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Abstract
In this paper, we introduce and study cleanly µ-covered spaces along with two strong separation axioms in
generalized topological spaces. Strong separation axioms are investigated by means of minimal µ-open and
µ-closed sets of generalized topological spaces.
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1. Introduction
On noting down the properties of some sets like semi-open

sets [4], preopen sets [5] of topological spaces X , Császár [2]
firstly introduced and studied γ-open sets in X . The properties
of γ-open sets finally leads to introduce and study the µ-open
sets in X by Császár [1].

A subcollection µ of the powerset of a nonempty set X is
called a generalized topology on X if /0 ∈ µ and the union of
arbitrary number of members of µ is again a member of µ .
The ordered pair (X ,µ) is called the generalized topological
space. For brevity, a generalized topology (resp. generalized
topological space) is expressed by GT (resp. GT space). A
subset G of X is called µ-open in X if G ∈ µ and a subset E
of X is called µ-closed if X−E ∈ µ . The union of all µ-open
sets in X contained in a subset A of X is called the generalized
interior of A and it is denoted by iµ(A). The intersection of
all µ-closed sets in X containing a subset A of X is called
the generalized closure of A and we write cµ(A) to denote
it. It can be shown easily that iµ(A) = X − cµ(X −A). For a
µ-open set (resp. µ-closed set) A of X , we write A is a proper
µ-open (resp. proper µ-closed) set in X to mean A 6= /0 (resp.

A 6= X) and A 6= X if X ∈ µ (resp. A 6= /0 if X ∈ µ). We also
write N are denote the set of natural numbers.

2. Maximal, minimal µ-open and µ-closed
sets

We recall some known definitions and results in the sequel.

Definition 2.1 (Roy and Sen [10]). A proper µ-open set A of
a GT space X is called a maximal µ-open set if there is no
µ-open set U(6= A,X) such that A⊂U ⊂ X.

Theorem 2.2 (Roy and Sen [10]). If A is a maximal µ-open
set and B is a µ-open set in a GT space X, then either A∪B =
X or B⊂ A. If B is also a maximal µ-open set distinct from A,
then A∪B = X.

Definition 2.3 (Roy and Sen [10]). A proper µ-closed set E
of a GT space X is called a minimal µ-closed set if there is
no µ-closed set F(6= /0,E) such that /0⊂ F ⊂ E.

Theorem 2.4 (Roy and Sen [10]). If F is a minimal µ-closed
set and E is a µ-closed set in a GT space X, then either
E ∩F = /0 or F ⊂ E. If E is also a minimal µ-closed set
distinct from F, then F ∩E = /0.

Definition 2.5 (Roy [9]). Let X be a GT space. X is called
µ-locally finite if for each x ∈ X there exists a finite µ-open
set U such that x ∈U.

Definition 2.6 (S. Al Ghour et al. [3]). A proper µ-open set
U of X is said to be a minimal µ-open set if the only proper
µ-open set which is contained in U is U.
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Theorem 2.7 (Mukharjee [6]). If U is a minimal µ-open set
and W is a µ-open set such that U ∩W is a µ-open set, then
either U ∩W = /0 or U ⊂W. If W is also a minimal µ-open
set distinct from U, then U ∩W = /0.

Definition 2.8 (Mukharjee [6]). A proper µ-closed set E in
a GT space X is called a maximal µ-closed set if the only
proper µ-closed sets which contains E is E.

Theorem 2.9 (Mukharjee [6]). If E is a maximal µ-closed
set and F is any µ-closed set in a GT space X such that E∪F
is a µ-closed set, then either E ∪F = X or F ⊂ E.

Theorem 2.10 (Roy and Sen [10]). A proper µ-open set A
in a GT space X is maximal µ-open iff X −A is minimal
µ-closed in X.

Similarly, we see that a proper µ-closed set A in a GT
space X is maximal µ-closed iff X−A is minimal µ-open in
X .

Definition 2.11 (Sarsak [11]). A µ-space is called µ-compact
if each µ-open cover of X has a finite subcover.

We now introduce some new notions and obtain some of
their properties.

