (b_n, 0.3, 0.5, 0.7), (c_n, 0.6, 0.5, 0.4) \rangle; y \in \mathfrak{R}_N^1 \}.
$$

\n
$$
C_{\mathfrak{R}_N^2} = \{ \langle y, (a_n, 0.2, 0.5, 0.7), (b_n, 0.4, 0.5, 0.6), (c_n, 0.3, 0.5, 0.7) \rangle; y \in \mathfrak{R}_N^1 \}
$$

\n
$$
D_{\mathfrak{R}_N^1} = \{ \langle x, (a_n, 0.5, 0.5, 0.4), (b_n, 0.4, 0.5, 0.5), (c_n, 0.6, 0.5, 0.4) \rangle; x \in \mathfrak{R}_N^1 \}.
$$

Define an Neutrosophic mapping $\lambda^N_+ : (\Re^1_N, \Im^1_N) \to (\Re^2_N, \Im^2_N)$ by $\lambda^N_+(a_n) = a_n$, $\lambda^N_+(b_n) = b_n$,

 $\lambda_{\dashv}^{N}(c_{n}) = c_{n}$ *. Here* $A_{\mathfrak{R}_{N}^{1}}$ *. And* $D_{\mathfrak{R}_{N}^{1}}$ *are in* $N^{P}OS\mathfrak{R}_{N}^{1}$ *and* $\lambda^N_{\dashv}(A_{\mathfrak{R}^1_N})$ and $\lambda^N_{\dashv}(D_{\mathfrak{R}^1_N})$ are in $N^{\beta}O\mathfrak{SR}^2_N$. But $\lambda^N_{\dashv}(D_{\mathfrak{R}^1_N})$ is *not in N ^POS*R² *N . Hence* λ *N* a *is Neutrosophic pre-*β*-irresolute open mapping and not Neutrosophic pre irresolute open mapping. Thus the converse of the above Proposition need not be true.*

Diagram I

Interrelationships between Neutrosphicpre- α (Neutrosphic *al pha*, Neutrosphic semi- α and Neutrosphic pre- β , resp.) -irresolute open mappings with existing mappings in Neutrosphic topological spaces.

4. Properties and Characterizations

Theorem 4.1. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$, $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be $Neutronophic$ *TSs.* Let $\lambda^N_{\pm} : (\Re^1_N, \Im^1_N) \to (\Re^2_N, \Im^2_N)$ and $\mu^N_{\pm}: (\mathfrak{R}_N^2, \mathfrak{S}_N^2) \rightarrow (\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be any two maps. If $\mu^N_{\dashv} \circ \lambda^N_{\dashv} : \ \ (\mathfrak{R}^1_N , \mathfrak{I}^1_N) \ \to \ (\mathfrak{R}^3_N , \mathfrak{I}^3_N) \ \ \ \ \textit{is} \ \ \ \ \ \textit{Neutrosophic}$ *pre-*α*-irresolute (Neutrosophic semi-*α*-irresolute) open and* λ *N* a *is Onto, Neutrosophic pre-*α*-irresolute (Neutrosophic semi-α−irresolute, resp.) function then* $μ_+^N$ *is Neutrosophic* α*-irresolute open mapping.*

Proof. Let C_N be any in $N^{\alpha}OSS\mathfrak{R}_N^2$. Since λ^N_+ is an Neutrosophic pre- α -irresolute (Neutrosophic semi- α -irresolute.) function, $\lambda^{N^{-1}}_+$ $\int_{-1}^{N^{-1}} (C_N)$ is $N^POS\mathfrak{R}_N^1(N^{\mathscr{S}}OS\mathfrak{R}_N^1).$ Also $\mu^N_+ \circ \lambda^N_+$ is Neutrosophic pre- α -irresolute (Neutrosophic semi- α -irresolute.) open. Therefore $(\mu_\mathbf{\perp}^N \circ \lambda_\mathbf{\perp}^N) \lambda_\mathbf{\perp}^{N^{-1}}$ $\mu^{N-1}_{\dashv} (C_N) = \mu^N_{\dashv} (C_N)$ is an $N^{\alpha} O S \mathfrak{R}_N^3$ in $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$. Hence μ^N is an Neutrosophic- α -irresolute open mapping. \Box

Theorem 4.2. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$, $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be *Neutrosophic TSs. Let* λ_1^N : $(\mathfrak{R}_N^1, \mathfrak{S}_N^1) \rightarrow (\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and μ^N_+ : $(\mathfrak{R}_N^2, \mathfrak{S}_N^2) \rightarrow (\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be any two maps. If

 $\mu^N_{\dashv} \circ \lambda^N_{\dashv} : \, (\mathfrak{R}^1_N, \mathfrak{I}^1_N) \: \rightarrow \, (\mathfrak{R}^3_N, \; \; \mathfrak{I}^3_N) \,$ is an Neutrosophic α*-irresolute open and* λ *Nis* a *surjective, Neutrosophic* α*-continuous function then* µ *N* a *is Neutrosophic* α*-open mapping.*

Proof. Let B_N be any in $NOSR_N^2$. Since λ_+^N is an Neutrosophic α -continuous function, λ^{N-1}_\dashv $\int_{-1}^{N^{-1}} (B_N)$ is $N^{\alpha} O S \mathfrak{R}_N^1$. As $\mu^N_+ \circ \lambda^N_+$ is Neutrosophic α -irresolute open, then $\frac{\Box}{\Box} \circ \lambda_\dashv^N) (\lambda_\dashv^{N^{-1}}$ $((\mu_\dashv^{\Box}$ $\mu^{N-1}_+(B_N)$ = $\mu^N_+(B_N)$ is an N^{α} OS \mathfrak{R}^3_N in $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$. Hence $\mu^N_+(B_N)$ is an Neutrosophic- α open mapping. П

Theorem 4.3. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1), (\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be *Neutrosophic TSs. Let* λ^N_{\pm} : $(\mathfrak{R}^1_N, \mathfrak{S}^1_N) \rightarrow (\mathfrak{R}^2_N, \mathfrak{S}^2_N)$ and $\mu^N_{\pm}: (\mathfrak{R}_N^2, \mathfrak{S}_N^2) \rightarrow (\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be any two maps. If $\mu^N_{\dashv} \circ \lambda^N_{\dashv} : \ (\mathfrak{R}^1_N, \mathfrak{I}^1_N) \ \to \ (\mathfrak{R}^3_N, \quad \mathfrak{I}^3_N) \ \ \textit{is Neutrosophic}$ *pre-*β*-irresolute open and* λ *N* a *is surjective, Neutrosophic pre irresolute function then* µ *N* a *is Neutrosophic pre-*β *-irresolute open mapping.*

Proof. Let B_N be any in $NOS\mathfrak{R}_N^2$. Since $\lambda^N_+(B_N)$ is Neutrosophic pre-irresolute function, $\lambda^{N^{-1}}_+$ $\int_{-1}^{N^{-1}} (B_N)$ is $N^P O S \mathfrak{R}_N^1$. As $\mu^N_+ \circ \lambda^N_+$ is Neutrosophic pre- β -irresolute open, $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N)(\lambda_{\dashv}^{N^{-1}})$ $\mu^{N-1}_+(B_N)$ = $\mu^N_+(B_N)$ is an N^{β} OS \mathfrak{R}^3_N in $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$. Hence μ^N is an Neutrosophic pre- β -irresolute open mapping.

Theorem 4.4. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1), (\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and $(\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ be *Neutrosophic TSs. Let* λ_+^N : $(\mathfrak{R}_N^1, \mathfrak{S}_N^1) \rightarrow (\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ and $\mu^N_{\pm}: (\Re^2_N, \Im^2_N) \rightarrow (\Re^3_N, \Im^3_N)$ be any two maps. If $\mu^N_{\dashv} \circ \lambda^N_{\dashv} : (\mathfrak{R}^1_N, \mathfrak{S}^1_N) \to (\mathfrak{R}^3_N, \mathfrak{S}^3_N)$. Then the following *statements hold:*

1. If λ *N* a *is Neutrosophic pre-*α*-irresolute (Neutrosophic* α*-irresolute and Neutrosophic semi -*α− *irresolute) open and* µ *N* a *is Neutrosophic* α*-irresolute open*

mappings, then $\mu_+^N \circ \lambda_+^N : (\Re_N^1, \ \Im_N^1) \to (\Re_N^3, \ \Im_N^3)$ *is Neutrosophic pre-*α*-irresolute (Neutrosophic* α*-irresolute and Neutrosophic semi-*α*-irresolute, resp.) open mapping.*

