
Malaya Journal of Matematik, Vol. 8, No. 4, 1818-1823, 2020

https://doi.org/10.26637/MJM0804/0081

The chain structure of intuitionistic level subgroups
in cyclic groups of order pq
S. Divya Mary Daise1, S. Deepthi Mary Tresa2 and Shery Fernandez3*

Abstract
It is well known that the set of all level subgroups of any fuzzy subgroup of a finite group forms a chain. In
this paper we prove that this result does not extend to Intuitionistic Fuzzy Subgroups (IFSGs) by providing
a counter-example. For any two distinct prime numbers p and q, we prove that the cyclic group Zpq has 36
non-isomorphic IFSGs. The Intuitionistic Level Subgroups (ILSGs) of only 28 of them form chains, while those of
remaining 8 do not form chains. The list of all the 36 distinct IFSGs is also provided; and those whose ILSGs
form a chain, and not, are identified. The case is illustrated using a specific example. We have also obtained a
characterisation of IFSGs of Zpq, whose ILSGs form a chain.
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1. Introduction
In 1965 L. A. Zadeh [14] came up with the concept of the

fuzzy subset of a non-empty set. According to him, a Fuzzy
Subset A of a universal set X is represented by a membership
function A : X → I where I = [0,1]. Now-a-days, fuzzy math-
ematics is an area of scrupulous research, with applications
in diverse fields like engineering, computer science, medical
diagnosis, social behavior studies, etc. Following the introduc-
tion of fuzzy sets, most of the abstract mathematical structures
were generalised to the fuzzy context and were subjected to
exhaustive research. Throughout the process of this evolution,
many researchers were motivated to investigate the general-
ization of different concepts of abstract algebra in the fuzzy

setting, since the abstract algebraic structures play a crucial
role in mathematics and have innumerable implementations in
several areas of research such as computer sciences, informa-
tion sciences, cryptography, coding theory, etc. Rosenfeld[10]
laid the foundation for this quest. He fuzzified the theory
of groups by defining the concept of fuzzy subgroups of a
group. Several works subsequently appeared in the literature,
surrounding various fuzzy algebraic structures. Meanwhile, K.
T. Atanassov[1] introduced the notion of intuitionistic fuzzy
sets in 1983, as an extension of the fuzzy set theory. Later
in 1989, Biswas[2] applied Atanassov’s idea of intuitionistic
fuzzy sets to the theory of groups and established the theory
of intuitionistic fuzzy subgroups of a group. Many new results
in this area of study are still emerging.
In 1981, P S Das[8] proved that, the level subgroups of fuzzy
subgroups of a finite group form a chain. Later in 2006,
eventhough Ahn et.al.[13] studied some properties of level
subgroups of intuitionistic fuzzy subgroups of cyclic groups,
there has been no attempt to test whether these level subgroups
form a chain in the intuitionistic fuzzy framework also. Our
work is aimed at investigating whether this finding can be
translated into the domain of intuitionistic fuzzy subgroups
of a group. In this paper, we try to extend the finding of P S
Das[8] to intuitionistic fuzzy subgroups of cyclic groups of
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order pq, where p and q are distinct primes.
This paper is organized into two main sections as follows. In
the first section we outline the basic definitions and results
needed to understand our work. In the second section we list
out all the intuitionistic fuzzy subgroups of cyclic groups of
order pq upto isomorphism and then identify those intuition-
istic fuzzy subgroups whose Intuitionistic Level Subgroups
form a chain. Some tables and figures are also provided in
this section to illustrate our findings.

2. Preliminaries
The terms and results which are required for the proper

understanding of results discussed in this paper are discussed
in this section.
Throughout this paper we use the notations:

• I for the interval [0,1] on the real line

• ∧ for the min operator on I

• ∨ for the max operator on I

• G for an arbitrary finite multiplicative group unless
otherwise stated

• H � G to denote the statement H is a subgroup of G

• 〈a〉 to denote the cyclic subgroup of G generated by
a ∈ G

• Zn to denote the abelian group ({0,1,2, ...,n−1},+n)

Definition 2.1. [10] A fuzzy subset A of a group G is said to
be a Fuzzy Subgroup (FSG) of G if, for all x,y ∈ G
(1) A(xy)≥ ∧[A(x),A(y)]
(2) A(x−1) = A(x).