Definition 2.12. A cover U of a µ-space X is said to be a
minimal cover if for each U ∈U ,U −{U} is not a cover of
X. U is said to be a minimal µ-open (resp. µ-closed) cover
if each member of U is µ-open (resp. µ-closed).

We see that a µ-open cover U can not be a minimal µ-
open cover of X , if there are two distinct µ-open sets U,V ∈
U such that V ⊂U . It easily follows that each µ-compact
space has a finite minimal µ-open cover. By a nontrivial cover
of a GT space X , we mean a cover of X which is not equal to
{X}.

We introduce the following idea on the requirement of at
least two proper µ-open sets in a µ-open cover of µ-spaces.

Definition 2.13. A µ-space X is said to be cleanly µ-covered
if each nontrivial µ-open cover of X has a minimal µ-open
subcover consisting of exactly two µ-open sets.

So every cleanly µ-covered µ-space is a µ-compact space.
It is very easy to see that a µ-compact space may fail to be a
cleanly µ-covered space.

Example 2.14. Let X = N and µ = { /0}
⋃
{G ⊂ N | X −G

is finite }. The µ-space (X ,µ) is not cleanly µ-covered but
µ-compact.

Example 2.15. Let X = [−1,1] and µ = { /0,X , [−1,0),(0,1],
[−1,0], [0,1],X −{0}}. The GT space (X ,µ) is an example
of cleanly µ-covered space.

Theorem 2.16. If each µ-open cover of a µ-space X contains
a maximal µ-open set, then X is cleanly µ-covered.

Proof. Let G be a maximal µ-open set belonging to a µ-open
cover U of X . If there exists a distinct maximal µ-open set
H ∈ U , then we have G∪H = X by Theorem 2.2. Hence
{G,H} is a subcover of U for X .

Now we suppose that there is only one maximal µ-open
set G in U . There might exists another µ-open set H ∈ U
distinct from G in order to cover X by U . The µ-open cover
U becomes a trivial µ-open cover if H = X . That is why we
suppose H 6= X . So we have H ( G or H ∪G = X . If U ( G
for all U ∈ U , then U can not be a µ-open cover of X . It
means that there exists a µ-open set H ∈U distinct from G
such that G∪H = X .

Definition 2.17. A cover U of a µ-space X is said to be µ-
disconnected if for each U ∈U , there exists a V ∈U such
that U ∩V = /0.

Theorem 2.18. If a minimal µ-open cover of a µ-space con-
tains a minimal µ-open set and the intersection of any two
µ-open sets is µ-open then the minimal µ-open cover is µ-
disconnected.

Proof. Suppose a minimal µ-open cover U contains a mini-
mal µ-open set U . There exists one more µ-open set V ∈U
different from U to cover X by U . So we have U ∩V = /0 or
U (V by Theorem 2.7. Here U (V is not possible as U is a
minimal µ-open cover of X .

Corollary 2.19. If a minimal µ-open cover of a µ-space
contains only minimal µ-open sets then the minimal µ-open
cover is µ-disconnected.

Definition 2.20 (Deb Ray and Bhowmick [8]). A collection
U of subsets of a µ-space X is called µ-locally finite if each
x ∈ X belongs to a µ-open set meeting only finitely many
members of U .

Note that µ-locally finite collection of a GT space and
µ-locally finite space are two distinct notions.

Theorem 2.21 (Deb Ray and Bhowmick [8]). If U = {Uλ |
λ ∈ Λ} is a µ-locally finite collection of sets in X then
cµ(

⋃
λ∈Λ Uλ ) =

⋃
λ∈Λ cµ(Uλ ).

Theorem 2.22. If {Uλ | λ ∈ Λ} is a collection of distinct
minimal µ-open sets in a µ-locally finite space X such that
Uλ1 ∩Uλ2 is µ-open for λ1,λ2 ∈ Λ, then cµ(

⋃
λ∈Λ Uλ ) =⋃

λ∈Λ cµ(Uλ ).

