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Abstract
We study on the existence and uniqueness of solutions for a Atangana-Baleanu fractional differential equations
with dependence on the Lipschitz first derivative conditions. We develop a Gronwall inequality in the frame
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stability in the sense of Ulam.
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1. Introduction
In the past decades, there has been a growing interest in

the study of the fractional differential equations due to the
rigorous growth of the fractional calculus theory itself and
its applications in various fields such as chemistry, physics,
engineering, control theory, aerodynamics, electrodynamics
of complex medium and control of dynamical systems and
so on. In consequence, fractional differential equations is
obtaining much significance and attention. For details, we
refer readers to [12, 18, 19, 23] and references therein.

There are some approaches to the fractional derivatives
such as Riemann-Liouville, Caputo, Weyl, Hadamard and
Grunwald-Letnikov, etc. The most well known fractional op-

erator are perhaps the Riemann-Liouville fractional integral
and derivatives. Fractional operators are act as an magnifi-
cent tools for the mathematical modeling of the real world
problems. Later, Atangana and Baleanu proposed two new
fractional derivatives based on the Caputo and the Riemann-
Liouville definitions of fractional-order derivatives. Other
kinds of fractional derivative that look like the Riemann-
Liouville and Caputo ones can be seen in [6, 21].

In recent years, many researchers paid much attention
to ABC-derivative with several conditions in various spaces.
The Atangana-Baleanu fractional derivative is familiar to fol-
lowings nonsingularity as well as nonlocality of the kernel,
which acquires the generalized Mittag-Leffler function. Some
of the latest studies on ABC-derivatives such as, Jarad et
al. investigated a ODE’s in the form of AB-derivative [20].
Ravichandran et al. discussed in details the AB-fractional
integro-differntial equations. Atangana and Koca find the
chaos in a simple nonlinear system with AB-fractional deriva-
tives [10].

More precisely in [11], Khan et al. investigated Hyers-
Ulam stability for a nonlinear singular fractional differential
equations with Mittag-Leffler kernel. Sene discussed Stokes’
first problem for heated flat plate with AB-derivative [31].
Owolabi studied the modelling and simulation of a dynamical
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system with the Atangana-Baleanu fractional derivative [30].
To be concise, in this paper we are concerned with the

study of the existence and uniqueness of solutions of the
Atangana-Baleanu fractional derivative equation in the sense
of Caputo as follows

(ABC
a Dα u)(t) = f (t,u(t),u′(t,u(t))), 1 < α ≤ 2,

(1.1)

u(a) = u0. (1.2)

with t ∈C[a,b], where ABC
a Dα is the left Caputo AB fractional

derivative, u(t),(ABC
a Dα)u,

f ∈C[a,b], f (a,u(a),u′(a,u(a)))= 0. Consider Du(t)= u′(t,u(t)).
Then (1.1) becomes

(ABC
a Dα u)(t) = f (t,u(t),Du(t)), 1 < α ≤ 2, (1.3)

u(a) = u0 (1.4)

The rest of this paper is organized as follows: In Section
2, we review some useful properties, definitions, proposi-
tions and lemmas of fractional calculus. The existence and
uniqueness of solutions for AB-fractional derivative results
are proved in Section 3. In section 4 is devoted to illustrate an
example numerically solved. Ulam-Hyer stability analysis is
considered in section 5.

2. Preliminaries
In this section, we presents some definitions, lemmas

and propositions of fractional calculus, which will be used
throughout this paper.

The definition of Riemann-Liouville fractional integral
and derivatives are given as follows:

• For α > 0, the left Riemann-Liouville fractional inte-
gral of order α is given as [20]

(aIα u)(t) =
1

Γ(α)

∫ t

a
(t− s)α−1u(s)ds. (2.1)

• For 0 < α < 1, the left Riemann-Liouville fractional
derivative of order α is given as [20]

(aDα u)(t) =
d
dt

(
1

Γ(1−α)

∫ t

a
(t− s)−α u(s)ds

)
(2.2)

• For 0≤ α ≤ 1, the Caputo fractional derivative of order
α is given as [20]

(Ca Dα u)(t) =
1

Γ(1−α)

∫ t

a
(t− s)−α u′(s)ds. (2.3)

Definition 2.1. [7] Let u ∈ H1(a,b), a < b and α in [0,1].
The Caputo Atangana-Baleanu fractional derivative of u of
order α is defined by