Proposition 2.2. [10] If A is FSG of a group G with identity
element e, then A(e)≥ A(x),∀x ∈ G.

Definition 2.3. [8] If A is a fuzzy subset of a non-empty set X
and t ∈ I, then t-cut of A (or Level Subset of A at t), denoted
by At , is defined as At = {x ∈ X : A(x)≥ t}.

Proposition 2.4. [8] In a group G, a Fuzzy Subset A will be a
FSG of G if and only if At is a subgroup of G for 0≤ t ≤ A(e).

Definition 2.5. [8] For a FSG A of a group G, the subgroup
At is called Level Subgroup of A at t, for 0≤ t ≤ A(e).

Proposition 2.6. [11] If A is a FSG of a group G then for all
t1, t2 ∈ I with t1 > t2, At1 ⊆ At2 .

Proposition 2.7. [8] Let A be a FSG of a finite group G with
Im(A) = {ti : i = 1,2,3, ...,n}. Then the collection {Ati : i =
1,2,3, ...,n} contains all level subgroups of A.
Moreover, if t1 > t2 > t3 > ... > tn, then all these level sub-
groups will form a chain GA = At1 ( At2 ( At3 ( ...( Atn =G,
where GA = {x ∈ G : A(x) = A(e)}.

Definition 2.8. [1] An Intuitionistic Fuzzy Subset (IFS) of a
set X is an object of the form A = {〈x,A+(x),A−(x)〉 : x ∈ X}
where the functions A+,A− : X → I represent the degree of
membership and degree of non membership of any element
x ∈ X and should satisfy the condition 0≤ A+(x)+A−(x)≤
1,∀ x ∈ X.

Definition 2.9. [9] An IFS A = {〈x,A+(x),A−(x)〉 : x ∈ G}
of a group G is said to be an Intuitionistic Fuzzy Subgroup
(IFSG) of G if
(1) A+(xy)≥ ∧[A+(x),A+(y)]
(2) A+(x−1) = A+(x)
(3) A−(xy)≤ ∨[A−(x),A−(y)], and
(4) A−(x−1) = A−(x).

Proposition 2.10. [9] Let A = {〈x,A+(x),A−(x)〉 : x∈G} be
an IFSG of a group G with identity element e. Then, A+(e)≥
A+(x) and A−(e)≤ A−(x), ∀ x ∈ G.

Definition 2.11. [12] Let A = {〈x,A+(x),A−(x)〉 : x ∈G} be
an IFS of a set X and α , β ∈ I. Then the Intuitionistic Level
Subset (ILS) of A at (α , β ) (or (α , β )–cut of IFS A) is the
crisp set Aα,β = {x ∈ X : A+(x)≥ α and A−(x)≤ β}.

Proposition 2.12. [12] Let A = {〈x,A+(x),A−(x)〉 : x ∈ G}
be an IFSG of a group G. Then,
(1) Aα,β = φ , for all α > A+(e) and β < A−(e)
(2) A is an IFSG of G⇔ Aα,β is a subgroup of G for 0≤ α ≤
A+(e) and A−(e)≤ β ≤ 1.

Definition 2.13. [4] Let A = {〈x,A+(x),A−(x)〉 : x ∈ G} be
an IFSG of a group G. Then the subgroup Aα,β (where 0≤
α ≤ A+(e) and A−(e)≤ β ≤ 1) of G is called Intuitionistic
Level Subgroup (ILSG) of A at (α,β ).

Proposition 2.14. [12] Let A = {〈x,A+(x),A−(x)〉 : x ∈ G}
be an IFSG of a group G and α1,α2,β1,β2 ∈ I be such that
α1 ≥ α2 and β1 ≤ β2. Then Aα1,β1 ⊆ Aα2,β2 .

Proposition 2.15. [4] Let A = {〈x,A+(x),A−(x)〉 : x∈G} be
an IFSG of a finite group G, Im(A+) = {ti : i = 1,2,3, ...,n}
and Im(A−) = {s j : j = 1,2,3, ...,m}. Then the collection

{ Ati,s j : i = 1,2,3, ...,n; j = 1,2,3, ...,m}

contains all ILSG’s of G.