Proof. For λ1,λ2 ∈ Λ with λ1 6= λ2, we have Uλ1 ∩Uλ2 = /0.
We choose x ∈ X . Since X is a µ-locally finite space, we
obtain a finite µ-open set U such that x ∈U . From the fact
that U is finite and Uλ1 ∩Uλ2 = /0 whenever λ1 6= λ2, we see
that U can intersect only finite number of Uλ ,λ ∈Λ. It implies
that {Uλ | λ ∈ Λ} is µ-locally finite. So by Theorem 2.21, we
get cµ(

⋃
λ∈Λ Uλ ) =

⋃
λ∈Λ cµ(Uλ ).

Analogous to Theorem 2.16, Theorem 2.18, Corollary
2.19 and Theorem 2.22, we have Theorem 2.23, Theorem
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2.24, Corollary 2.25 and Theorem 2.26 respectively. The
proofs of the them are omitted as proofs are very much similar
to corresponding results already established.

Theorem 2.23. If each nontrivial µ-closed cover F of a
µ-space X contains a maximal µ-closed set E and the inter-
section of any two µ-closed sets in X is µ-closed, then there
exists an F ∈F such that E ∪F = X.

Theorem 2.24. If a minimal µ-closed cover of a µ-space
contains a minimal µ-closed set then the is µ-disconnected.

Corollary 2.25. If a minimal µ-closed cover of a µ-space
contains only a minimal µ-closed set then the space is µ-
disconnected.

Theorem 2.26. If {Uλ | λ ∈ Λ} is a collection of distinct
minimal µ-closed sets in a µ-locally finite space X with Uλ1 ∩
Uλ2 = /0 for any two λ1 6= λ2, then cµ(

⋃
λ∈Λ Uλ ) =

⋃
λ∈Λ(Uλ ).

3. Two strong separation axioms
We introduce the following two strong separation axioms

in a GT space on noting down that two distinct minimal µ-
open sets in a GT space are disjoint [6].

Definition 3.1. A GT space X is said to be strongly µ-regular
if for each x ∈ X and each µ-closed set F with x /∈ F, there
exist disjoint minimal µ-open sets U,V such that x ∈U and
F ⊂V .

Clearly, a strongly µ-regular GT space is µ-regular.

Definition 3.2. A GT space X is said to be strongly µ-normal
if for each pair of disjoint µ-closed sets E,F there exist dis-
joint minimal µ-open sets U,V such that E ⊂U and F ⊂V .

Example 3.3. Let X = [−1,1] and µ be the generalized topol-
ogy on X where µ = { /0,X , [−1,0),{0},(0,1], [−1,0], [0,1],X−
{0}}. This GT space (X ,µ) is both µ-regular and µ-normal.
But this space is neither strongly µ-regular nor strongly µ-
normal. So we conclude that a µ-regular (resp. µ-normal)
space may fail to be be a strongly µ-regular (resp. strongly
µ-normal) space.

Example 3.4. Let X = {a,b,c} and µ = { /0,{a},{b,c},X}.
This GT space (X ,µ) is an example of strongly µ-regular as
well as strongly µ-normal space.

Definition 3.5. For a subset A of a GT space X, we define

MinIµ(A) =


/0 if A contains no minimal µ-open set⋃
{G | G is a minimal

µ-open set contained in A}.
and

MaxCµ(A)=


X if A contained in no maximal

µ-closed set⋂
{E | E is a maximal

µ-closed set containing A}.

We see that MinIµ(G) = G if G is a minimal µ-open set
and MaxCµ(E) = E if E is a maximal µ-closed set in X . If
G,H are two distinct minimal µ-open sets, then G,H are
proper µ-open sets distinct from G∪H and G,H ⊂ G∪H
which means that G∪H is not a minimal µ-open set. So we
conclude that the union of even finitely many distinct minimal
µ-open sets is not minimal µ-open. Again if E,F are two
distinct maximal µ-closed sets, then E,F are proper µ-closed
sets distinct from E ∩F and contain E ∩F which means that
E ∩F is not a maximal µ-closed set. So we conclude that
the intersection of even finitely many distinct maximal µ-
closed sets is not maximal µ-closed. Thus it follows that
MinIµ(A) (resp. MaxCµ(A)) may not be minimal µ-open
(resp. maximal µ-closed).