- *2. If* λ *N* a *is Neutrosophic pre open (Neutrosophic* α*-open* and Neutrosophic semi open, resp.) mapping and μ^N_\dashv *is an Neutrosophic pre-*α*-irresolute (Neutrosophic* α *-irresolute and Neutrosophic semi-*α*-irresolute, resp.) open mapping then* $\mu_{\dashv}^N \circ \lambda_{\dashv}^N : (\Re_N^1, \Im_N^1) \to (\Re_N^3, \Im_N^3)$ *is an Neutrosophic-open mapping.*
- 3. If λ^N_+ is Neutrosophic pre irresolute open and μ^N_+ is *Neutrosophic pre-*β*-irresolute open then* $\mu_+^N \circ \lambda_+^N : (\mathfrak{R}_N^1, \ \mathfrak{I}_N^1) \rightarrow (\mathfrak{R}_N^3, \ \mathfrak{I}_N^3)$ is Neutrosophic *pre-*β *-irresolute open mapping.*
- 4. If λ^N_+ is Neutrosophic pre open mapping and μ^N_+ is *Neutrosophic pre-*β*-irresolute open mapping then* $\mu^N_{\dashv} \circ \lambda^N_{\dashv}$: $(\mathfrak{R}_N^1, \quad \mathfrak{S}_N^1) \rightarrow (\mathfrak{R}_N^3, \mathfrak{S}_N^3)$ is an *Neutrosophic-*β*-open mapping.*
- *Proof.* 1. Let B_N be an $N^POS\mathfrak{R}_N^1(N^\alpha OS\mathfrak{R}_N^1)$ and $N^{\mathscr{S}}$ *OS* \mathfrak{R}^1_N , resp.) in \mathfrak{R}^1_N . Since λ^N is Neutrosophic pre- α -irresolute (Neutrosophic α -irresolute and Neutrosophic semi-α-irresolute,resp.) open, $λ_-(B_N)$ is an N^{α} OS in \mathfrak{R}_N^2 . Now $(\mu_{\dashv}^N \circ \lambda_{\dashv}^N)(B_N) = \mu_{\dashv}^N(\lambda_{\dashv}^N(B_N)).$ Also μ^N is Neutrosophic- α -irresolute open, $\mu^N_+(\lambda^N_+(B_N))$ is $N^{\alpha}OS\Re^3_N$ in \Re^3_N . Hence $\mu^N_+\circ \lambda^N_+$ is Neutrosophic pre-α−irresolute (Neutrosophicirresolute and Neutrosophic semi- α – irresolute, resp.) open mapping.
	- 2. Let B_N be an in $NOS\Re_N^1$. Since λ^N_+ is Neutrosophic pre open (Neutrosophic α –open and Neutrosophic semi open, resp.), $\lambda^N_{\perp}(B_N)$ is $N^POS\mathfrak{R}^2_N(N^{\alpha}OS\mathfrak{R}^2_N)$ and N^{SOS}_{N} , **P**_{*N*}, **resp.**) in \mathfrak{R}_{N}^{2} . Now $(\mu_{+}^{N} \circ \lambda_{+}^{N} (B_{N}) =$ $\mu^N_+(\lambda^N_+(B_N)).$ As μ^N_+ is Neutrosophic pre- α (Neutrosophic α and Neutrosophic semi- α resp.)-irresolute open, $\mu^N_+(\lambda^N_+(B_N))$ is $N^{\alpha}OS\Re^2_N$ in \mathfrak{R}_N^3 . Hence $\mu^N_+ \circ \lambda^N_+$ is Neutrosophic α-open mapping.
	- 3. Let A_N be an $N^POS\mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Since λ^N_+ is Neutrosophic pre irresolute open $\lambda^N_{\perp}(A_N)$ is an N^P *OS* \mathfrak{R}_N^2 in \mathfrak{R}_N^2 . Now $(\mu_\dashv^N \circ \lambda_\dashv^N)(A_N) =$ $\mu^N_+(\lambda^N_+(A_N)).$ But μ^N_+ is Neutrosophic pre- β -irresolute open, $\mu^N_+(\lambda^N_+ A_N)$ is $N^{\beta} O S \mathfrak{R}_N^2$ in \mathfrak{R}_N^3 . Hence $\mu^N_+ \circ \lambda^N_+$ is Neutrosophic pre-β -irresolute open mapping.
	- 4. Let B_N be an in *NOSSA_N*. Since λ^N_+ is Neutrosophic preopen, $\lambda^N_+(B_N)$ is an $N^POS\mathfrak{R}^2_N$. Now $(\mu^N_+) \circ \lambda^N_+)(B_N) = \mu^N_+(\lambda^N_+(B_N)).$ But μ^N_+ is Neutrosophic pre- β -irresolute open, $\mu^N_+(\lambda^N_+(B_N))$ is N^{β} *OS* \mathfrak{R}_N^3 in \mathfrak{R}_N^3 . Hence $\mu_{\dashv}^N \circ \lambda_{\dashv}^N$ is Neutrosophic β open mapping.

Theorem 4.5. Let (\Re_N^1, \Im_N^1) and (\Re_N^2, \Im_N^2)) be two *Neutrosophic Topological spaces and let* $\lambda^N_+ : (\mathfrak{R}_N^1, \mathfrak{S}_N^1) \to (\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be a mapping. Then the *following conditions are equivalent:*

- *1.* λ *N* a *is Neutrosophic pre-*α*-irresolute open mapping.*
- 2. μ_{\dashv}^N (*Pre*_{*i*} int A_{*N*})</sub> $\subseteq \frac{\alpha}{N}$ *Neutrosophic Preparecel Neutrosophic* $\int \int_N$ *in* \mathfrak{R}^1_N *.*
- *3.* $\frac{Pre}{Neu}$ int (λ_{+}^{N-1}) $\Lambda^{N-1}_+(B_N)$) $\subseteq \lambda \mathcal{A}^{N-1}(\frac{\alpha}{\text{Neu}} \text{ int } B_N)$ for each *Neutrosophic set* B_N *in* \mathbb{R}^2_N .
- 4. For any NS, A_N in \mathfrak{R}^1_N and NSB_N in \mathfrak{R}^2_N and let A_N *be* $N^P C S \Re_N^1$ such that λ^{N-1}_+ $A^{N-1}_{\dashv}(B_N) \subseteq A_N$. Then there e *xists an* C_N ϵN^{α} *CS* \mathfrak{R}_N^2 *in* \mathfrak{R}_N^2 *and* $B_N \subseteq C_N$ *such that* $\lambda_\dashv^{N^{-1}}$ $\bigcap_{i=1}^{N^{-1}}(C_N)\subseteq A_N.$

Proof. (i) \Rightarrow (ii):

Here $\frac{Pre}{Neu}$ int $A_N \subseteq A_N \Rightarrow \lambda^N \left(\frac{Pre}{Neu} \right) \subseteq \lambda^N \left(A_N \right)$. But,
 $\frac{Pre}{Neu} \cdot int A_N$ is an $N^POS\Re_N^1$. And $\lambda^N \left(\frac{Pre}{Neu} \right)$ is an $N^{\alpha}OS\Re_N^2$. in \mathfrak{R}_N^2 . Hence

$$
\lambda^N_-(\mathop{Re}\limits_{Neu} \text{int } A_N) = \alpha_{Neu} \text{int } \lambda^N_-(\mathop{Re}\limits_{Neu} \text{int } A_N) \subseteq \alpha_{Neu} \text{int } \lambda^N_+.
$$

 $(ii) \Rightarrow (iii):$ Let $A_N = \lambda_\dashv^{N^{-1}}$ $A^{N^{-1}}(B_N)$ By (ii),

$$
\lambda^N_-(\mathop{Neu}\limits^{Pre}_{\ell\ell}int(\lambda^{N^{-1}}_+(B_N))\subseteq \mathop{Neu}\limits^{a}int \lambda^N_+(\lambda^{N^{-1}}_+(B_N))\subseteq \mathop{Neu}\limits^{a}int(B_N)
$$

which gives

$$
\mathop{\rm Spec \, int}_{Neu} int(\lambda^{N^{-1}}_+(B_N)) \subseteq \lambda^{N^{-1}}_+(\lambda^N_-(\mathop{Pre \, int}_{Neu} int(\lambda^{N^{-1}}_+(B_N))))
$$

$$
\subseteq \lambda^{N^{-1}}_+(\mathop{S\, \atop Neu} int(B_N)).
$$

Thus $_{Neu}^{Pre}$ *int* ($\lambda^{N^{-1}}_{\dashv}$ $\lambda^{N^{-1}}_{\dashv}(B_N))\subseteq \lambda^{N^{-1}}_{\dashv}$ A^{N-1} (α_{Neu} int (B_N)). $(iii) \Rightarrow (iv)$:

Let A_N be N^PCS in \mathfrak{R}^1_N and B_N be an Neutrosophic set in \mathfrak{R}^2_N . Such that $\lambda^{N^{-1}}_+$ $A_+^{N^{-1}}(B_N) \subseteq A_N$. Then

$$
\overline{\lambda^{N-1}_{\dashv}(B_N)}\supseteq \overline{A_N} \Rightarrow \overline{A_N}\subseteq \overline{\lambda^{N-1}_{\dashv}(B_N)}=\lambda^{N^{-1}}_{\dashv}(B_N).
$$