The above proposition states that the intuitionistic fuzzy ana-
logue of the first part of proposition 2.7 holds true.

Definition 2.16. [6] Let X be any non-empty finite set and
A= {〈x,A+(x),A−(x)〉 : x∈X} be an IFS of X with Im(A+)=
{ti : i = 1,2,3, ...,n} and Im(A−) = {s j : j = 1,2,3, ...,m}
where 1≥ t1 > t2 > ... > tn ≥ 0 and 0≤ s1 < s2 < ... < sm ≤ 1.
The finite sequence Ł̃(A)= {At1,s1 ,At1,s2 , ...,At1,sm ,At2,s1 ,At2,s2 , ...,
At2,sm , ...,Atn,s1 ,Atn,s2 , ...,Atn,sm}, consisting of all intuitionis-
tic level subsets of A, is called the Intuitionistic Level Repre-
sentation (ILR) of A.

Being a finite sequence, the members in Ł̃(A) may repeat and
their position is significant.
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Remark 2.17 (Geometric Representation of IFS). Let X
be any non-empty set and A = {〈x,A+(x),A−(x)〉 : x ∈ X} be
an IFS of X. For geometric representation of A, A+ is taken
along x-axis and A− along y-axis. Then an element x of X is
represented as an element of A by the point (A+(x),A−(x)) in
the coordinate plane. In this representation all elements of A
will lie inside the triangle bounded by the lines x = 0,y = 0
and x+ y = 1.

Example 2.18. Let X = {a,b,c} be a non-empty set and A =
{〈x,A+(x),A−(x)〉 : x ∈ X} be an IFS of X, where A+ and A−

are defined by the following table:

A+ A−

a 0.7 0.2
b 0.5 0.3
c 0.2 0.3

This can be represented geometrically by figure 1. Also
the ILS’s of A are: A0.7,0.2 = A0.5,0.2 = A0.2,0.2 = A0.7,0.3 =
{a},A0.5,0.3 = {a,b},A0.2,0.3 = {a,b,c}, as can be clearly
seen from figure 1. Hence the ILR of A is Ł̃(A)= {{a},{a},{a},
{a,b},{a},X}.

Figure 1. IFS of the example 2.18

Definition 2.19 (Isomorphic Intuitionistic Fuzzy Subsets).
[6] Let X be any non-empty set and A = {〈x,A+(x),A−(x)〉 :
x ∈ X} and B = {〈x,B+(x),B−(x)〉 : x ∈ X} be two IFS’s of
X. We say that A is isomorphic to B, denoted by A∼= B, if for
all x,y ∈ X
(I1) A+(x)< A+(y)⇔ B+(x)< B+(y)
(I2) A+(x) = A+(y)⇔ B+(x) = B+(y)
(I3) A−(x)< A−(y)⇔ B−(x)< B−(y)
(I4) A−(x) = A−(y)⇔ B−(x) = B−(y)

Theorem 2.20. [6] Let A = {〈x,A+(x),A−(x)〉 : x ∈ X} and
B = {〈x,B+(x),B−(x)〉 : x ∈ X} be two IFS’s of a non-empty
set X and Ł̃(A), Ł̃(B) be the ILRs of A and B respectively.
Then, A∼= B, if and only if, Ł̃(A) = Ł̃(B).

It may be noted that, if two IFS’s A and B of a non-empty
set X are isomorphic, then the degrees of membership and
non-membership of various elements of X w.r.t. A and B will
have the same hierarchical ordering, but differ in values.

3. Main Results
Now we investigate whether the intuitionistic fuzzy ana-

logue of second part of proposition 2.7 holds true. In our

earlier works, we have already investigated it for finite non-
cyclic groups and for cyclic groups of prime order and prime
power order. We have proved in [4] that the above result does
not always hold true for finite non-cyclic groups and in [7] we
have proved the result affirmatively for cyclic groups of prime
and prime power orders. We now do this exploration in the
case of cyclic groups of order pq, where p and q are distinct
primes. Since every cyclic group of order pq is isomorphic
(in the group theoretic sense) to Zpq, we restrict our efforts to
Zpq. Thus, we will inspect whether the distinct ILSG’s of an
IFSG of Zpq form a chain or not. During this investigation,
we also characterise all the IFSG’s of Zpq upto isomorphism.
Throughout this section we take p and q to be two distinct
primes.