(ABC
a Dα u)(t) =

B(α)

(1−α)

∫ t

0
u′(s)Eα

[
−α

(t− s)α

1−α

]
ds. (2.4)

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑

∞
n=0

zn

Γ(nα+1) [25, 32] and B(α)> 0 is a normalizing function
satisfying B(0) = B(1) = 1. The Riemann Atangana-Baleanu
fractional derivative of u of order α is defined by

(ABR
a Dα u)(t)=

B(α)

1−α

d
dt

∫ t

0
u(s)Eα

[
−α

(t− s)α

1−α

]
ds. (2.5)

The associative fractional integral is defined by

(AB
a Iα u)(t) =

1−α

B(α)
u(t)+

α

B(α)
(aIα u)(t) (2.6)

where aIα is the left Riemann-Liouville fractional integral
given in (2.1).

Lemma 2.2. [7] Let u ∈ H1(a,b) and α ∈ [0,1]. Then the
following relation holds.

(ABC
a Dα u)(t)= (ABR

a Dα u)(t)− B(α)

1−α
u(a)Eα

(
−α

1−α
(t−a)α

)
.

(2.7)

Lemma 2.3. [20] Suppose that α > 0, c(t)(1− 1−α

B(α)d(t))−1

is a nonnegative, nondegreasing and locally integrable func-
tion on [a,b), αd(t)

B(α) (1−
1−α

B(α)d(t))−1 is non-negative and bounded
on [a,b) and u(t) is nonnegative and locally integrable [a,b)
with

u(t)≤ c(t)+d(t)(AB
a Iα u)(t), (2.8)

then

u(t)≤ c(t)B(α)

B(α)− (1−α)d(t)
Eα

(
α d(t)(t−a)α

B(α)− (1−α)d(t)

)
.

(2.9)

Theorem 2.4. (Ascoli-Arzela Theorem)([15]) Let S be a com-
pact metric spaces.Then M ⊂C(Ω) is relatively compact iff
M is uniformly bounded and uniformly equicontinuous.

Theorem 2.5. (Krasnoselskii Fixed Point Theorem)([15]) Let
S be a closed, bounded and convex subset of a real Banach
space X and let T1 and T2 be operators on S satisfying the
following conditions

• T1(s)+T2(s)⊂ S

• T1 is a strict contraction on S, i.e., there exist a k ∈ [a,b)
such that
‖T1(u)−T1(v)‖ ≤ k‖u− v‖ ∀ u,v ∈ S

• T2 is continuous on S and T2(s) is a relatively compact
subset of X .

Then, there exist a u ∈ S such that T1u+T2u = u

Proposition 2.6. ([4]) For 0≤ α ≤ 1,

(AB
a Iα(ABC

a Dα u))(t)

= u(t)−u(a)Eα(λ tα)− α

1−α
u(a)Eα,α+1(λ tα)

= u(t)−u(a).

1835
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Proposition 2.7. ([22, 28]) f ′(u) ∈ D satisfy the Lipschitz
condition.
i.e.,There exist a constant k > 0 such that

‖ f ′(u)− f ′(v)‖ ≤ k (‖u− v‖), u,v ∈ D. (2.10)

Definition 2.8. A continuous function u : [a,b]→ℜ is called
a mild solution of the following Atangana-Baleanu fractional
derivative equation in the sense of Caputo{

(ABC
a Dα u)(t) = g(t), 1 < α ≤ 2,

u(a) = u0

for each t ∈C[a,b], u(t) satisfies the following integral equa-
tion

u(t) = uo +
AB
a Iα g(t)

3. Existence and Uniqueness

In this section, we prove the existence and uniqueness of
(1.3) and (1.4).

We need the following assumptions to prove the existence
and uniqueness results for the problem (1.3) and (1.4) by
using the Banach contraction principle.

A1 Let u∈C[a,b] and f ∈ (C[a,b]×ℜ×ℜ,ℜ) is continuous
function and there exist a positive constants M1,M2

and M such that

‖ f (t,u1,v1)− f (t,u2,v2)‖≤M1(‖u1−u2‖+‖v1−v2‖)

for all u1,v1,u2,v2 in Y , M2 = maxt∈ℜ ‖ f (t,0,0)‖ and
M= max{M1,M2}. Let Y =C[ℜ,X ] be the set con-
tinuous functions on ℜ with values in the Banach spaces
X .