But $\overline{A_N}$ is an $N^POS\mathfrak{R}_N^1$. Thus

$$
\overline{A_N} = \frac{Pre}{Neu} int(A_N) \subseteq \frac{Pre}{Neu} int(\lambda_+^{N-1}(B_N) \subseteq (\lambda_+^N)^{-1}(\frac{\alpha}{Neu} int(B_N)).
$$

Hence
$$
(\lambda_+^N)^{-1}(\frac{\alpha}{\text{Neu}}int(\overline{B_N})) = \lambda_+^{N^{-1}}(\alpha cl(B_N)).
$$
 Take
\n $\alpha_{Neu}cl(B_N) = C_N$. Therefore $\lambda_+^{N^{-1}}(C_N) \subseteq A_N$.
\n(iv) \Rightarrow (i) :

Let *D* be an N^P *OS* \mathfrak{R}_N^1 . And $B_N = \overline{\lambda^N_+(D)}$ and $A_N = \overline{D}$. Then *A* is an $N^P C S \mathfrak{R}_N^1$. Hence

$$
\lambda_{\dashv}^{N^{-1}}(B_N)=\lambda_{\dashv}^{N^{-1}}\overline{(\lambda_{\dashv}^N(D))}=\overline{\lambda_{\dashv}^{N^{-1}}\lambda_{\dashv}^N(D))}\subseteq \overline{D}=A_N.
$$

Then there exists an $N^{\alpha}CSC_N$ and $B_N \subseteq C_N$ such that $\lambda_\dashv^{N^{-1}}$ $A^{N-1}_+(C_N) \subseteq A_N = \overline{D}$. Thus $D \subseteq \lambda^{N-1}_+(C_N)$, which implies $\lambda_\dashv^N(D) \subseteq \lambda_\dashv^N(\lambda_\dashv^{N^{-1}})$ $\frac{N^{-1}(C_N)}{N} \subseteq \overline{C_N}$. On the other hand, by $B_N \subseteq C_N$, $\lambda^N_+(D) = \overline{B_N} \supseteq \overline{C_N}$. Hence $\lambda^N_+(D_N) = \overline{C_N}$. Since $\overline{C_N}$ is an $N^{\alpha}OS$, then $\lambda^N_+(D_N)$ is an $N^{\alpha}OS\Re^2_N$. Therefore λ^N_+ is Neutrosophic pre- α -irresloute open mapping.

 \Box

Theorem 4.6. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be two NTSs and let $\lambda^N_+ : \Re^1_N \to \Re^2_N$ be a mapping. Then the following *conditions are equivalent:*

- *1.* λ^N_+ is Neutrosophic α -irresolute open mapping.
- 2. $\lambda^N_+(\mathop{\alpha}\limits_{N\in\mathcal{U}}\limits^{\alpha} intA_N) \subseteq \mathop{\alpha}\limits_{N\in\mathcal{U}}\limits^{\alpha} int\lambda^N_+(A_N)$ for each Neutrosophic $\text{setin } \mathfrak{R}^1_N.$
- 3. $\frac{\alpha}{Neu}$ int $((\lambda_{+}^N)^{-1}) \subseteq \frac{\alpha}{Neu}$ int $(\lambda_{+}^N)^{-1}(B_N)$ for each *Neutrosophic set B in* \mathfrak{R}_N^2 .
- *4. For any Neutrosophic set A^N in* R¹ *N . Neutrosophic set* B_N *in* \mathfrak{R}_N^2 *and let* A_N *be* $N^{\alpha} C S \mathfrak{R}_N^1$ *such that* $\lambda_\dashv^{N^{-1}}$ $A^{N-1}_{\perp}(B_N) \subseteq A_N$. Then there exists an $N^{\alpha} C S \mathfrak{R}_N^2$, C_N in \mathfrak{R}_N^2 and $B_N \subseteq C_N$ such that $\lambda^N_+(C_N) \subseteq A_N$.

Proof. (i) \Rightarrow (ii):

 α_{Neu} *int* $A_N \subseteq A_N \Rightarrow \lambda_+^N(\alpha_{Neu}$ *int* $A_N) \subseteq \lambda_+^N(A_N)$. But α_{Neu} *int* A_N is an N^{α} OS $\mathfrak{R}_N^1 \lambda_{\perp}^N(\alpha_{\ell\ell} \text{int} A_N)$ is an N^{α} OS in \mathfrak{R}_N^2 . Hence $\lambda^N_-(\frac{\alpha}{\text{Neu}}intA_N) = \frac{\alpha}{\text{Neu}}int\lambda_+(\frac{\alpha}{\text{Neu}}intA_N) \subseteq \frac{\alpha}{\text{Neu}}int\lambda^N_+(A_N).$ $(ii) \Rightarrow (iii):$ Let $A_N = \lambda_+^{N^{-1}}$

 $a_{\dashv}^{N^{-1}}$. By (ii), $\lambda_{\dashv}^{N}(\frac{\alpha}{\text{Neu}}int(\lambda_{\dashv}^{N^{-1}}))$ $\binom{N^{-1}}{1}(B_N))$ \subseteq $\frac{\alpha}{N}$ *Neuint*(*B_N*) which implies $\frac{\alpha}{N}$ *Neuint*((λ^{N-1} ₁ $\stackrel{N^{-1}}{\rightarrow} (B_N))$) \subseteq $\lambda_\dashv^{N^{-1}}$ $\lambda_\dashv^{N^{-1}}(\lambda_\dashv^N(\alpha_{\ell u} int(\lambda_\dashv^{N^{-1}}))$ $\mathcal{A}^{N-1}(B_N))$ \subseteq $\lambda_{\mathcal{A}}(\frac{\alpha}{Neu}int B_N)$. Thus, $\frac{\alpha}{N e u}$ int (λ^{N-1}_+) $\lambda^{N^{-1}}_{\dashv}(B_N))\subseteq \lambda^{N^{-1}}_{\dashv}$ $\int_{-1}^{N^{-1}}(\frac{\alpha}{\text{Neu}}int(B_N)).$ $(iii) \Rightarrow (iv):$

Let A_N be $N^{\alpha} C S \mathfrak{R}_N^1$ and B_N be an Neutrosophic set in \mathfrak{R}_N^2 . Such that $\lambda_+^{N^{-1}}$ $(A^{N-1}(B_N)) \subseteq A_N$. Hence $\lambda^{N-1}(B_N) \supseteq \overline{A_N} \Rightarrow \overline{A_N}$ $\subseteq\overline{\lambda_\dashv^{N^{-1}}(B_N)}=\lambda_\dashv^{N^{-1}}$ $\prod_{n=1}^{N-1} (\overline{B_N})$. But $\overline{A_N}$ is an N^{α} *OS* \mathfrak{R}_N^1 . Thus $\overline{A_{N}} = \frac{\alpha}{\textit{Neu}} \textit{int}(\overline{A_{N}}) \subseteq \frac{\alpha}{\textit{Neu}} \textit{int}(\lambda_{\dashv}^{N^{-1}})$ $\lambda^{N^{-1}}_{\dashv}(B_N))\subseteq \lambda^{N^{-1}}_{\dashv}$ A^{N-1} ($\frac{\alpha}{Neu}$ int $(\overline{B_N})$). $\overline{A_N} \supseteq \overline{\lambda_\dashv^{N-1}(\alpha_{\text{rel}} \text{int}(\overline{B_N}))} = \lambda_\dashv^{N^{-1}}$ A^{N-1} $(\alpha cl(B_N))$. Put $\alpha cl(B_N) = C_N$. Hence $\lambda_{\dashv}^{N^{-1}}$ $\stackrel{N^{-1}}{\rightarrow}$ $(C_N) \subseteq A_N$. $(iv) \Rightarrow (i)$:

Let *D* be an $N^{\alpha}OSS\mathfrak{R}_N^1$, $B_N = \lambda_{\frac{1}{2}}^N(D)$ and $A_N = \overline{D}$. Then A_N is an N^{α} *CS* \mathfrak{R}_N^1 . Hence $\lambda_{\dashv}^{N^{-1}}$ $\lambda^{N^{-1}}_{\dashv} (B_N) \: = \: \: \lambda^{N^{-1}}_{\dashv}$ $\stackrel{N^{-1}}{\rightarrow} (\lambda^N_+(D)) =$ $\lambda_{\perp}^{N-1}(\lambda_{\perp}^N(D)) = A_N$. Then, there exists an $N^{\alpha} C S \mathfrak{R}_N^1 C_N$ and $B_N \subseteq C_N$. Such that $\lambda_+^{N^{-1}}$ $\frac{N^{-1}}{N}(C_N) \subseteq A_N = \overline{D}$. Thus, $D \subseteq (\lambda^{N^{-1}}_{\dashv} C_N) \Rightarrow \lambda^{N}_{\dashv}(D) \subseteq \lambda^{N}_{\dashv} (\lambda^{N^{-1}}_{\dashv}$ $\overline{C_N}^{\overline{N-1}}(C_N)$ \subseteq $\overline{C_N}$. On the other hand by $B_N \subseteq C_N$, $\lambda^N_+(D) = \overline{B_N} \supseteq \overline{C_N}$. Therefore $\lambda^N_+(D) = \overline{C_N}$. As $\overline{C_N}$ is an $N^{\alpha}OSS\mathfrak{R}_N^1, \lambda^N_+(D)$ is an $N^{\alpha}OSS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Hence λ^N_+ is Neutrosophic α -irresloute open mapping.