Proposition 3.1. [5] In any IFSG of a finite cyclic group,
all generators will have the minimum membership value and
maximum non-membership value.

We proceed to prove that if A is an IFSG of G, then for any
cyclic subgroup of G, any two generators have the same mem-
bership and non-membership degrees.

Proposition 3.2. Let G be any group and A= {〈x,A+(x),A−(x)〉 :
x ∈ G} be an IFSG of G. Let a,b ∈ G be such that 〈a〉= 〈b〉.
Then A+(a) = A+(b) and A−(a) = A−(b).

Proof. 〈a〉= 〈b〉 ⇒ a ∈ 〈b〉 and b ∈ 〈a〉
. ⇒ a = bk and b = al for some k, l ∈ Z
. ⇒ A+(a) ≥ A+(b) and A+(b) ≥ A+(a)
(by first axiom in definition 2.9)
. ⇒ A+(a) = A+(b)
Similarly it can be proved that A−(a) = A−(b).

Proposition 3.3. Let A = {〈x,A+(x),A−(x)〉 : x∈Zpq} be an
IFSG of Zpq. Then A+(p) = A+(kp) and A−(p) = A−(kp),
∀k = 1,2,3, . . . ,q−1.

Proof. (Throughout this proof we will use arithmetic modulo
pq.)
We have 〈p〉= {0, p,2p,3p, . . . ,(q−1)p} and 〈kp〉= {0,kp,
2kp,3kp, . . . ,(q−1)kp}. Clearly 〈kp〉 � 〈p〉 and |〈p〉|= q.
Now suppose ikp = jkp where 0 < j < i < q
⇒ (i− j)kp is a multiple of pq
⇒ (i− j)k is a multiple of q
⇒ (i− j) or k is a multiple of q, which is a contradiction.
Hence the elements of 〈kp〉 are all distinct and | 〈kp〉 | = q,
which means that 〈p〉= 〈kp〉 ,∀k = 1,2,3, . . . ,q−1. Now the
required result follows from proposition 3.2.

Theorem 3.4. [3] Given integers a and b, not both of which
are zero, there exist integers x and y such that gcd(a,b) =
ax+by.

Proposition 3.5. For distinct primes p and q, there exist inte-
gers a and b with 1 = ap+bq, where ap,bq ∈ Zpq.

Proof. Let n= pq. Since p and q are distinct primes, gcd(p,q)=
1 and hence by Theorem 3.4, there exist integers x and y
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such that 1 = xp+ yq. If xp or yq /∈ Zpq, then there exist
integers l and k such that 0 ≤ xp+ ln,yq+ kn < n. In that
case, xp+ ln = (x+ lq)p = ap and similarly yq+ kn = bq
where a and b are integers. Clearly ap,bq ∈ Zpq (since
0≤ xp+ ln,yq+kn < n). Also, 1 = xp+yq = ap+bq (since
ln = kn = 0 in Zpq).

The following result is very significant. It says that any
IFSG of Zpq can have atmost three membership and non-
membership levels.

Theorem 3.6. Let A = {〈x,A+(x),A−(x)〉 : x ∈ Zpq} be an
IFSG of Zpq. Then |Im(A+)| ≤ 3 and |Im(A−)| ≤ 3.

Proof. The elements of Zpq can be categorised into 4 as:
(i) the identity element 0, (ii) the multiples of p, (iii) the
multiples of q and (iv) the numbers which are relatively prime
to pq. Then, A+(0) is maximum (by proposition 2.10), all
numbers in category (ii) and (iii) have same membership
degrees as that of p and q respectively (by proposition 3.3)
and all numbers in category (iv) have same membership value
as that of 1 (which is the minimum), as they are all generators
of Zpq (by proposition 3.1). This implies,

A+(0)≥ A+(p),A+(q)≥ A+(1) (3.1)

Now we will proceed to find the relationship between A+(p)
and A+(q). By proposition 3.5 there exist integers a and b
with 1 = ap+bq, where ap,bq ∈ Zpq. Then, A+(ap+bq)≥
∧{A+(ap),A+(bq)} (by first axiom of IFSG), and hence by
proposition 3.3 we get

A+(1)≥ ∧{A+(p),A+(q)} (3.2)

Case (i): A+(p)> A+(q)
(3.2)⇒ A+(1) ≥ A+(q) and hence (3.1)⇒ A+(1) = A+(q).
So in this case we get A+(0)≥ A+(p)> A+(q) = A+(1).

