

https://doi.org/10.26637/MJM0804/0079

Neighbourhood *V*4−**magic labeling of some subdivision graphs**

K.P. Vineesh^{1*} and V. Anil Kumar²

Abstract

Let $V_4 = \{0, a, b, c\}$ be the Klein-4-group with identity element 0.A graph $G = (V(G), E(G))$, with vertex set $V(G)$ and edge set $E(G)$, is said to be Neighbourhood V_4 -magic if there exists a labeling $f: V(G) \to V_4 \setminus \{0\}$ such that the sum $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is *p*,where *p* is any non zero element in *V*₄, then we say that *f* is a *p*-neighbourhood *V*4-magic labeling of *G* and *G* is said to be a *p*-neighbourhood *V*4-magic graph. If this constant is 0,then we say that *f* is a 0-neighbourhood *V*4-magic labeling of *G* and *G* is said to be a 0-neighbourhood *V*4-magic graph.

Keywords

Klein-4-group, *a*-neighbourhood *V*4-magic graphs and 0-neighbourhood *V*4-magic graphs.

AMS Subject Classification

05C78, 05C25.

¹*Department of Mathematics, Sree Narayana Guru College, Chelannur, Kozhikode-673616, Kerala, India.*

²*Department of Mathematics, University of Calicut, Malappuram-670007, Kerala, India.*

***Corresponding author**: ¹ kpvineeshmaths@gmail.com; ²anil@uoc.ac.in

Article History: Received **12** August **2020**; Accepted **25** September **2020** c 2020 MJM.

Contents

1. Introduction

In this paper we consider graphs that are connected, finite, simple and undirected. For graph theory notations and terminology not directly defined in this paper, we refer readers to $[1]$. The Klein 4-group, denoted by V_4 is an abelian group of order 4. It has elements $V_4 = \{0, a, b, c\}$, with $a + a =$ $b + b = c + c = 0$ and $a + b = c$, $b + c = a$, $c + a = b$. A graph $G = (V(G), E(G))$, with vertex set $V(G)$ and edge set $E(G)$, is said to be Neighbourhood *V*4-magic if there exists a labeling $f: V(G) \to V_4 \setminus \{0\}$ such that the sum $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is *p*,where *p* is any non zero element in V_4 , then we say that f is a p -neighbourhood *V*4-magic labeling of *G* and *G* is said to be a *p*-neighbourhood *V*4-magic graph. If this constant is 0,then we say that *f* is a 0-neighbourhood *V*4-magic labeling of *G* and *G* is said to be a 0-neighbourhood *V*4-magic graph.

The subdivision graph of a graph *G* is denoted by $S(G)$ and is obtained by inserting an additional vertex to each edge

of *G*. In this paper, we investigate Neighbourhood *V*4-magic labeling of subdivision graph of some graphs and we classify them into the following three categories:

- (i) Ω_a := the class of all *a*-neighbourhood V_4 -magic graphs,
- (ii) $\Omega_0 :=$ the class of all 0-neighbourhood V_4 -magic graphs, and
- (iii) $\Omega_{a,0} := \Omega_a \cap \Omega_0$.

2. Main Results

Theorem 2.1. [\[2\]](#page-3-2) $C_n \in \Omega_a$ *if and only if* $n \equiv 0 \pmod{4}$.

Theorem 2.2. *For* $n \geq 3$, $S(C_n) \in \Omega_a$ *if and only if* $n \equiv 0 \pmod{1}$ 2).

Proof. We have $S(C_n) \simeq C_{2n}$. Then by Theorem [2.1,](#page-0-2) $S(C_n) \in$ Ω_a if and only if $2n \equiv 0 \pmod{4}$, ie, if and only if $n \equiv 0 \pmod{4}$ 2). This completes the proof. \Box

Theorem 2.3. $S(C_n) \in \Omega_0$ *for all n* ≥ 3 .

Proof. By labeling all the vertices of $S(C_n)$ by *a*, we get $S(C_n) \in \Omega_0$. П

Corollary 2.4. *For* $n \geq 3$, $S(C_n) \in \Omega_{a,0}$ *if and only if* $n \equiv$ 0(mod 2).

Proof. Proof directly follows from Theorem [2.2](#page-0-3) and Theorem [2.3.](#page-0-4) \Box

Figure 1. An *a*-neighbourhood V_4 -magic labeling of $S(C_4)$.