Theorem 4.7. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be two NTSs and let $\lambda^N_+ : \mathfrak{R}^1_N \to \mathfrak{R}^2_N$ be a mapping. Then the following *conditions are equivalent:*

- *1.* λ *N* a *is Neutrosophic semi-*α*-irresolute open mapping.*
- 2. $\lambda^N_+(S_{Neu}int(A_N) \subseteq \frac{\alpha}{N}$ *eu*^{*int*} $\lambda^N_+(A_N)$ *for each Neutrosophic* \int *set* A_N *in* \mathfrak{R}_N^1 .
- 3. $\int_{N\in\mathbb{Z}} \int_{N}^N t^{N-1}$ $\lambda^{N^{-1}}_{\dashv} (B_N) \quad \subseteq \quad \lambda^{N^{-1}}_{\dashv}$ $\int_{-1}^{N^{-1}} \left(\frac{\alpha}{\text{Neu}} \text{int} B_N \right)$ *for each Neutrosophic set* B_N *in* \mathfrak{R}_N^2 .

4. For any Neutrosophic set in R¹ *N , Neutrosophic set in* \mathfrak{R}_N^2 and let A_N be $N^{\mathscr{S}} C S \mathfrak{R}_N^1$ such that $\lambda_\mathcal{A}^{N^{-1}}$ $A^{N-1}_{\mathcal{A}}(B_N) \subseteq A_N$. *Then there exists an N*^α C S \mathfrak{R}_N^2 , C_N *in* \mathfrak{R}_N^2 *and* $B_N \subseteq C_N$ such that $\lambda^{N^{-1}}_{\dashv}$ $\stackrel{N^{-1}}{\rightarrow} (C_N) \subseteq A_N.$

Proof. (i) \Rightarrow (ii):

 $\sum_{N\in\mathbb{N}}^{S}$ *N*^{*N*} $\leq A_N \Rightarrow \lambda_+^N(\sum_{N\in\mathbb{N}}^{S}$ *intA*_{*N*}) $\subseteq \lambda_+^N(A_N)$. But $\sum_{N\in\mathbb{N}}^{S}$ *int A_N* is an N^S *OS* \mathfrak{R}_N^1 , $\lambda^N_+(\mathop{S}_{\text{Neu}}\text{int } A_N)$ is an N^{α} *OS* \mathfrak{R}_N^2 in \mathfrak{R}_N^2 . Hence $\lambda^N_+({}^S_{Neu}int A_N) = \alpha^{\alpha \atop Neu}int \lambda^N_+({}^S_{Neu}int A_N) \subseteq \alpha^{\alpha \atop Neu}int \lambda^N_+({}^A_{AN}).$ $(ii) \Rightarrow (iii):$ Let $A_N = \lambda_{\dashv}^{N^{-1}}$ $a^{N-1}_+(B_N)$. By (ii), $\lambda^N_+(\stackrel{S}{\chi}_{\text{eu}} int(\lambda^{N-1}_+)$ $\stackrel{N^{-1}}{\rightarrow} (B_N))$) \subseteq $\alpha\atop Neuint \lambda^N_+(\lambda^{N-1}_+)$ $\mathcal{L}_{\text{H}}^{N-1}(B_N)$ \subseteq $\mathcal{L}_{\text{Neu}}^{a}$ *int*(*B_N*) which implies $\frac{S}{N e u}$ int (λ^{N-1}_+) $\overset{N^{-1}}{\rightarrow} (B_N) \ \subseteq \ \lambda_\dashv^{N^{-1}}$ $\frac{N^{-1}}{\mathcal{A}}(\lambda^N_{\dashv}(\frac{\mathcal{S}}{Neu}int(\lambda^N_{\dashv}$ $\lambda^{N^{-1}}_{\dashv}(B_N)))\ \subseteq\ \lambda^{N^{-1}}_{\dashv}$ \overline{a} $\binom{\alpha}{N}$ *lnt* (B_N)). Thus, $\frac{S}{N}$ *euint* $\left(\lambda^{N-1}\right)$ $a^{N-1}_{\vdash} (B_N) \subseteq (\lambda^N_{\dashv})^{-1}$ $(a_{\ell \mu} \text{int} B_N)$. $(iii) \Rightarrow (iv):$ Let A_N be $N^{\mathscr{S}} C S \mathfrak{R}_N^1$ and B_N be an Neutrosophic set in \mathfrak{R}_N^2 such that $\lambda^{N-1}_{\text{+}}$ $A_{\dashv}^{N^{-1}}(B_N) \subseteq A_N$. Hence $\lambda_{\dashv}^{N^{-1}}(B_N) \supseteq \overline{A_N} \Rightarrow$ $\overline{A_{N}}\subseteq\overline{\lambda_{\dashv}^{N^{-1}}(B_{N})}=\lambda_{\dashv}^{N^{-1}}$ $\frac{N^{-1}}{N}(\overline{B_N})$. But $\overline{A_N}$ is an $N^{\mathscr{S}}$ *OSS* \mathfrak{R}_N^1 . Thus, $\overline{A_{N}} = \frac{S}{Neu}$ int $(\overline{A_{N}}) \subseteq \frac{S}{Neu}$ int (λ_{+}^{N-1}) $\overline{A}^{N^{-1}}(\overline{B_N}))\subseteq \overline{\lambda}^{N^{-1}}_{+}$ $\int_{-1}^{N^{-1}}(\frac{\alpha}{\text{Neu}}int(\overline{B_N}))$. Hence $A_N \supseteq \overline{\lambda^{N-1}_+(\frac{\alpha}{N e u} int(\overline{B_N}))} = \lambda^{N-1}_+$ $\int_{-1}^{N^{-1}} \left(\frac{\alpha}{\text{Neu}} c l(B_N) \right)$. Put $\alpha_{\text{Neu}} c l(B_N) = C_N$, obtain $\lambda_{\text{--i}}^{N^{-1}}$ $A^{N-1}_{\dashv}(A_N)\subseteq A_N$. $(iv) \Rightarrow (i):$ Let *D* be an $N^{\mathscr{S}}$ *OS* \mathfrak{R}_N^1 , $B_N = \lambda^N_+(D)$ and $A_N = \overline{D}$. Then A_N is an $N^{\mathscr{S}} C S \mathfrak{R}_N^1$. Hence $\lambda_{\dashv}^{N^{-1}}$ $\lambda^{N^{-1}}_{\dashv} (B_N) \; = \; \lambda^{N^{-1}}_{\dashv}$ $\stackrel{N^{-1}}{\rightarrow} \; \; (\lambda^N_{\dashv}(D))$ $= \lambda_{+}^{N-1}(\lambda_{+}^{N}(D)).$ Then, there exists an $N^{\alpha}C\mathcal{S}\mathfrak{R}_{N}^{1}$, C_{N} and $B_N \subseteq C_N$. Such that $\lambda_+^{N^{-1}}$ $A^{N-1}(C_N) \subseteq A_N = \overline{D}$, thus, $D \subseteq \overline{\lambda_+^{N-1}(C_N)} \Rightarrow \lambda_+^N(D) \subseteq \lambda_+^N(\lambda_+^{N-1}(\overline{C_N})) \subseteq \overline{C_N}$. On the

 $D \subseteq \mathcal{R}_+ \setminus (C_N) \to \mathcal{R}_+ \setminus (D) \subseteq \mathcal{R}_+ \setminus (\mathcal{R}_+ \setminus (C_N)) \subseteq C_N$. Hence
other hand by $B_N \subseteq C_N$, $\lambda_+^N(D) = \overline{B_N} \supseteq \overline{C_N}$. Hence $\lambda^N_+(D) = \overline{C_N}$. Since $\overline{C_N}$ is an N^{α} *OS* \mathfrak{R}^1_N , $\lambda^N_+(D)$ is an N^{α} *OS* \mathfrak{R}_N^2 . Therefore λ^N_+ is Neutrosophic semi - α irresloute open mapping. \Box

Theorem 4.8. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be twoNTSs and let $\lambda^N_+ : \Re^1_N \to \Re^2_N$ be a mapping. Then the following *conditions are equivalent:*

- *1.* λ *N* a *is an Neutrosophic pre-*β*-irresolute open mapping.*
- 2. $\lambda^N_+(^{\text{Pre}}_{\text{Neu}}intA_N) \subseteq \beta^B_{\text{Neu}}int\lambda^N_+(A_N)$ for each Neutrosophic set in \mathfrak{R}^1_N .
- 3. $\frac{Pre}{Neu}$ int (λ_{+}^{N-1}) $\overset{N^{-1}}{\rightarrow} (B_N)) \ \ \subseteq \ \ \lambda^{N^{-1}}_{\overset{\rightharpoonup}{\rightarrow}}$ $\int_{A}^{N^{-1}}(\frac{\beta}{\text{Neu}}intB)$ *for each Neutrosophic set* B_N *in* \mathfrak{R}_N^2 .
- *4. For any Neutrosophic set A^N in* R¹ *N , Neutrosophic set* B_N *in* \mathfrak{R}_N^2 *and let* A_N *be* $N^P C S \mathfrak{R}_N^1$ *such that* $\lambda_\dashv^{N^{-1}}$ $A^{N-1}_+(B_N) \subseteq A_N$. Then there exists an $N^{\beta} C S \mathfrak{R}_N^2$, C_N in \mathfrak{R}_N^2 and $B_N\subseteq C_N$ such that $\lambda_\dashv^{N^{-1}}$ $\bigcap_{i=1}^{N^{-1}}(C_N)\subseteq A_N$.