Case (ii): A+(p)< A+(q)
Proceeding as in case (i) we get A+(0)≥ A+(q)> A+(p) =
A+(1).

Case (iii): A+(p) = A+(q)
As in the above cases we get A+(0) ≥ A+(q) = A+(p) =
A+(1).

In all these possible cases, the maximum possible number of
distinct membership degrees is 3, which means that |Im(A+)| ≤
3.
The proof for A− is similar.

Using the above theorem, in the next proposition we prove
that for distinct primes p and q, Zpq can have only 36 non-
isomorphic IFSGs. We also give a list of these 36 IFSGs.

Proposition 3.7. Given t1, t2, t3,s1,s2,s3 ∈ I with 1 ≥ t1 ≥
t2 ≥ t3 ≥ 0 and 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1, there exist exactly 36
distinct (non-isomorphic) IFSG’s Ak = {

〈
x,A+

k (x),A
−
k (x)

〉
:

x ∈ Zpq} (k = 1,2,3, ...36) in Zpq with Im(A+
k ) = {t1, t2, t3}

and Im(A−k ) = {s1,s2,s3} for all k = 1,2,3, ...36.

Proof. Let A = {〈x,A+(x),A−(x)〉 : x ∈ Zpq} be any IFSG
of Zpq with Im(A+) = {t1, t2, t3} and Im(A−) = {s1,s2,s3}.
Then as stated in the proof of theorem 3.6, the only possible
hierarchy of membership degrees are:

A+(0)≥ A+(p)> A+(q) = A+(1)

A+(0)≥ A+(q)> A+(p) = A+(1)

A+(0)≥ A+(p) = A+(q) = A+(1)

(3.3)

and that of non-membership degrees are:

A−(0)≤ A−(p)< A−(q) = A−(1)

A−(0)≤ A−(q)< A−(p) = A−(1)

A−(0)≤ A−(p) = A−(q) = A−(1)

(3.4)

In order to define the IFSG A in Zpq, A+ can be chosen from
(3.3) in 3C1 possible ways and A− can be chosen from (3.4)
in 3C1 possible ways. Thus, A can be defined in 9 different
ways in each of the following cases: (i) strict inequality with
both A+(0) and A−(0), (ii) equality with both A+(0) and
A−(0), (iii) strict inequality with A+(0) and equality with
A−(0), and (iv) strict inequality with A−(0) and equality with
A+(0). In total, A can be defined in 36 different ways so that
Im(A+) = {t1, t2, t3} and Im(A−) = {s1,s2,s3}. Therefore,
there are exactly 36 distinct IFSGs of Zpq with a given set of
membership and non-membership degrees.

Any other IFSG of Zpq will differ from the 36 IFSG’s men-
tioned in proposition 3.7 only in the values of t1, t2, t3,s1,s2,s3.
That is, any other IFSG of Zpq will be isomorphic to one
among the 36 IFSG’s mentioned in proposition 3.7.

Example 3.8. Consider the group Z35 = {0,1,2, ...,34} and
any set of membership and non-membership degrees given by
t1, t2, t3,s1,s2,s3 ∈ I with 1 ≥ t1 ≥ t2 ≥ t3 ≥ 0 and 0 ≤ s1 ≤
s2 ≤ s3 ≤ 1. Then by theorem 3.7, exactly 36 IFSG’s can be
defined on Z35 with these membership and non-membership
degrees. Also, these IFSG’s can be obtained from table 2 and
table 3, just by replacing p and q by 5 and 7 respectively.

Remark 3.9. Let A = {〈x,A+(x),A−(x)〉 : x ∈ Z35} be an
IFSG of Z35, where A+ and A− are defined by the following
table:

Elements of Z35 A+ A−

0 0.8 0.1
1,2,3,4,6,8,9,11,12,13,16,17,18

19,22,23,24,26,27,29,31,32,33,34 0.4 0.3
5,10,15,20,25,30 0.4 0.3

7,14,21,28 0.4 0.3

This IFSG corresponds to A9 in table 2. Here A+(5) = A+(7)
and A−(5) = A−(7), but 〈5〉 6= 〈7〉. This shows that, the
converse of proposition 3.2 does not hold true.