Definition 2.5. [\[3\]](#page-3-3) *The friendship graph or the Dutch windmill graph, denoted by* $F_m (or\, D_3^{(m)}$ 3) *is the graph obtained by taking m copies of C*³ *with one vertex in common.*

Theorem 2.6. $S(F_m) \notin \Omega_a$ *for any m* ≥ 1 .

Proof. Consider the Friendship graph F_m with vertex set $\{w, u_i\}$ *v*_{*i*} : 1 ≤ *i* ≤ *m*} and edge set {*wu*_{*i*},*wv*_{*i*},*u*_{*i*}*v*_{*i*} : 1 ≤ *i* ≤ *m*}. Let $u_i^{'}$ i_i , v_i ['] $S(F_m)$ corresponding to the edges wu_i, wv_i, u_iv_i of F_m . Suppose that $S(F_m) \in \Omega_a$ for some *m* with a labeling *f*. Then $N_f^+(w_1) = a$ implies that either $f(u_1) = b$ and $f(v_1) = c$ or $f(u_1) = c$ and $f(v_1) = b$. Without loss of generality, assume that $f(u_1) = b$ and $f(v_1) = c$. Now $N_f^+(u_1^\prime)$ f_1) = *a* implies that $f(w) = c$, consequently $N_f^+(v_1)$ $j_1)=0,$ which is a contradiction. Hence $S(F_m) \notin \Omega_a$ for any *m*. \Box

Theorem 2.7. *S*(F_m) $\in \Omega_0$ *for all m* ≥ 1 *.*

Proof. If we label all the vertices of $S(F_m)$ by *a*, we get $S(F_m) \in \Omega_0$. П

Corollary 2.8. $S(F_m) \notin \Omega_{a,0}$ for any $m \geq 1$.

Proof. It directly follows from Theorem [2.6.](#page-1-0) \Box

Definition 2.9. [\[5\]](#page-3-4) *The helm Hⁿ is the graph obtained from the wheel graph Wⁿ by attaching a pendant edge at each vertex of the cycle Cn.*

Definition 2.10. [\[6\]](#page-3-5) *The flower graph Flⁿ is the graph obtained from a helm Hⁿ by joining each pendant vertex to the central vertex of the helm.*

Theorem 2.11. $S(Fl_n) \notin \Omega_a$ *for any n* ≥ 3 .

Proof. Consider the flower graph Fl_n with vertex set $\{u, u_i, v_i\}$: $1 \le i \le n$ } and edge set $\{uu_i, uv_i, u_iv_i, u_iu_{i+1} : 1 \le i \le n\}$, where $i+1$ is taken over modulo *n*. Let u'_i \hat{i} , v_i' $'_{i}, w'_{i}$ $\frac{\partial}{\partial i}$ \int_{i}^{b} be the vertices in $S(Fl_n)$ corresponding to the edges $uu_i, uv_i, u_iv_i, u_iu_{i+1}$ for $1 \le i \le n$, where $i+1$ is taken over modulo *n*. Suppose that $S(Fl_n) \in \Omega_a$ for some *n* with a labeling *f*. Then $N_f^+(u'_i)$ i_i) = *a* = $N_f^+(w_i^{'}$ f' _i), implies that $f(u) = f(v_i)$. Therefore, $N_f^+(v_i)$ i_i) = 0, a contradiction. Hence $S(Fl_n) \notin \Omega_a$ for any *n*. □

Theorem 2.12. *S*(Fl_n) $\in \Omega_0$ *for all n* ≥ 3 .

Proof. By labeling all the vertices of $S(Fl_n)$ by *a*, we get $S(Fl_n) \in \Omega_0$. П

Corollary 2.13. *S*(*Fl_n*) $\notin \Omega$ _{*a*} 0 *for any n* > 3.

Proof. Proof is obvious from Theorem [2.11.](#page-1-1)

Definition 2.14. [\[7\]](#page-3-6) *The Sunflower SFⁿ is obtained from a wheel* W_n *with the central vertex* w_0 *<i>and cycle* $C_n = w_1 w_2 w_3$ $\cdots w_n w_1$ *and additional vertices* $v_1, v_2, v_3, \ldots, v_n$ *where* v_i *is joined by edges to* w_i *and* w_{i+1} *, where* $i+1$ *is taken over modulo n*.

Theorem 2.15. *S*(*SF_n*) $\notin \Omega$ _{*a*} *for any n* \geq 3.