A2 Let u′ ∈C[a,b] satisfy the Lipschitz condition. i.e., There
exist a positive constants N1,N2 and N such that

‖D(t,u)−D(t,v)‖ ≤N1(‖u− v‖),

for all u,v in Y . N2 = maxt∈D ‖D(t,0)‖ and N =
max{N1,N2}.

A3 For each λ > 0, Let Bλ ∈ {u ∈ Y : ‖u‖ ≤ λ} ⊂ Y where
λ = ((1−ρ)−1‖u0‖) and take ρ is (M(‖u‖+Nt‖u‖)).

A4 For each λ0 > 0, Let Bλ0 ∈ {u ∈C([a,b],ℜ) : ‖u‖ ≤ λ}
then Bλ0 is clearly bounded, closed and convex subset
in C([a,b],ℜ).

Lemma 3.1. If A1 and A2 are satisfied, then the estimate
‖Du(t)‖ ≤ t(N1‖u‖+N2), ‖Du(t)−Dv(t)‖ ≤Nt‖u− v‖,
are satisfied for any t ∈ℜ, and u,v ∈ Y.

Theorem 3.2. Let u(t) ∈ C[a,b] such that (ABC
a Dα u)(t) ∈

C[a,b]. Suppose that f ∈C([a,b]×ℜ×ℜ,ℜ) satisfies A1−
A3. Then, if f (a,u(a),Du(a)) = 0 and

(
1−α

B(α)
+

(b−a)α

B(α)Γ(α)

)
≤ 1

the problem (1.3) and (1.4) has an unique solution.

Proof. First, we have to prove that u(t) satisfies the problem
(1.3) and (1.4) if and only if u(t) satisfies the integral equation

u(t) = u0 +
AB
a Iα f (t,u(t),Du(t)) (3.1)

Let u(t) satisfy (1.3). To apply the Atangana-Baleanu frac-
tional integral to both sides of (1.3), we get

(AB
a Iα(ABC

a Dα u))(t) =AB
a Iα f (t,u(t),Du(t)) (3.2)

Now, constructing use of Proposition 2.6, we get

u(t)−u(a) =AB
a Iα f (t,u(t),Du(t)) (3.3)

Since u(a) = u0 from (1.4) and f (a,u(a),Du(a)) = 0, (3.1) is
satisfied. If u(t) satisfies (3.1), then by using that
f (a,u(a),Du(a)) = 0 it is obvious that u(a) = u0.
To apply the Riemann-Liouville Atangana-Baleanu fractional
derivative to both sides of (3.1) and utilize that
(AB

a Dα(AB
a Iα u))(t) = u(t). We get

(ABR
a Dα u)(t) = u0(

ABR
a Dα 1)(t)

+(ABR
a Dα(AB

a Iα))(t) f (t,u(t),Du(t))
(3.4)

Thus, we have

(ABR
a Dα u)(t) = u0Eα

(
− α

1−α
(t−a)α

)
+ f (t,u(t),Du(t)) (3.5)

Then, the result is acquired by benefiting from theorem 3.2 in
[7]. Now, we define the operator

Tu(t) = u0 +
AB
a Iα f (t,u(t),Du(t)).
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Then, by A3, ‖u‖ ≤ λ we get

‖Tu(t)‖ ≤ ‖u0‖+‖AB
a Iα f (t,u(t),Du(t))‖

≤ ‖u0‖+
∥∥∥1−α

B(α)
f (t,u(t),Du(t))

∥∥∥
+

α

B(α)
‖aIα f (t,u(t),Du(t))‖

≤ ‖u0‖+
1−α

B(α)
(M(‖u‖)+Nt‖u‖)

+
α

B(α)
(M(‖u‖)+Nt‖u‖)(aIα)(t)

≤ ‖u0‖+
1−α

B(α)
(M(‖u‖)+Nt‖u‖)

+
α

B(α)
(M(‖u‖)+Nt‖u‖) tα −a

Γ(α +1)

≤ ‖u0‖+
1−α

B(α)
ρ‖u‖+ (b−a)α

B(α)Γ(α)
ρ‖u‖

≤ ‖u0‖+ρ

(
1−α

B(α)
+

(b−a)α

B(α)Γ(α)