Proposition 3.10. Let A = {〈x,A+(x),A−(x)〉 : x ∈ Zpq} be
an IFSG of Zpq. If A+(p) > A+(q) and A−(p) > A−(q) or
if A+(p)< A+(q) and A−(p)< A−(q), then the ILSG’s of A
will not form a chain.
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Proof. Suppose A+(p) < A+(q) and A−(p) < A−(q). Then
from the previous discussions we get: A+(0) ≥ A+(q) >
A+(p)=A+(1) and A−(0)≤A−(p)<A−(q)=A−(1). Hence
there exist real numbers t1 ≥ t2 > t3 and s1 ≤ s2 < s3 in I,
such that A+(0) = t1,A+(q) = t2,A+(p) = A+(1) = t3 and
A−(0) = s1,A−(p) = s2,A−(q) = A−(1) = s3. Then ILR of
A is:

Ł̃(A) = {At1,s1 ,At1,s2 ,At1,s3 ,At2,s1 ,At2,s2 ,At2,s3 ,At3,s1 ,At3,s2 ,At3,s3}
= {{0},{0},{0},{0},{0},〈p〉 ,{0},〈q〉 ,Zpq}

Hence, the distinct ILSG’s of A are: {0},〈p〉 ,〈q〉 ,Zpq. Since
p and q are distinct primes neither 〈p〉 ⊆ 〈q〉 nor 〈q〉 ⊆ 〈p〉.
Hence the ILSG’s does not form a chain.
The case when A+(p) > A+(q) and A−(p) > A−(q) can be
proved similarly.

Proposition 3.11. Let A = {〈x,A+(x),A−(x)〉 : x ∈ Zpq} be
an IFSG of Zpq. If A+(p) ≥ A+(q) and A−(p) ≤ A−(q) or
if A+(p)≤ A+(q) and A−(p)≥ A−(q), then the ILSG’s of A
form a chain.

Proof. Suppose A+(p) ≥ A+(q) and A−(p) ≤ A−(q). Then
from the previous discussions we get: A+(0) ≥ A+(p) ≥
A+(q)=A+(1) and A−(0)≤A−(p)≤A−(q)=A−(1). Hence
there exist real numbers t1 ≥ t2 > t3 and s1 ≤ s2 < s3 in I,
such that A+(0) = t1,A+(p) = t2,A+(q) = A+(1) = t3 and
A−(0) = s1,A−(p) = s2,A−(q) = A−(1) = s3. Then ILR of
A is:

Ł̃(A) = {At1,s1 ,At1,s2 ,At1,s3 ,At2,s1 ,At2,s2 ,At2,s3 ,At3,s1 ,At3,s2 ,At3,s3}
= {{0},{0},{0},{0},〈p〉 ,〈p〉 ,{0},〈p〉 ,Zpq}

Hence, the distinct ILSG’s of A are: {0},〈p〉 ,Zpq which form
the chain At1,s1 ⊆ At2,s2 ⊆ At3,s3 .
In the case when A+(p) ≤ A+(q) and A−(p) ≥ A−(q), pro-
ceeding similarly as above, we will obtain the distinct ILSG’s
of A as {0},〈q〉 ,Zpq, which will form the chain {0} ⊆ 〈q〉 ⊆
Zpq.

Combining the above two propositions, we get the following
characterisation of IFSGs of a cyclic group of order pq, whose
ILSGs form a chain.

Theorem 3.12. Let A be an IFSG of Zpq. Then the ILSGs
of A form a chain if, and only if, either A+(p)≥ A+(q) and
A−(p)≤ A−(q), or A+(p)≤ A+(q) and A−(p)≥ A−(q).

Proposition 3.13. The probability that the ILSG’s correspond-
ing to a randomly defined IFSG of Zpq forms a chain is 7/9.

Proof. As stated in proposition 3.7, 36 distinct IFSG’s can be
defined on Zpq (upto isomorphism). By propositions 3.10 and
3.11, ILSG’s corresponding to exactly 8 among them will not
form a chain. Hence the proportion of IFSG’s in which the
ILSG’s form a chain is 7/9.