Proof. Consider the sunflower SF_n with vertex set $V = \{w_0, w_i,$ $v_i: 1 \leq i \leq n$ where w_0 is the central vertex, $w_1, w_2, w_3, \ldots, w_n$ are vertices of the cycle and v_i is the vertex joined by edges to *w*_i and *w*_{*i*+1} where *i* + 1 is taken over modulo *n*. For $1 \le i \le n$, let w_i' i_i , v_i \sum_{i}^{\prime} , $\sum_{i}^{\prime\prime}$ $\frac{\partial}{\partial}$, u'_{i} $S(SF_n)$ corresponding to the edges $w_0w_i, w_iv_i, v_iw_{i+1}, w_iw_{i+1}$ of SF_n , where $i+1$ is taken over modulo *n*. Assume that $S(SF_n) \in \Omega_a$ for some *n* with a labeling *f*. Then $N_f^+(v)$ $y'_{1}) = a = N_f^+(v''_{1})$ j'_{1}), implies that $f(w_1) = f(w_2)$, consequently $N_f^+(u')$ $\binom{1}{1} = 0$. This is a contradiction. Hence $S(SF_n) \notin \Omega_a$ for any *n*. \Box

Theorem 2.16. *For n* ≥ 3, *S*(*SF_n*) ∈ $Ω_0$ *if n* ≡ 0(mod 2).

Proof. Consider the sunflower SF_n with vertex set $V = \{w_0, w_i, w_i\}$ $v_i: 1 \leq i \leq n$ where w_0 is the central vertex, $w_1, w_2, w_3, \ldots, w_n$ are vertices of the cycle and v_i is the vertex joined by edges to *w*_i and *w*_{*i*+1} where *i* + 1 is taken over modulo *n*. For $1 \le i \le n$, let w_i' i_i , v_i \sum_{i}^{\prime} , $\sum_{i}^{\prime\prime}$ $\frac{\partial}{\partial i}$ $S(SF_n)$ corresponding to the edges $w_0w_i, w_iv_i, v_iw_{i+1}, w_iw_{i+1}$ of SF_n , where $i+1$ is taken over modulo *n*. Suppose that $n \equiv 0 \pmod{2}$. We define $f: V[S(SF_n)] \to V_4 \setminus \{0\}$ as :

$$
f(w_0) = f(w_i) = f(w'_i) = f(v_i) = f(v'_i) = f(v''_i) = a
$$
 for $1 \le i \le n$,

$$
f(u_i') = \begin{cases} b & \text{if } i \equiv 1 \pmod{2} \\ c & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

Clearly *f* is an *a*-neighbourhood V_4 -magic labeling of $S(SF_n)$. This completes the proof of the theorem. П

Corollary 2.17. *S*(*SF_n*) $\notin \Omega$ _{*a*,0} *for any n* \geq 3.

 \Box

 \Box

Proof. It directly follows from Theorem [2.15.](#page-1-2)

Definition 2.18. [\[8\]](#page-4-1) *A complete bipartite graph of the form K*1,*ⁿ is called a star graph. A star graph K*1,*ⁿ is sometimes called an n-star.*

Definition 2.19. [\[9\]](#page-4-2) *The Bistar Bm*,*ⁿ is the graph obtained by joining the central vertex of K*1,*^m and K*1,*ⁿ by an edge.*

Theorem 2.20. $S(B_{m,n}) \in \Omega_a$ *if and only if both m and n are even.*

Proof. Consider the bistar $B_{m,n}$ with vertex set $\{u, v, u_i, v_j\}$: $1 \leq i \leq m$ and $1 \leq j \leq n$ where $u_i (1 \leq i \leq m)$ and $v_j (1 \leq j \leq m)$ $j \leq n$) are pendant vertices adjacent to *u* and *v* respectively. Let w, u'_i \int ^{*i*} and *v*^{\int}₁ *j* be vertices in $S(B_{m,n})$ corresponding to the edges uv, uu_i and vv_j of $B_{m,n}$. Suppose that both *m* and *n* are even. Define $f: V[S(B_{m,n})] \to V_4 \setminus \{0\}$ as:

 $f(u) = f(v_i) = c$ for $1 \leq j \leq n$ $f(v) = f(u_i) = b$ for $1 \le i \le m$ $f(w) = f(u)$ f_i) = $f(v'_i)$ \mathbf{a}_j) = *a* for $1 \le i \le m$ and $1 \le j \le n$. Then *f* is an *a*-neighbourhood V_4 -magic labeling of $S(B_{m,n})$. Hence $S(B_{m,n}) \in \Omega_a$. Conversely, suppose that not both *m* and *n* are even. Then either *m* or *n* is odd. Without loss of generality take *m* is odd. If possible, let $S(B_{m,n}) \in \Omega_a$ with a labeling *f*. Then $N_f^+(u_i) = a$ implies that $f(u_i)$ i_i) = *a* for $1 \le i \le$ *m*. Then $N_f^+(u) = a$ implies that $ma + f(u) = a$, consequently $f(u) = 0$. This is a contradiction. Hence $S(B_{m,n}) \notin \Omega_a$. Which completes the proof of the theorem. \Box

Theorem 2.21. *S*($B_{m,n}$) $\notin \Omega_0$ *for any m and n*.