Proof. (i) \Rightarrow (ii):

 P_{Ne}^{Pre} *intA_N* \subseteq *A_N* \Rightarrow λ_{\perp}^{N} (*Pre*_{*i*}*intA_N*) \subseteq $\lambda_{\perp}^{N}(A_N)$. But P_{Neu}^{Pre} *intA_N* is an *N^POS* in \mathfrak{R}_N^1 , λ_{\perp}^N (*Pre_uintA_N*) is an Neutrosophic N^{β} *OS* in

 \mathfrak{R}_{N}^{2} \therefore Hence $\lambda^N_{\dashv}(\frac{Pre}{Neu}intA_N) = \beta int \lambda^N_{\dashv}(\frac{Pre}{Neu}intA_N) \subseteq$ $\frac{\beta}{N}$ *euint* $\lambda^N_+(A_N)$. $(ii) \Rightarrow (iii):$

Let $A_N = \lambda_{\perp}^{N^{-1}}$ a^{N-1}_{\dashv} . By (ii), λ^N_{\dashv} (*Pre*_{*Neu} int* (λ^{N-1}_{\dashv} </sub> $\stackrel{N^{-1}}{\rightarrow} (B_N))$) \subseteq β $\frac{\beta}{Neu}$ int $\lambda^N_{\dashv}(\lambda^{N-1}_{\dashv}$ $\sum_{i=1}^{N^{-1}} (B_i) \subseteq \int_{\text{Neu}}^{\beta} int(B_N)$ which implies *Pre Neuint*(λ *N* −1 $\overset{N^{-1}}{\rightarrow} (B_N) \ \subseteq \ \lambda_\dashv^{N^{-1}}$ $\frac{N^{-1}}{\mathcal{A}}(\lambda^N_{\dashv}(\frac{Pre}{Neu}int(\lambda^N_{\dashv}$ $\mathcal{A}^{N^{-1}}_{\dashv}(B_N))))\subseteq \, \mathcal{X}^{N^{-1}}_{\dashv}$ \overline{a} $\binom{\beta}{\text{Neu}} int(B_N)$. Thus $\frac{\text{Pre}}{\text{Neu}} int(\lambda_{+}^{N^{-1}})$ $\lambda^{N^{-1}}_{\dashv}(B_N))\subseteq \lambda^{N^{-1}}_{\dashv}$ N^{-1} $\binom{\beta}{\text{Neu}}$ **intB**). $(iii) \Rightarrow (iv):$

Let A_N be $N^P C S \mathfrak{R}_N^1$ and B_N be an Neutrosophic set in \mathfrak{R}_N^2 . Such that $\lambda^{N^{-1}}_+$ $A^{N-1}_+(B_N) \subseteq A_N$. Therefore $\lambda^{N-1}_+(B_N) \supseteq \overline{A_N}$ which $\overline{A_N} \subseteq \overline{\lambda^{N-1}_{\text{+}}(B_N)} = \lambda^{N-1}_{\text{+}}$ $A^{N-1}(B_N)$. But A_N is an $N^POS\mathfrak{R}_N^1$. Thus, $\overline{A_N} = \frac{Pre}{Neu}int(\overline{A_N}) \subseteq \frac{Pre}{Neu}int(\lambda_{+}^{N^{-1}})$ $\frac{N^{-1}}{1}(\overline{B_N}) \subseteq$ $\lambda_\dashv^{N^{-1}}$ $\mathcal{A}_{\perp}^{N^{-1}}(\frac{\beta}{\text{Neu}}int(\overline{B_N}))$. Hence $A_N \supseteq \lambda_{\perp}^{N^{-1}}(\frac{\beta}{\text{Neu}}int(\overline{B_N})) = \lambda_{\perp}^{N^{-1}}$ \overline{a} $(\beta_{\text{Neu}}Cl(B_N))$. Take $\beta_{\text{Neu}}Cl(B_N) = C_N$. Therefore $\lambda_{\text{N}+1}^{N-1}$ \overline{a} (C_N) ⊆ A_N . $(iv) \Rightarrow (i)$:

Let *D* be an N^POS in \mathfrak{R}_N^1 , $B_N = \lambda^N_+(D)$ and $A_N = \overline{D}$. Then A_N is an $N^P C S \mathfrak{R}_N^1$. Hence λ^{N-1}_+ $\lambda^{N^{-1}}_{\dashv}(B_N) = \, \lambda^{N^{-1}}_{\dashv}$ $\stackrel{N^{-1}}{\rightarrow} (\lambda^N_+(D))=$ $\lambda_{\dashv}^{N^{-1}}(\lambda_{\dashv}^N(D)) \subseteq \overline{D} = A_N$. Then there exists an *N*β*CSC_N* and $B_N \subseteq C_N$ such that λ^{N-1}_+ $A^{N-1}_+(C_N) \subseteq A_N = \overline{D}$. Thus $D \subseteq$ $\overline{\lambda_\dashv^{N^{-1}}(C_N)}\Rightarrow \lambda_\dashv^N(D)\subseteq \lambda_\dashv^N(\lambda_\dashv^{N^{-1}}$ $\bigcup_{n=1}^{N^{-1}} (C_N) \big) \subseteq C_N$. On the other hand by $B_N \subseteq C_N$, $\lambda^N_+(D) = \overline{B_N} \supseteq \overline{C_N}$. Hence $\lambda^N_+(D) = \overline{C}$. Since \overline{C} is an $N^{\beta}OS$, $\lambda^N_+(D)$ is an $N^{\beta}OS$ in \mathfrak{R}_N^2 . Therefore $λ₊^N$ is Neutrosophic pre- $β$ -irresloute open mapping. \Box

5. Properites of Neutrosophic PRE-α**, SEMI-**α **and PRE-**β **Irresolute closed Mappings**

Theorem 5.1. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be two NTSs. A *function 1et* $\lambda^N_+ : \mathfrak{R}^1_N \to \mathfrak{R}^2_N$ *Neutrosophic pre-* α *-irresolute* \mathcal{A}^N *closed mapping if and only if* $\frac{\alpha}{N}$ *N*² $(A_N) \subseteq \lambda^N_+(P_{Neu}^{pre} c I A_N)$ for each $N^{\mathscr{S}}, A_N$ in $NT\mathfrak{R}_N^1$.

Proof. Let λ^N_+ be Neutrosophic pre- α -irresolute closed mapping, then $\lambda^N_+(\frac{pre}{Neu}cIA_N)$ is $N^{\alpha}CSM^2_N$ \rightarrow $\sqrt{N}eu_{M}^{CLAN}$ is *N* $CS2V_N$. Therefore $\lambda_{N}^{N}(\hat{p}_{rel}^{pre}cIA_N) = \alpha_{Neu}^{N}cIA_N^{N}(\hat{p}_{rel}^{pre}cIA_N)$ and $\lambda_{N}^{N}(A_N) \subseteq \lambda_{N}^{N}$
 $(\alpha_{Neu}^{N}cIA_N)$. Thus $\alpha_{Neu}^{N}cIA_N^{N}(A_N) \subseteq \alpha_{Neu}cIA_N^{N}(\hat{p}_{rel}cIA_N) = \lambda_{N}^{N}$
 $(\hat{p}_{rel}^{pre}cIA_N)$. Hence $\alpha_{Neu}^{N}cIA_N^{N}(A_N) \subseteq (\hat{p}_{rel}cIA_N)$.