4. Tables and Figures

Figure 2. ILSG’s in the proof of proposition 3.10

Figure 3. ILSG’s in the proof of proposition 3.11

A+
2 (0)> A+

2 (p)> A+
2 (q) = A+

2 (1) A+
11(0) = A+

11(p)> A+
11(q) = A+

11(1)
A−2 (0)< A−2 (q)< A−2 (p) = A−2 (1) A−11(0) = A−11(q)< A−11(p) = A−11(1)
A+

4 (0)> A+
4 (q)> A+

4 (p) = A+
4 (1) A+

13(0) = A+
13(q)> A+

13(p) = A+
13(1)

A−4 (0)< A−4 (p)< A−4 (q) = A−4 (1) A−13(0) = A−13(p)< A−13(q) = A−13(1)
A+

20(0)> A+
20(p)> A+

20(q) = A+
20(1) A+

29(0) = A+
29(p)> A+

29(q) = A+
29(1)

A−20(0) = A−20(q)< A−20(p) = A−20(1) A−29(0)< A−29(q)< A−29(p) = A−29(1)
A+

22(0)> A+
22(q)> A+

22(p) = A+
22(1) A+

31(0) = A+
31(q)> A+

31(p) = A+
31(1)

A−22(0) = A−22(p)< A−22(q) = A−22(1) A−31(0)< A−31(p)< A−31(q) = A−31(1)

Table 1. The 8 IFSG’s mentioned in proposition 3.10

Inequality with both Equality with both
A+(0) and A−(0) A+(0) and A−(0)

A+
1 (0)> A+

1 (p)> A+
1 (q) = A+

1 (1) A+
10(0) = A+

10(p)> A+
10(q) = A+

10(1)
A−1 (0)< A−1 (p)< A−1 (q) = A−1 (1) A−10(0) = A−10(p)< A−10(q) = A−10(1)
A+

2 (0)> A+
2 (p)> A+

2 (q) = A+
2 (1) A+

11(0) = A+
11(p)> A+

11(q) = A+
11(1)

A−2 (0)< A−2 (q)< A−2 (p) = A−2 (1) A−11(0) = A−11(q)< A−11(p) = A−11(1)
A+

3 (0)> A+
3 (p)> A+

3 (q) = A+
3 (1) A+

12(0) = A+
12(p)> A+

12(q) = A+
12(1)

A−3 (0)< A−3 (p) = A−3 (q) = A−3 (1) A−12(0) = A−12(p) = A−12(q) = A−12(1)
A+

4 (0)> A+
4 (q)> A+

4 (p) = A+
4 (1) A+

13(0) = A+
13(q)> A+

13(p) = A+
13(1)

A−4 (0)< A−4 (p)< A−4 (q) = A−4 (1) A−13(0) = A−13(p)< A−13(q) = A−13(1)
A+

5 (0)> A+
5 (q)> A+

5 (p) = A+
5 (1) A+

14(0) = A+
14(q)> A+

14(p) = A+
14(1)

A−5 (0)< A−5 (q)< A−5 (p) = A−5 (1) A−14(0) = A−14(q)< A−14(p) = A−14(1)
A+

6 (0)> A+
6 (q)> A+

6 (p) = A+
6 (1) A+

15(0) = A+
15(q)> A+

15(p) = A+
15(1)

A−6 (0)< A−6 (p) = A−6 (q) = A−6 (1) A−15(0) = A−15(p) = A−15(q) = A−15(1)
A+

7 (0)> A+
7 (p) = A+

7 (q) = A+
7 (1) A+

16(0) = A+
16(p) = A+

16(q) = A+
16(1)

A−7 (0)< A−7 (p)< A−7 (q) = A−7 (1) A−16(0) = A−16(p)< A−16(q) = A−16(1)
A+

8 (0)> A+
8 (p) = A+

8 (q) = A+
8 (1) A+

17(0) = A+
17(p) = A+

17(q) = A+
17(1)

A−8 (0)< A−8 (q)< A−8 (p) = A−8 (1) A−17(0) = A−17(q)< A−17(p) = A−17(1)
A+

9 (0)> A+
9 (p) = A+

9 (q) = A+
9 (1) A+

18(0) = A+
18(p) = A+

18(q) = A+
18(1)