From Example 3.3, we have MinIµ([−1,1/2)) = [−1,0]
which is not a minimal µ-open set and MaxCµ({0}) = {0}
which is not a maximal µ-closed set.

Theorem 3.6. For each A⊆ X, X−MinIµ(A) = MaxCµ(X−
A).

Proof. First of all, we see that if MinIµ(A) = /0, then there
is no minimal µ-open set in A. In this case, we prove X −A
is not contained in a maximal µ-closed set by contradiction.
Let E be a maximal µ-closed set such that X−A⊂ E. Here
X −E is minimal µ-open with X −E ⊂ A, a contradiction.
So we see MaxCµ(X −A) = X . It means X −MinIµ(A) =
MaxCµ(X−A).

Now we suppose that MinIµ(A) 6= /0. So there exists a
minimal µ-open set G ⊂ A. Then X −G is a maximal µ-
closed set that contains X−A. It means MaxCµ(X−A) 6= X .
Clearly, if {G} is the family of all minimal µ-open sets in A,
then {X−G} is the family of all maximal µ-closed sets that
contain X−A and conversely. Hence

X−MinIµ(A) = X−
⋃
{G | G is minimal µ-open set}

=
⋂
{X−G | X−G is maximal

µ-closed containing X−A}
= MaxCµ(X−A).

Theorem 3.7. For each A⊆ X, MinIµ(A) is minimal µ-open
if there is one and only one minimal µ-open set in A and
vice-versa.

Proof. Firstly, let MinIµ(A) be minimal µ-open and G,H be
two minimal µ-open sets contained in A. So we get G∪
H ⊂MinIµ(A) = G∪H ⊂ A. As G,H ⊂ G∪H and G∪H =
MinIµ(A) is a minimal µ-open set by assumption, we have
G = G∪H as well as H = G∪H. From G∪H = G we get
H ⊂G. Again from G∪H =H we have G⊂H. Hence G=H.
Thus there is only one minimal µ-open set in MinIµ(A). The
converse is easy to follow.

Theorem 3.8 is a dual of Theorem 3.7. The proof of the
theorem is omitted as the proof is similar to the Theorem 3.7.
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Theorem 3.8. For any A ⊆ X, MaxCµ(A) is maximal µ-
closed if there is one and only one maximal µ-closed set
that contains A and vice-versa.

Theorem 3.9. A GT space X is strongly µ-regular if for
each µ-open set G and each x ∈ G, there exist a minimal
µ-open set U and a maximal µ-closed set E such that x ∈
U ⊂MaxCµ(U)⊂ E ⊂ G and conversely.

Proof. At first, we suppose that the GT space X is strongly
µ-regular and G be µ-open. Then for any x ∈ G, there exists
two disjoint minimal µ-open sets U,V such that x ∈U,X −
G ⊂ V . Since U ∩V = /0, we have U ⊂ X −V . As X −V
is maximal µ-closed, we get MaxCµ(X −V ) = X −V . So
we get MaxCµ(U) ⊂MaxCµ(X −V ) = X −V ⊂ G. We set
E = X−V , then E is maximal µ-closed. It also follows that
x ∈U ⊂MaxCµ(U)⊂ E ⊂ G.

To prove the converse, let E be µ-closed and x ∈ X be
such that x /∈ E. We see that X−E is µ-open and x ∈ X−E.
So we obtain a minimal µ-open set U and a maximal µ-closed
set F such that x ∈U ⊂ MaxCµ(U) ⊂ F ⊂ X −E. Putting
V = X−F , we see that V is minimal µ-open such that E ⊂V
and U ∩V = /0.

Theorem 3.10. A GT space X is strongly µ-normal if for a
µ-closed set E and for a µ-open set G with E ⊂G, there exist
a minimal µ-open set U and a maximal µ-closed F such that
E ⊂U ⊂MaxCµ(U)⊂ F ⊂ G and conversely.

Proof. Similar to the proof of Theorem 3.9.
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