)
‖u‖

≤ ‖u0‖+ρ‖u‖
≤ λ (1−ρ)+ρλ

≤ λ

i.e., ‖Tu(t)‖ ≤ λ . Now to prove uniqueness

‖T (u)−T (v)‖
= ‖AB

a Iα f (t,u(t),Du(t))−AB
a Iα f (t,v(t),Dv(t))‖

=
∥∥∥1−α

B(α)
f (t,u(t),Du(t))− 1−α

B(α)
f (t,v(t),Dv(t))

+
α

B(α)
aIα f (t,u(t),Du(t))

− α

B(α)
aIα f (t,v(t),Dv(t))

∥∥∥
≤ 1−α

B(α)
‖ f (t,u(t),Du(t))− f (t,v(t),Dv(t))‖

+
α

B(α)
(aIα)‖ f (t,u(t),Du(t))− f (t,v(t),Dv(t))‖

≤ 1−α

B(α)
(M(‖u− v‖+Nt‖u− v‖))

+
α

B(α)
(M(‖u− v‖+Nt‖u− v‖))(aIα)(t)

≤ ρ

(
1−α

B(α)
+

α

B(α)

(t−a)α

Γ(α +1)

)
‖u− v‖

≤ ρ

(
1−α

B(α)
+

(b−a)α

B(α)Γ(α)

)
‖u− v‖

≤ ‖u− v‖

Since ρ ≤ 1, we have ‖Tu−T v‖ ≤ ‖u− v‖. Hence, the oper-
ator Tu(t), t ∈ Bλ proved the existence and uniqueness condi-
tions and has a fixed point by Banach contraction principle in
Banach spaces X.

Next, we investigate the problem (1.3) and (1.4) has a
fixed point by using another fixed point technique, namely
Krasnoselskii’s fixed point theorem.

Theorem 3.3. If A1−A4 are satisfied and

q(t2− t1) = [M(‖u(t2)−u(t1)‖+Nt‖u(t2)−u(t1)‖)],

then the problem (1.3) and (1.4) has a solution.

Proof. For any constant λ0 > 0 and u ∈ Bλ0 , defined two
operator T1 and T2 on Bλ0 as follows

(T1u)(t) = u0 (3.6)
(T2u)(t) = AB

a Iα f (t,u(t),Du(t)). (3.7)

Obviously, u is a solution of (1.3) and (1.4) iff the operator
T1u+T2u = u has a solution u ∈ Bλ0
Our proof will be divided into three steps.
Step 1. ‖T1u+T2u‖ ≤ λ0 whenever u ∈ Bλ0 .
For every u ∈ Bλ0 , we have

‖(T1u)(t)+(T2u)(t)‖
≤ ‖u0‖+‖AB

a Iα f (t,u(t),Du(t))‖

≤ ‖u0‖+
1−α

B(α)
(M(‖u‖)+Nt‖u‖)

+
α

B(α)
(M(‖u‖)+Nt‖u‖) (t

α −a)
Γ(α +1)

≤ ‖u0‖+
1−α

B(α)
ρ‖u‖+ (b−a)α

B(α)Γ(α)
ρ‖u‖

≤ ‖u0‖+ρ

(1−α

B(α)
+

(b−a)α

B(α)Γ(α)

)
‖u‖

≤ ‖u0‖+ρ‖u‖
≤ λ (1−ρ)+ρλ

≤ λ

Hence, ‖T1u+T2u‖ ≤ λ0 for every u ∈ Bλ0 .
Step 2. T1 is a contraction on Bλ0 for any u,v∈Bλ0 , according
to A4 and (3.6), we have

‖(T1u)(t)− (T1v)(t‖ ≤ ‖u0− v0‖= R‖u0− v0‖

which implies that ‖T1u−T1v‖ ≤ R‖u0−v0‖, since R = 1, T1
is a contraction.
Step 3. T2 is completely continuous operator.