A−9 (0)< A−9 (p) = A−9 (q) = A−9 (1) A−18(0) = A−18(p) = A−18(q) = A−18(1)

Table 2. The 36 IFSG’s mentioned in proposition 3.7 (i)
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Inequality with A+(0) and Equality with A+(0) and
equality with A−(0) inequality with A−(0)

A+
19(0)> A+

19(p)> A+
19(q) = A+

19(1) A+
28(0) = A+

28(p)> A+
28(q) = A+

28(1)
A−19(0) = A−19(p)< A−19(q) = A−19(1) A−28(0)< A−28(p)< A−28(q) = A−28(1)
A+

20(0)> A+
20(p)> A+

20(q) = A+
20(1) A+

29(0) = A+
29(p)> A+

29(q) = A+
29(1)

A−20(0) = A−20(q)< A−20(p) = A−20(1) A−29(0)< A−29(q)< A−29(p) = A−29(1)
A+

21(0)> A+
21(p)> A+

21(q) = A+
21(1) A+

30(0) = A+
30(p)> A+

30(q) = A+
30(1)

A−21(0) = A−21(p) = A−21(q) = A−21(1) A−30(0)< A−30(p) = A−30(q) = A−30(1)
A+

22(0)> A+
22(q)> A+

22(p) = A+
22(1) A+

31(0) = A+
31(q)> A+

31(p) = A+
31(1)

A−22(0) = A−22(p)< A−22(q) = A−22(1) A−31(0)< A−31(p)< A−31(q) = A−31(1)
A+

23(0)> A+
23(q)> A+

23(p) = A+
23(1) A+

32(0) = A+
32(q)> A+

32(p) = A+
32(1)

A−23(0) = A−23(q)< A−23(p) = A−23(1) A−32(0)< A−32(q)< A−32(p) = A−32(1)
A+

24(0)> A+
24(q)> A+

24(p) = A+
24(1) A+

33(0) = A+
33(q)> A+

33(p) = A+
33(1)

A−24(0) = A−24(p) = A−24(q) = A−24(1) A−33(0)< A−33(p) = A−33(q) = A−33(1)
A+

25(0)> A+
25(p) = A+

25(q) = A+
25(1) A+

34(0) = A+
34(p) = A+

34(q) = A+
34(1)

A−25(0) = A−25(p)< A−25(q) = A−25(1) A−34(0)< A−34(p)< A−34(q) = A−34(1)
A+

26(0)> A+
26(p) = A+

26(q) = A+
26(1) A+

35(0) = A+
35(p) = A+

35(q) = A+
34(1)

A−26(0) = A−26(q)< A−26(p) = A−26(1) A−35(0)< A−35(q)< A−35(p) = A−35(1)
A+

27(0)> A+
27(p) = A+

27(q) = A+
27(1) A+

36(0) = A+
36(p) = A+

36(q) = A+
36(1)

A−27(0) = A−27(p) = A−27(q) = A−27(1) A−36(0)< A−36(p) = A−36(q) = A−36(1)

Table 3. The 36 IFSG’s mentioned in proposition 3.7 (ii)

5. Conclusion
In the course of fuzzification of the abstract algebraic

concepts and theories, it has been confirmed that the level
subgroups of a fuzzy subgroup of any group form a chain.
The case of IFSGs still remains unsettled. Our research was
aimed at investigating whether this result can be extended to
intuitionistic fuzzy subgroups. We have proved that this result
of Das [8] does not extend to intuitionistic fuzzy case. Any
cyclic group of order pq, where p and q are distinct primes, is
proved to have some IFSGs whose ILSGs do not form chains.
We have proved that the generators of cyclic subgroups of
any group G have the same membership and non-membership
degrees. In the case of Zpq, we have proved that, any IFSG can
have at most three membership and non-membership levels.
We have also proved that, Zpq has 36 non-isomorphic IFSGs.
Of these, the ILSGs of only 28 IFSGs form chains, while
the ILSGs of the remaining 8 do not form chains. We have
given the list of the 36 distinct IFSGs of Zpq, and identified
those whose IFSGs form, and do not form, chains. The case is
illustrated using the example of Z35. During the process, we
have also obtained a characterisation of the IFSGs of cyclic
groups of order pq, whose ILSGs form a chain.
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