Proof. Proof is obvious, due to the presence of pendant vertices in $S(B_{m,n})$. \Box

Corollary 2.22. *S*($B_{m,n}$) $\notin \Omega_{a,0}$ *for any m and n*.

Proof. Proof directly follows from Theorem [2.21.](#page-2-0) \Box

Definition 2.23. [\[9\]](#page-4-2) *Jelly fish graph J*(*m*,*n*) *is obtained from* a 4*-cycle* $w_1w_2w_3w_4w_1$ *by joining* w_1 *and* w_3 *with an edge and appending the central vertex of* $K_{1,m}$ *to* w_2 *and appending the central vertex of* $K_{1,n}$ *to* w_4 *.*

Theorem 2.24. $S(J(m,n)) \notin \Omega_a$ *for any m and n.*

Proof. Consider the jelly fish *J*(*m*,*n*) with vertex set $V = V_1 \cup$ *V*₂ where $V_1 = \{w_1, w_2, w_3, w_4\}$, $V_2 = \{u_i, v_j : 1 \le i \le m, 1 \le m\}$ *j* ≤ *n*} and edge set *E* = *E*₁ ∪ *E*₂, where *E*₁ = {*w*₁*w*₂, *w*₂*w*₃, $w_3w_4, w_4w_1, w_1w_3\}, E_2 = \{w_2u_i, w_4v_j : 1 \le i \le m, 1 \le j \le n\}.$ Let $u_i^{'}$ i_i , v_i ['] \hat{i} be the new vertices corresponding to the edges $w_2 u_i$, $w_4 v_j$ and w'_1 y'_{1}, w'_{2} y'_{2}, w'_{3} $'_{3}, w'_{4}$ $'_{4}, w'_{3}$ $\frac{1}{5}$ be the new vertices corresponding to the edges w_1w_2 , w_2w_3 , w_3w_4 , w_4w_1 , w_1w_3 respectively in *S*(*J*(*m*,*n*)). Suppose that *S*(*J*(*m*,*n*)) $\in \Omega_a$ for some *m* and *n* with a labeling function *f*. Then $N_f^+ (w_2)$ $S_{3}^{'}$) = $a = N_f^+(w_4)$ $_{4}^{\prime})$ implies that $f(w_1) = f(w_3)$. Therefore, $N_f^+(w_3)$ ζ_5) = 0, which is a contradiction. Hence $S(J(m,n)) \notin \Omega_a$ for any *m* and *n*. \square

Theorem 2.25. *S*(*J*(*m*,*n*)) $\notin \Omega$ ₀ *for any m and n*.

Proof. Proof is obvious, since $S(J(m, n))$ has pendant vertex in it. П

Corollary 2.26. *S*($J(m,n)$) $\notin \Omega_{a,0}$ *for any m and n*.

Proof. Proof directly follows from Theorem [2.24.](#page-2-1) \Box

Definition 2.27. *The graph* $P_2 \times P_n$ *is called a Ladder. It is denoted by Ln.*

Theorem 2.28. $S(L_n) \in \Omega_a$ *for all n* > 1.

Proof. Consider the ladder L_n with vertex set $V = \{u_i, v_i : 1 \leq i \}$ *i* ≤ *n*} and edge set *E* = { $u_i u_{i+1}, v_i v_{i+1}$: 1 ≤ *i* ≤ *n*−1}∪ { $u_i v_i$: $1 \leq i \leq n$. Let u'_i i_i , v_i ['] \hat{i} be the new vertices corresponding to the edges $u_i u_{i+1}, v_i v_{i+1}$ for $1 \le i \le n-1$ and w_i be the vertices corresponding to the edges $u_i v_i$ for $1 \le i \le n$ in $S(L_n)$. Now define $f: V[S(L_n)] \to V_4 \setminus \{0\}$ as :

$$
f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \pmod{2} \\ c & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

$$
f(v_i) = \begin{cases} c & \text{if } i \equiv 1 \pmod{2} \\ b & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

$$
f(u'_i) = f(v'_i) = c \text{ for } 1 \le i \le n - 1
$$

 $f(w_i) = a$ for $1 < i < n$

$$
f(w_1) = f(w_n) = b.
$$

Then $N_f^+ \equiv a$. Hence $S(L_n) \in \Omega_a$.