First we have to prove that T2 is continuous on Bλ0 . For
any un,u⊂ Bλ0 , n = 1,2,3.... with limn→u ‖un−u‖= 0, we
get limn→u un(t) = u(t), for t ∈ [a,b].
Thus by A1, we have

lim
n→∞

f (t,un(t),Dun(t)) = f (t,u(t),Du(t))

for t ∈ [a,b].
We can conclude that

sup
s∈[a,b]

‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖→ 0 as n→ ∞
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On other hand, for t ∈ [a,b]

‖(T2un)(t)− (T2u)(t)‖
≤ ‖AB

a Iα f (t,un(t),Dun(t))−AB
a Iα f (t,u(t),Du(t))‖

≤ 1−α

B(α)
‖AB

a Iα f (t,un(t),Dun(t))

−AB
a Iα f (t,u(t),Du(t))‖

+
α

B(α)
‖AB

a Iα f (t,un(t),Dun(t))

−AB
a Iα f (t,u(t),Du(t))‖aIα(t)

≤ 1−α

B(α)
sup

s∈[a,b]
‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖

+
(b−a)α

B(α)Γ(α)
sup

s∈[a,b]
‖ f (t,un(t),Dun(t))

− f (t,u(t),Du(t))‖

≤
(1−α

B(α)
− (b−a)α

B(α)Γ(α)

)
sup

s∈[a,b]
‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖

Hence ‖(T2un)(t)− (T2u)(t)‖→ 0 as n→ ∞. Therefore T2 is
continuous on Bλ0 .

Now, we have to show that T2u,u ∈ Bλ0 is relatively com-
pact which is sufficient to prove that the function T2u,u ∈ Bλ0
uniformly bounded and equicontinuous, and ∀ t ∈ [a,b]
‖T2u‖ ≤ λ0, for any u ∈ Bλ0 , therefore (T2u)(t),u ∈ Bλ0

is bounded uniformly.
Now, we prove that (T2u)(t),u ∈ Bλ0 is a equicontinuous.
For any u ∈ Bλ0 and a≤ t1 ≤ t2 ≤ t, we get

‖(T2u)(t2)− (T2u)(t1)‖
≤ ‖AB

a Iα f (t2,u(t2),Du(t2))−AB
a Iα f (t1,u(t1),Du(t1))‖

≤ 1−α

B(α)
‖ f (t2,u(t2),Du(t2))− f (t1,u(t1),Du(t1))‖

+
α

B(α)
aIα‖ f (t2,u(t2),Du(t2))− f (t1,u(t1),Du(t1))‖

≤ 1−α

B(α)
(M(‖u(t2)−u(t1)‖+Nt‖u(t2)−u(t1)‖))

+
α

B(α)
(M(‖u(t2)−u(t1)‖+Nt‖u(t2)−u(t1)‖))

(aIα)(t2− t1)

≤ 1−α

B(α)
q(t2− t1)+

α

B(α)
q(t2− t1)

(t2− t1)α

αΓ(α)

5
(1−α

B(α)
− (t2− t1)α

B(α)Γ(α)

)
(t2− t1)

‖(T2u)(t2)− (T2u)(t1)‖→ 0 as t2→ t1. Therefore, the opera-
tor T2 is a equicontinuous on Bλ0 . Hence, which implies T2 is
relatively compact on Bλ0 .

Therefore T2 is relatively compact subset of X by theorem
2.4 and, by theorem 2.5 we can conclude that T2 has atleast

one fixed point. Therefore the operator T has a fixed point u
which is the solution of (1.3) and (1.4).

4. Ulam-Hyer stability

In this section, we study the Ulam-Hyer stability of (1.3)
and (1.4). Now, we present the definition of Ulam-Hyer sta-
bility.

Definition 4.1. Equation (1.3) is Ulam-Hyer stable, if for all
v(t) satisfying the inequality

|ABC
a Dα v(t)− f (t,v(t),Dv(t))|< ε, (4.1)

there exist a solution u(t) of (1.3) and (1.4) satisfying

|v(t)−u(t)|< h f .ε , h f ∈ℜ. (4.2)

Theorem 4.2. Suppose that the hypothesis for existence of
solutions to (1.3) and (1.4) are satisfied with

M(1+N)≤ B(α)

1−α
.

Then (1.3) and (1.4) is Ulam-Hyer stable.