Conversely, Let A_N be an $N^PCS\mathfrak{R}_N^1$. Then $\alpha_{N\in\mathcal{U}}^{a}(A_{N}) \subseteq \lambda_{N}^{N}(\frac{pre}{Neu}cIA_{N}) = \lambda_{N}^{N}(A_{N}).$ Thus $\alpha_{N\in\mathcal{U}}^{a}(A_{N})$ $\lambda_N^N(A_N) \subseteq \lambda_+^N$. But $\lambda_+^N(A_N) \subseteq \alpha_{Neu} c l \lambda_+^N(A_N)$. So $\alpha_{Neu} c l \lambda_+^N(A_N) = \lambda_+^N(A_N)$. Therefore $\lambda_+^N(A_N)$ is an $N^{\alpha} C S \mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Hence λ^N is Neutrosophic pre - α -irresolute closed mapping. \Box

Theorem 5.2. Let $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be two NTSs. A f unction 1et $\lambda^N_+ : \Re^1_N \to \Re^2_N$ is Neutrosophic α -irresolute R *closed mapping if and only if* $\frac{\alpha}{N}$ *eu*^{*cl*} $\lambda^{N}_{\dashv}(A_{N}) \subseteq \lambda^{N}_{\dashv}(\frac{\alpha}{N}$ *eucl* A_{N}) for each Neutrosophic set A_N in NT S $\mathfrak{R}^1_N.$

Proof. Let λ^N_+ is Neutrosophic α -irresolute closed mapping, then $\lambda^N_+(\alpha_{\text{Neu}} c l A_N)$ is $N^{\alpha} C S \mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Therefore λ^N_+

 $\left(\frac{\alpha}{N_{\text{eu}}}cIA_N\right) = \frac{\alpha}{N_{\text{eu}}}cIA_N^N \left(\frac{\alpha}{N_{\text{eu}}}cIA_N\right)}{N_{\text{eu}}}$ and $\lambda^N_{\text{qu}}(A_N) \subseteq \lambda^N_{\text{qu}}$ $\overline{(\alpha \choose \text{Neu}} c l A_N$. Thus $\overline{\alpha}_{\text{Neu}} c l \lambda^N_+(A_N) \subseteq \lambda^N_-(\overline{\alpha}_{\text{Neu}} c l A_N)$.

Conversely, Let A_N be an $N^{\alpha} C S \mathfrak{R}_N^1$. Then $\alpha_{N \in \mathcal{U}}^{\alpha} c l \lambda_{\perp}^N(A_N) \subseteq \lambda_{\perp}^N(\alpha_{N \in \mathcal{U}} c l A_N) = \lambda_{\perp}^N(A_N)$. Thus . Then $\alpha_{Neu}^{a} c l \lambda_{\perp}^{N}(A_N) \subseteq \lambda_{\perp}^{N}(A_N)$. But $\lambda_{\perp}^{N}(A_N) \subseteq \alpha_{Neu}^{a} c l \lambda_{\perp}^{N}(A_N)$ obtain $\frac{\alpha}{N}$ $\ell_{\text{H}} d\lambda_{\text{H}}^N(\Lambda_N) = \lambda_{\text{H}}^N(A_N)$. Therefore $\lambda_{\text{H}}^N(A_N)$ is an N^{α} *CS* \Re_N^2 . Hence λ^N is Neutrosophic α- irresolute closed mapping. \Box

Theorem 5.3. Let $(\mathfrak{R}_{N_2}^1 \mathfrak{S}_N^1)$ and $(\mathfrak{R}_{N_2}^2 \mathfrak{S}_N^2)$ be two NTSs. A f unction $\lambda^N_+ : \mathfrak{R}^1_N \to \mathfrak{R}^2_N$ is Neutrosophic semi- α -irresolute R *closed mapping if and only if* $\frac{\alpha}{N}$ *eu*^{*cl*} $\lambda^{N}_{\text{H}}(A_{N}) \subseteq \lambda^{N}_{\text{H}}(\frac{S}{N}$ *eucl* A_{N}) for each Neutrosophic set A_N in NT S $\mathfrak{R}^1_N.$

Proof. Let λ^N_+ Neutrosophic semi- α -irresolute closed mapping, then $\lambda^N_+(\mathop{S}_{\text{Neu}} c l A_N)$ in $N^{\alpha} C S \mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Therefore $\lambda_1^N(\mathcal{S}_{veu}cIA_N) = \alpha_{veu}cIA_{\mathcal{A}}^N(\mathcal{S}_{veu}cIA_N)$ also $\lambda_1^N(A_N) \subseteq \lambda_1^N(\mathcal{S}_{veu}cIA_N)$. Thus $\alpha_{Neu}cIA_{\mathcal{A}}^N(A_N) \subseteq \alpha_{Neu}cIA_{\mathcal{A}}^N(\mathcal{S}_{Neu}cIA_N) = \lambda_1^N(\mathcal{S}_{Neu}cIA_N)$. Hence $\alpha_{Neu}cIA_{\mathcal{A}}^N(A_N) \subseteq \lambda_1^N(\mathcal{S}_{Neu}cIA_N)$

Conversely, let A_N be an $N^{\mathscr{S}} \text{C} S \mathfrak{R}^1_N$. Then $\alpha_{\text{Neu}}^{\alpha} c l \lambda_{\perp}^N(A_N) \subseteq \lambda_{\perp}^N(\delta_{\text{Neu}} c l A_N) = \lambda_{\perp}^N(A_N)$. Thus $\alpha_{\text{Neu}}^{\alpha} c l \lambda_{\perp}^N(A_N) \subseteq \lambda_{\perp}^N$. But $\lambda_{\perp}^N(A_N) \subseteq \alpha_{\text{Neu}}^{\alpha} c l \lambda_{\perp}^N(A_N)$ obtain $\alpha_{Ney}^{W} c l \lambda_{+}^{N}(A_N) = \lambda_{+}^{N}(A_N)$. Thus $\lambda_{+}^{N}(A_N)$ is an $N^{\alpha} C S \mathfrak{R}_N^2$ in \mathfrak{R}_{N}^{2} . Hence λ_{\perp}^{N} is Neutrosophic semi- α -irresolute closed mapping. \Box

Theorem 5.4. *Let* $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ *and* $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ *be two NTSs. A* f unction 1et $\lambda^N_+ : \Re^1_N \to \Re^2_N$ is Neutrosophic pre- β -irresolute R *closed mapping if and only if* ${}_{Neu}^{β}Cl\lambda_{+}^{N}(A_{N}) \subseteq \lambda_{+}^{N}({}_{Neu}^{pre}clA_{N})$ for each Neutrosophic set A_N in NT S $\mathfrak{R}^1_N.$

Proof. Let λ^N_+ be Neutrosophic pre- β -irresolute closed mapping, then $\lambda^N_+ \left(\frac{pre}{N_{\text{eu}}} c I A_N \right)$ is Neutrosophic $N^{\beta} C S$ in \mathfrak{R}_N^2 . Therefore $\lambda^N_+ ({}^{pre}_{\text{Neu}} c l A_N) = {}^{\beta}_{\text{Neu}} C l \lambda^N_+ ({}^{\text{pre}}_{\text{Neu}} c l A_N)$. Also $\lambda^N_+ (A_N)$ \subseteq $\lambda^N_+ \left(\frac{pre}{Neu} c l A_N \right)$. Thus $\frac{\beta}{Neu} C l \lambda^N_+ (A_N)$ \subseteq $\frac{\beta}{Neu} C l \lambda^N_+$ $\binom{p}{Neu}CIA_N$ = λ^N_+ $\binom{pre}{Neu}CIA_N$. Hence $\beta_{Neu}CIA^N_+$ $(A_N) \subseteq \lambda^N_+$
 $\binom{pre}{Neu}CIA_N$. Conversely, Let A_N be an $N^PCS\mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Then $\frac{\beta}{N e u} C l \lambda_{\text{\tiny -\!\! A}}^N (A_N) \;\; \subseteq \;\; \lambda_{\text{\tiny -\!\! A}}^N(\frac{pre}{N e u} c l A_N) \;\; = \;\; \lambda_{\text{\tiny -\!\! A}}^N$ $A^N_+(A_N) \subseteq \lambda^N_+(N_{\text{per}}^{\text{pre}} c I A_N) = \lambda^N_+(A_N).$ Thus $\frac{\beta}{N_{\text{eu}}} C l \lambda_{+}^{N}(A_{N}) \subseteq \lambda_{+}^{N}(A_{N}). \text{ But } \lambda_{+}^{N}(A_{N}) \subseteq \frac{\beta}{N_{\text{eu}}} C l \lambda_{+}^{N}(A_{N}). \text{ So,}$ $\int_{N\in\mathcal{U}}^{B} C l \lambda_{+}^{N}(A_{N}) = \lambda_{+}^{N}(A_{N}).$ Therefore $\lambda_{+}^{N}(A_{N})$ is an Neutrosophic N^{β} *CS* \mathfrak{R}_N^2 in \mathfrak{R}_N^2 . Hence λ^N_+ is Neutrosophic pre-β -irresolute closed mapping.