Definition 2.29. [\[10\]](#page-4-3) *The open ladder* $O(L_n)$ *is the graph obtained from two paths of lengths* $n-1$ *with* $V(G) = \{u_i, v_i :$ $1 \leq i \leq n$ *and* $E(G) = \{u_iu_{i+1}, v_iv_{i+1} : 1 \leq i < n\} \cup \{u_iv_i : 1 \leq i \leq n\}$ $1 < i < n$.

Theorem 2.30. $S(O(L_n)) \in \Omega_a$ *for all n* > 2.

Proof. Consider the open ladder $O(L_n)$ with vertex set $V(G)$ = ${u_i, v_i : 1 \le i \le n}$ and $E(G) = {u_i u_{i+1}, v_i v_{i+1} : 1 \le i < n}$ ∪ $\{u_iv_i: 1 < i < n\}$. Let u'_i i_i , v_i \hat{i} be the new vertices corresponding to the edges $u_i u_{i+1}, v_i v_{i+1}$ for $1 \leq i < n$ and w_i be the vertices corresponding to $u_i v_i$ for $1 < i < n$ in $S(O(L_n))$. Now define $f: V[S(O(L_n))] \rightarrow V_4 \setminus \{0\}$ as :

$$
f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \pmod{2} \\ c & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

$$
f(v_i) = \begin{cases} c & \text{if } i \equiv 1 \pmod{2} \\ b & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

$$
f(u_i') = f(v_i') = a \text{ for } 1 \le i \le n - 1
$$

 $f(w_i) = a$ for $1 < i < n$

Then *f* is an *a*-neighbourhood V_4 -magic labeling of $S(O(L_n))$. \Box

Figure 2. An *a*-neighbourhood V_4 -magic labeling of $S(O_5)$.

Theorem 2.31. $S(O(L_n)) \notin \Omega_0$ *for any n* > 2.

Proof. Proof is obvious, since $S(O(L_n))$ has pendant vertices in it. \Box

Corollary 2.32. *S*($O(L_n)$) $\notin \Omega_{a,0}$ *for any n* > 2.

Proof. Proof directly follows from Theorem [2.31.](#page-3-7) \Box

Definition 2.33. *The Corona* $G_1 \odot G_2$ *of two graphs* G_1 *and G*² *is the graph obtained by taking one copy of G*1*, which has p*¹ *vertices, and p*¹ *copies of G*² *and then joining the i th vertex of* G_1 *by an edge to every vertex in the i*th *copy of* G_2 *.*

Definition 2.34. *The Corona* $P_n \odot K_1$ *is called the comb graph CBn*.

Theorem 2.35. *S*(CB_n) $\notin \Omega_a$ *for any n* ≥ 2 .

Proof. Consider CB_n with vertex set $\{u_i, v_i : 1 \le i \le n\}$ and edge set $\{u_i v_i : 1 \le i \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$. Let v'_i \int_{i} and μ' *j* be vertices in $S(CB_n)$ corresponding to the edges $u_i v_i, u_j u_{j+1}$ for $1 \le i \le n$ and $1 \le j \le n-1$ of *CB_n*. Suppose that $S(CB_n) \in \Omega_a$ for some *n* with a labeling *f*. Then $N_f^+(v_i) =$ *a* implies that $f(v_i)$ a' _{*i*}) = *a* for $1 \le i \le n$. Also, $N_f^+(u_1) = a$ implies that $f(v)$ f_{1} ['] $) + f(u'_{1}$ ['] f_1) = *a*, implies that $f(u_1)$ j_1) = 0. This is a contradiction. Hence $S(CB_n) \notin \Omega_a$ for any *n*. \Box

Theorem 2.36. $S(CB_n) \notin \Omega_0$ *for any n*.

Proof. Proof is obvious, since $S(CB_n)$ has pendant vertices in it. \Box

Corollary 2.37. *S*(CB_n) $\notin \Omega_{a,0}$ *for any n*.

Proof. Proof directly follows from Theorem [2.36.](#page-3-8) \Box

Definition 2.38. [\[11\]](#page-4-4) *A Crown graph* C_n^* *is obtained from* C_n *by attaching a pendant edge at each vertex of the cycle Cn*.