Proof. If v(t) satisfies (4.1), there exists a function ξ (t) satis-
fying |ξ (t)|< ε such that

ABC
a Dα v(t)− f (t,v(t),Dv(t)) = ξ (t), (4.3)

which is satisfies to

v(t)− v(a)−AB
a Iα f (t,v(t),Dv(t)) =AB

a Iα
ξ (t). (4.4)

Therefore, we have

|v(t)− v(a)−AB
a Iα f (t,v(t),Dv(t))|

= |AB
a Iα

ξ (t)|

=
∣∣∣1−α

B(α)
ξ (t)+

α

B(α) a
Iα

ξ (t)
∣∣∣

≤ 1−α

B(α)
|ξ (t)|+ α

B(α)
|aIα

ξ (t)|

≤ 1−α

B(α)
|ξ (t)|+ α

B(α)
|ξ (t)|(aIα 1)(t)

≤ ε

(
1−α

B(α)
+

1
B(α)

(b−a)α

Γ(α)

)
Now let u(t) be the solution of (1.3) satisfies u(a) = v(a).
Then, we have

u(t) = v(a)+AB
a Iα f (t,u(t),Du(t)). (4.5)
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Note that the existence and uniqueness of u(t) is guaran-
teed by theorem 3.2. we have

|v(t)−u(t)| = |v(t)−AB
a Iα f (t,v(t),Dv(t))

+AB
a Iα f (t,v(t),Dv(t))− v(a)

−AB
a Iα f (t,u(t),Du(t))|

≤ |v(t)− v(a)AB
a Iα f (t,v(t),Dv(t))|

+|AB
a Iα f (t,v(t),Dv(t))

−AB
a Iα f (t,u(t),u′(t))|

≤ ε

(
1−α

B(α)
+

1
B(α)

(b−a)α

Γ(α)

)
+AB

a Iα | f (t,v(t),Dv(t))

− f (t,u(t),Du(t))|

≤ ε

(
1−α

B(α)
+

1
B(α)

(b−a)α

Γ(α)

)
+M(1+N)AB

a Iα |v(t)−u(t)|

Now, by using the Gronwall inequality in lemma 2.3, we
get

|v(t)−u(t)|

≤ ε

(
1−α

B(α)
+

1
B(α)

(b−a)α

Γ(α)

)
B(α)

B(α)− (1−α)M(1+N)

Eα

(
αM(1+N)(t−a)α

B(α)− (1−α)M(1+N)

)
≤ ε

(
1−α

B(α)
+

1
B(α)

(b−a)α

Γ(α)

)
B(α)

B(α)− (1−α)M(1+N)

Eα

(
αM(1+N)(b−a)α

B(α)− (1−α)M(1+N)

)
.

Therfore |v(t)−u(t)| ≤ h f .ε , where

h f =

(
1−α

B(α)
+

1
B(α)

(b−a)α

Γ(α)

)
B(α)

B(α)− (1−α)M(1+N)

Eα

(
αM(1+N)(b−a)α

B(α)− (1−α)M(1+N)

)
.

Hence (1.1) is Ulam-Hyer stable.

5. Example
Consider the following problem

(ABC
0 D

3
2 u)(t) =

t

3
√

(π)
sin(u(t)+u′(t)), t ∈ [1,2],

B(α) = 1 (5.1)

u(0) = 1 (5.2)

Notice that
f (0,u(0),Du(0)) = 0

and
u′(t) ∈C[1,2]

satisfy the Lipschitz conditions.
Let

f (t,u,v) =
t

3
√

(π)
sin(u+ v), t ∈ [1,2].

It is easy to see that

| f (t,u1,v1)− f (t,u2,v2))|

≤ t
3
√

π
(|u1−u2|+ |v1− v2|),

for all t ∈ [1,2],u1,u2,v1,v2 ∈ℜ

≤ 1
3
√

π
|u− v|

Thus ρ = 1
3
√

π
, Now

ρ

(
1−α

B(α)
+

(b−a)α

B(α)Γ(α)

)
=

1
3
√

π

(
1−α +

1
Γ(α)

)
< 1

By theorem 3.2, (5.1) and (5.2) has a unique solution. It can
be written as

u(t) = lim
n→∞

un(t),

where

un(t) = 1+
1

3
√

π

AB
0 Iα(tun−1(t)), n = 0,1,2, ...

or

un(t) = 1+(1−α)tun−1(t)+α 0Iα(tun−1(t))

= 1+(1−α)tun−1(t)

+
α

Γ(α)

∫ t

0
(t− s)α−1s un−1(s)ds, n = 1,2,3, ...

Solving (5.1) and (5.2), we apply the method proposed by
Mekkaoui and Atangana in [29], utilizing from the two-step
Lagrange polynomial interpolation.
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