Theorem 5.5. *Let* $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ *and* $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ *be two NTSs. A* f *unction 1et* $\lambda^N_+ : \Re^1_N \to \Re^2_N$ is Neutrosophic pre- α -irresolute *(Neutrosophic* α *-irresolute and Neutrosophic semi-*α− *irresolute, resp.) closed mapping if and only if for each Neutrosophic set* B_N *in* \mathfrak{R}^2_N *and each* $N^POS\mathfrak{R}^2_N(N^\alpha OS\mathfrak{R}^2_N)$ *and* $N^{\mathscr{S}}$ *OS* \mathfrak{R}_N^2 *, resp.*) *A_N in* \mathfrak{R}_N^1 *with* $A_N \supseteq (A_+^N)^{-1}(B_N)$ t *here exists an N*^α O S \mathfrak{R}^2_N , C_N *in* \mathfrak{R}^2_N *with* $C_N \supseteq B_N$ *such that* $\lambda_\dashv^{N^{-1}}$ $A^{N-1}_+(C_N) \subseteq A_N$.

Proof. Let A_N be any arbitrary $N^POS\mathfrak{R}_N^1(N^\alpha OS\mathfrak{R}_N^1)$ and $N^{\mathscr{S}}O\mathcal{S}\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . With $A_N\supseteq\lambda^{N^{-1}}_+$ $\sum_{n=1}^{N^{-1}} (B_N)$ where B_N is an Neutrosophic set in \mathfrak{R}_N^2 . Then $\overline{A_N}$ is an

 $N^P C S \mathfrak{R}_N^1 (N^{\alpha} C S \mathfrak{R}_N^1 \text{ and } N^{\mathcal{S}} C S \mathfrak{R}_N^1 \text{, resp.) in } \mathfrak{R}_N^1$. Since λ_N^N is Neutrosophic pre- α -irresolute (Neutrosophic α -irresolute and Neutrosophic semi- α irresolute, resp.) closed mapping $\lambda^N_+(\overline{A_N})$ is N^{α} *CS* \mathfrak{R}^2_N in \mathfrak{R}^2_N . Then $\lambda^N_+(A_N) = C_N$ (say) is N^{α} *OS* \mathfrak{R}_N^2 in \mathfrak{R}_N^2 . Since λ^{N-1}_+ $A^{N-1}_+(B_N) \subseteq A_N$, $B_N \subseteq C_N$. Moreover, obtain $\lambda^{N^{-1}}_+$ $\lambda^{N^{-1}}_{\dashv} (C_N)$ = $\lambda^{N^{-1}}_{\dashv}$ $\lambda^{N-1}_{\dashv} \qquad (\lambda^{N}_{\dashv}(\overline{A_N}))$ $= \lambda_{\dashv}^{N^{-1}}(\overline{\lambda_{\dashv}^N(A_N)}) \subseteq A_N$. Thus $\lambda_{\dashv}^{N^{-1}}$ $C_A^{N^{-1}}(C_N) \subseteq A_N$. Conversely Let A_N be $N^PCS\mathfrak{R}_N^1(N^{\alpha}CS\mathfrak{R}_N^1)$ and $N^{\mathscr{S}}CS\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . Then $\lambda_+^N(A_N) = B_N(\text{say})$ is an Neutrosophic set in \mathfrak{R}_N^2 and $\overline{A_N}$ is $N^POS\mathfrak{R}_N^1(N^{\alpha}OS\mathfrak{R}_N^1)$ and $N^{\mathscr{S}}OS\mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . Such *that* $\lambda_+^{N^{-1}}$ $A^{N-1}(B_N) \subseteq \overline{A_N}$. By hypothesis, there is an N^{α} *OS* \mathfrak{R}_N^2 , *C_N* of \mathfrak{R}_N^2 . Such that $B_N \subseteq C_N$ and $\lambda_\dashv^{N^{-1}}$ $\overline{A_N}^{-1}(C_N) \subseteq \overline{A_N}$. Therefore, $A_N \subseteq \lambda^{N-1}_+(C_N)$. Hence $\overline{C_N} \subseteq \overline{B_N} = \lambda_{\perp}^N(A_N) \subseteq \lambda_{\perp}^N(\lambda_{\perp}^{N-1}(C_N))\lambda_{\perp}^N(A_N) = \overline{C_N}$. Since $\overline{C_N}$ is $N^{\alpha} C S \mathfrak{R}_N^2$ in \mathfrak{R}_N^2 , $\lambda_{\perp}^N(A_N)$ is $N^{\alpha} C S \mathfrak{R}_N^2$. Hence λ_{\perp}^N is Neutrosophic pre-α-irresolute (Neutrosophic α - irresolute and Neutrosophic semi- $\alpha-$ irresolute, resp.) closed mapping. \Box

Theorem 5.6. $(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ and $(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ be two NTSs. A *function let* $\lambda^N_+ : \mathfrak{R}^1_N \to \mathfrak{R}^2_N$ is Neutrosophic pre- β-irresolute *closed mapping if and only if for each Neutrosophic set B^N in* \mathfrak{R}_N^2 and each $N^{POS}A_N$ in \mathfrak{R}_N^1 with $A_N\supseteq\lambda^{N^{-1}}_+$ $\int_{-1}^{N^{-1}} (B_N)$ there exists an N^{β} OS, C_N in \mathfrak{R}_N^2 with $C_N \supseteq B_N$ such that $\lambda^{N^{-1}}_{\dashv}$ $A^{N-1}_+(C_N) \subseteq A_N$.

Proof. Let A_N be any arbitrary $N^POS\mathfrak{R}_N^1$ in \mathfrak{R}_N^1 with $A_N \supseteq$ $\lambda_\dashv^{N^{-1}}$ $A^{N-1}_{\mathcal{A}}(B_N)$ where B_N is an Neutrosophic set in \mathfrak{R}_N^2 . Then $\overline{A_N}$ is an $N^PCS\mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Since λ^N_+ is Neutrosophic pre- β irresolute closed mapping $\lambda^N_{\text{+}}(\overline{A_N})$ is Neutrosophic N^{β} *CSS* $\hat{\gamma}^2_N$. Then $\lambda^N_+(A_N) = C_N(\text{say})$ is Neutrosophic N^{β} *OS* in \mathfrak{R}^2_N . Since $\lambda_\dashv^{N^{-1}}$ $A^{N-1}_+(B_N) \subseteq A_N$, $B_N \subseteq C_N$. Moreover we have $\lambda^{N-1}_+(B_N)$ $C_{\perp}^{N^{-1}}(C_N) =$ $\lambda_\dashv^{N^{-1}}$ $\frac{N^{-1}}{(\lambda^N_{\dashv}(\overline{A_N})} = \overline{\lambda^{N-1}_{\dashv}(\lambda^N_{\dashv}(\overline{A_N}))}$. Thus λ^{N-1}_{\dashv} $\stackrel{N^{-1}}{\rightarrow} (C_N) \subseteq A_N.$

Conversely, Let B_N be N^PCS in \mathfrak{R}_N^1 . Then $\overline{\lambda^N_+(A_N)}$ = B_N (say) is an Neutrosophic set in \mathfrak{R}_N^2 and $\overline{A_N}$ is $N^P O S \mathfrak{R}_N^1$ in \mathfrak{R}_N^1 . Such that $\lambda_+^{N^{-1}}$ $\mathbb{A}^{N-1}(B_N) \subseteq \overline{A_N}$. By hypothesis, there is an NeutrosophicOS C_N of \mathfrak{R}_N^2 Such that $B_N \subseteq C_N$ and $\lambda_\dashv^{N^{-1}}$ $\overline{C_N} \subseteq \overline{A_N}$. Therefore $A_N \subseteq \lambda^{N-1}_+(C_N)$. Hence $\overline{C_N} \subseteq$ $\overline{B_N} = \lambda_{\dashv}^N(A_N) \subseteq \lambda_{\dashv}^N(\lambda_{\dashv}^{N^{-1}}(C_N)) \subseteq \overline{C_N}$. $\lambda_{\dashv}^N(A_N) = \overline{C_N}$. Since $\overline{C_N}$ is Neutrosophic $N^{\beta}CS\mathfrak{R}_N^2$, $\lambda_{\dashv}^N(A_N)$ is $N^{\beta}CS$ in \mathfrak{R}_N^2 . Hence $λ₊^N$ is Neutrosophic pre- $β$ – irresolute closed mapping.

Theorem 5.7. Let $\lambda^N_+ : \mathfrak{R}^1_N \to \mathfrak{R}^2_N$ be a bijective mapping *from* $NTS(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ *To* another $NTS(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$ *. Then the following statements are equivalent:*

- *1.* λ^N_+ is an Neutrosophic α irresolute open mapping.
- 2. λ^N_+ *is an Neutrosophic* α *-irresolute closed mapping.*
- 3. $\lambda_{\dashv}^{N^{-1}}$ a *is an Neutrosophic* α*-irresolute function.*

Proof. (i) \Rightarrow (ii): Let A_N be $N^{\alpha}CS$ in \mathfrak{R}_N^1 . Then $\overline{A_N}$ is an $N^{\alpha}OS\mathfrak{R}_N^1$. By hypothesis $\lambda^N_+(\overline{A_N}) = \lambda^N_+(A_N)$ is $N^{\alpha}OS\Re_N^2$. Hence $\lambda^N_+(A_N)$ is N^{α} *CS* \mathfrak{R}_N^2 . Thus λ^N_+ is Neutrosophic α -irresolute closed mapping.