Theorem 2.39. *For* $n \geq 3$, $S(C_n^*) \in \Omega_a$ *if and only if* $n \equiv$ 0(mod 2).

Proof. Consider the crown C_n^* with vertex set $\{u_i, v_i : 1 \le i \le n\}$ n }, where $u_1, u_2, u_3, \ldots, u_n$ are vertices on the cycle C_n and $v_1, v_2, v_3, \ldots, v_n$ are pendant vertices adjacent to the vertices $u_1, u_2, u_3, \ldots, u_n$ respectively. Let v'_i i_i ($1 \le i \le n$) be the vertices in *S*(C_n^*) corresponding to the edges $u_i v_i$ ($1 \le i \le n$) and u'_i *i*

be the vertices corresponding to the edges $u_i u_{i+1}$ ($1 \le i \le n$), where $i + 1$ is taken over modulo *n*. Suppose $S(C_n^*) \in \Omega_a$ with a labeling *f*. Then $N_f^+(\nu)$ f_1) = *a* gives either $f(u_1) = b$ or $f(u_1) = c$. Without loss of generality, take $f(u_1) = b$. Then $N_f^+(u)$ J_1) = *a* implies that $f(u_2) = c$. Also $N_f^+(u_2)$ $a₂$) = *a* implies that $f(u_3) = b$. Proceeding like this, we should have

$$
f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \text{ (mod 2)} \\ c & \text{if } i \equiv 0 \text{ (mod 2)} \end{cases}
$$

Now, $N_f^+(u'_n) = a$ implies that $f(u_n) = c$. Therefore, $n \equiv$ 0(mod 2). Conversely suppose that $n \equiv 0 \pmod{2}$. Define $f: V[S(C_n^*)] \to V_4 \setminus \{0\}$ as :

$$
f(u_i) = \begin{cases} b & \text{if } i \equiv 1 \pmod{2} \\ c & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

$$
f(v_i) = \begin{cases} c & \text{if } i \equiv 1 \pmod{2} \\ b & \text{if } i \equiv 0 \pmod{2} \end{cases}
$$

$$
f(u'_i) = f(v'_i) = a \text{ for } 1 \le i \le n.
$$

Then *f* is an *a*-neighbourhood V_4 -magic labeling of $S(C_n^*)$. This completes the proof of the theorem.

Theorem 2.40. $S(C_n^*) \notin \Omega_0$ *for any n* ≥ 3 .

Proof. Proof is obvious, since $S(C_n^*)$ has pendant vertices in it. \Box

Corollary 2.41. *S*(C_n^*) $\notin \Omega_{a,0}$ *for any n* \geq 3.

Proof. Proof directly follows from Theorem [2.40.](#page-3-9) \Box

References

- [1] Chartrand G, Zhang P, *Introduction to Graph Theory,* McGraw-Hill, Boston; 2005.
- [2] K. P. Vineesh and V. Anil Kumar, Neighbourhood *V*4 magic labeling of some cycle related graphs, *Far East Journal of Mathematical Sciences* 111(2)(2019), 263- 272.
- [3] Vandana P. T. and Anil Kumar V., *V*4-magic labelings of some graphs, *British Journal of Mathematics and Computer Science*, 11(5)(2015), 1-20.
- [4] D.Sinha and J.Kaur, Full friendly index set-I, *Discrete Appl. Math.*, 161(2013), 1262-1274.
- [5] Seoud M. A. and Youssef M. Z., *Harmonious labellings of helms and related graphs,* unpublished.
- [6] Vandana P. T. and Anil Kumar V., *V*4-magic labelings of wheel related graphs, *British Journal of Mathematics and Computer Science*, 8(3)(2015), 189-219.
- [7] Ponraj R., Radio mean labeling of a graph, *AKCE International Journal of Graphs and Combinatorics*, 12(2015), 224-228.

- [8] R Balakrishnan and K Ranganathan, *A Text Book of Graph Theory,* Springer-Verlag, New York, 2012.
- [9] Joseph A. Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 21(2018), 1– 10.
- [10] P. Sumathi, A. Rathi, and A. Mahalakshmi, Quotient labeling of corona of ladder graphs, *International Journal of Innovative Research in Applied Sciences and Engineering*, 1(3)(2017), 1–12
- [11] Vaithilingam K. and Meena S., Prime labeling for some crown related graphs, *International Journal of Scientific and Technology Research*, 2(2013), 1–08.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