 $(ii) \Rightarrow (iii):$

Let A_N be $N^{\alpha}CS$ in \mathfrak{R}_N^1 . Then, $\lambda^N_+(A_N)$ is $N^{\alpha}CS$ in \mathfrak{R}_N^2 . That is, $(\lambda_{\dashv}^{N^{-1}}$ $\lambda^{N-1}_\dashv)^{-1}(A_N) = \lambda^N_\dashv(A_N)$ is $N^\alpha CS$ in \mathfrak{R}^2_N . Therefore λ^{N-1}_\dashv \overline{a} is Neutrosophic α -irresolute function. $(iii) \Rightarrow (i):$

Let A_N be *NOS* in \mathfrak{R}_N^1 and $\lambda^{N^{-1}}_{\dashv}$ $\frac{N}{\Box}$ is Neutrosophic-irresolute function. So $((\lambda_+^{N^{-1}})$ $\lambda_{\dashv}^{N^{-1}}$)⁻¹(A_{*N*}) = $\lambda_{\dashv}^N(A_N)$ is $N^{\alpha}OS$ in \mathfrak{R}_N^2 . Hence λ^N_+ is Neutrosophic α -irresolute open mapping.

Theorem 5.8. Let $\lambda^N_+ : \mathfrak{R}^1_N \to \mathfrak{R}^2_N$ be a mapping from $Neutronophic$ $TS(\mathfrak{R}_N^1, \mathfrak{S}_N^1)$ *to another Neutrosophic* $TS(\mathfrak{R}_N^2, \, \mathfrak{S}_N^2)$. Then the following statements are equivalent:

- *1.* λ *N* a *is an Neutrosophic pre-*α *(Neutrosophic semi-*α*, resp.)-irresolute open mapping.*
- *2.* λ *N* a *is an Neutrosophic pre*−α(*Neutrosophic semi*−α, *resp.*)−*irresolute closed mapping.*

Proof. (i) \Rightarrow (ii):

Let A_N be $N^P C S \mathfrak{R}^1_N(N^P C S \mathfrak{R}^1_N, \text{resp.})$ in \mathfrak{R}^1_N . Then $\overline{A_N}$ is an N^P *OS* \mathfrak{R}_N^1 ^{*N*} \mathcal{S} *OS* \mathfrak{R}_N^1 ^{*n*}, resp.) in \mathfrak{R}_N^1 . By hypothesis $\lambda_{\perp}^N(A_N) = \lambda_{\perp}^N(A_N)$ is $N^{\alpha}OS\mathfrak{R}_N^2$ in \mathfrak{R}_N^2 . Hence $\lambda_{\perp}^N(A_N)$ is N^{α} *CS* \mathfrak{R}_N^2 . Thus λ^N_+ is Neutrosophic pre-α (Neutrosophic semi- α , resp.)-irresolute closed mapping. $(ii) \Rightarrow (i):$

Let A_N be N^P OS \mathfrak{R}^1_N ($N^{\mathcal{S}}$ OS \mathfrak{R}^1_N , resp.) in \mathfrak{R}^1_N . Then $\overline{A_N}$ is an $N^P C S \mathfrak{R}_N^1(N^\mathscr{S} C S \mathfrak{R}_N^1$, resp.) in \mathfrak{R}_N^1 . By hypothesis $\lambda^N_+(A_N)$ = $\lambda^N_+(A_N)$ is $N^{\alpha}CS\mathfrak{R}_N^2$. Hence $\lambda^N_+(A_N)$ is $N^{\alpha}OS\mathfrak{R}_N^2$.Thus λ^N_+ is Neutrosophic pre- α (Neutrosophic semi- α , resp.)-irresolute open mapping. \Box

Theorem 5.9. Let $\lambda^N_{\pm} : \mathfrak{R}^1_N \to \mathfrak{R}^{2_N}$ be a mapping from $Neutronophic$ $TS(\mathfrak{R}_{N}^{1}, \mathfrak{S}_{N}^{1})$ *to another Neutrosophic* $TS(\mathfrak{R}_N^2, \mathfrak{S}_N^2)$. Then the following statements are equivalent:

- *1.* λ *N* a *is an Neutrosophic pre-*β*-irresolute open mapping.*
- *2.* λ *N* a *is an Neutrosophic pre-*β*-irresolute closed mapping.*

Proof. Proof is similar

 \Box

6. Conclusion

The concepts of Neutrosophic pre- α (Neutrosophic α , Neutrosophic semi- α and Neutrosophic α and β , resp.)irresolute open and closed mappings have been introduced and studied. The relationships between these mappings with other existing mappings in Neutrosophic topological spaces are investigated.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87-95.
- [2] I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala: On Some New Notions and Functions in NTSs, *Neutrosophic Sets and Systems*, 16(2017), 16–19.
- [3] A. Atkinswestley, S. Chandrasekar, Neutrosophic *g*∗- Closed Sets and its maps, *Neutrosophic Sets and Systems*, 36(2020), 96–107.
- [4] A. Atkinswestley S. Chandrasekar, Neutrosophic Weakly *G*∗closed sets, *Advances in Mathematics: Scientific Aournal*, 9(5), (2020), 2853–2861.
- [5] V. Banupriya, S.Chandrasekar, Neutrosophic α*gs* Continuity and Neutrosophic α*gs* Irresolute Maps, *Neutrosophic Sets and Systems,* 28(2019), 162–170.
- [6] V. Banu Priya, S. Chandrasekar, and M. Suresh, Neutrosophic Strongly α-Generalized Semi Closed Sets, *Advances in Mathematics: Scientific Journal*, 9(10), (2020), 8605–8613.
- [7] C.L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl*, 24(1), (1968), 182–190.
- [8] D. Coker, An introduction to intuitionistic fuzzy Topological Spaces, *Fuzzy Sets and Systems*, 88(1997), 81–89.
- [9] Florentin Smarandache, Neutrosophic and Neutrosophic Logic, *First International Conference* On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- [10] Floretin Smarandache, Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, *Journal of Defense Resources Management*, 1(2010), 107–114.
- [11] P. Ishwarya, K. Bageerathi, On Neutrosophic semi open sets in NTSs, *International Jour. Of Math. Trends and Tech*, (2016), 214–223.
- [12] C. Maheswari, M. Sathyabama, S. Chandrasekar, Neutrosophic generalized b closed Sets In Neutrosophic Topological Spaces, *Journal of Physics Conf. Series*, (2018), 11–39.
- [13] C. Maheswari, S. Chandrasekar, Neutrosophic *gb* closed Sets and Neutrosophic *gb*-Continuity, *Neutrosophic Sets and Systems*, 29(2019), 89–99.
- [14] C. Maheswari and S. Chandrasekar, Neutrosophic *bg*closed Sets and its Continuity, *Neutrosophic Sets and Systems*, 36(2020), 108–120.
- [15] T. Rajesh kannan, S.Chandrasekar, Neutosophic ωα closed sets in Neutrosophic topological space, *Journal Of Computer And Mathematical Sciences*, 9(10), (2018), 1400-1408.
- [16] T. Rajesh kannan, S.Chandrasekar, Neutosophic α continuous multifunction in Neutrosophic topological space, *The International Journal of Analytical and Experimental Modal Analysis*, XI(IX), (2019), 1360– 1367.
- [17] T. RajeshKannan, and S. Chandrasekar, Neutrosophic

α-Irresolute Multifunction In Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, 32(1), (2020), 390–400.

- [18] T. Rajesh kannan, S. Chandrasekar, Neutrosophic Pre- α , Semi- α & Pre- β Irresolute Functions (Communicated).
- [19] A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic topological spaces, *Journal Computer Sci. Engineering*, 7(2012).
- [20] A.A. Salama and S.A. Alblowi, Neutrosophic set and Neutrosophic topological spaces, *ISOR J.mathematics*, 3(4), (2012), 31–35.
- [21] V.K. Shanthi, S. Chandrasekar, K. SafinaBegam, Neutrosophic Generalized Semi-closed Sets In NTSs, *International Journal of Research in Advent Technology*, 6(7), (2018), 1739–1743.
- [22] V. Venkateswara Rao, Y. Srinivasa Rao, Neutrosophic Preopen Sets and Pre-closed Sets in Neutrosophic Topology, *International Journal of Chem Tech Research*, 10(10), (2017), 449–458.
- [23] L. A. Zadeh, Fuzzy sets, *Information and Control*, 8(3), (1965), 338–353.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

