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On nearly recurrent Riemannian manifolds
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Abstract. The object of the present paper is to introduce a type of recurrent Riemannian manifold called nearly recurrent
Riemannian manifold . The existence of nearly recurrent Riemannian manifold have been proved by non trivial example.
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1. Introduction

Recurrent spaces have been of great importance and were studied by a large number of authors such as Ruse
[1], Patterson [2] , Walker [3], Singh and Khan([4] and [5]) etc. In 1991, De and Guha [6] introduced and studied
generalized recurrent manifold whose curvature tensor R(X,Y )Z of type (1,3) satisfies the condition:

(DUR)(X,Y )Z = A(U)R(X,Y )Z +B(U)[g(Y,Z)X − g(X,Z)Y ], (1.1)

where A and B are two non-zero 1-forms and D denotes the operator of covariant differentiation with respect
to metric tensor g. Such a space has been denoted by GKn. In recent papers Bandyopadhyay [7], Prakasha
and Yildiz [8], Khan [9] etc explored various geometrical properties by using generalized recurrent manifold on
Sasakian manifold and Lorentzian α-Sasakian manifold.

Further one of the author Prasad [10] considered a non-flat Riemannian manifold (Mn, g)(n > 3) whose
curvature tensor R satisfies the following condition

(DUR)(X,Y )Z = A(U)R(X,Y )Z +B(U)g(Y,Z)X, (1.2)
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where A and B are two non-zero 1-forms and D has the meaning already mentioned. Such a manifold called by
the author as semi-generalized recurrent manifold and denoted by (SGK)n. Singh, Singh and Kumar[11],[12]
and Chaudhary, Kumar and Singh [13] extended this notation to Lorentzian α-Sasakian manifold, P-Sasakian
manifold and trans-Sasakian manifold.

The object of the present paper is to study a type of non-flat recurrent Riemannian manifold (Mn, g)(n > 2)

whose curvature tensor R(X,Y )Z of the type (1,3) satisfies the condition

(DUR)(X,Y )Z = [A(U) +B(U)]R(X,Y )Z +B(U)[g(Y, Z)X − g(X,Z)Y ], (1.3)

where A and B are two non-zero 1-forms and ρ1 and ρ2 are two vector fields such that

g(U, ρ1) = A(U) and g(U, ρ2) = B(U). (1.4)

Such a manifold shall be called as a nearly recurrent Riemannian manifold and 1-forms A and B shall be
called its associated 1-forms and n-dimensional recurrent manifold of this kind shall be denoted by (NR)n.
If in particular B = 0, then the space reduced to a recurrent space according to Ruse [14] and Walker [3] which
is denoted by Kn.
Moreover, in particular if A = B = 0 then (1.3) becomes (DUR)(X,Y )Z = 0. That is , a Riemannian manifold
is symmetric accordingly Kobayashi and Nomizu [15] and Desai and Amer [16]. The name nearly recurrent
Riemannian manifold was chosen because if B = 0 in (1.3) then the manifold reduces to a recurrent manifold
which is very close to recurrent space. This justifies the name Nearly recurrent Riemannian manifold for
the manifold defined by (1.3) and the use of the symbol (NR)n for it.

In this paper, after preliminaries, a necessary and sufficient condition for constant scaler curvature of (NR)n
is obtained. Nearly recurrent manifold with cyclic Ricci tensor and Codazzi type Ricci tensor are studied. Finally,
we give examples of (NR)n .

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and scalar curvature respectively and Q denote the symmetric
endomorphism of the tangent space at each point corresponding to the Ricci tensor, i.e.

S(X,Y ) = g(QX,Y ), (2.1)

for any vector field X and Y .
From(1.3), we get

(DUS)(Y, Z) = [A(U) +B(U)]S(Y,Z) + (n− 1)B(U)g(Y, Z). (2.2)

Contracting (2.2), we have

dr(U) = Ur = [A(U) +B(U)]r + n(n− 1)B(U). (2.3)

3. Nature of the 1-forms A and B on a nearly recurrent space

From (2.3) suppose r = 0,then

B(U) = 0

which is not possible. Hence we have the following theorem:

Theorem 3.1. The scalar curvature tensor of (NR)n can not be zero.
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Now we consider (NR)n is of constant scalar curvature then from (2.3), we have

[A(U) +B(U)]r + n(n− 1)B(U) = 0. (3.1)

Again if (3.1) holds, then from (2.3), we get

dr(U) = 0,

r = constant

Hence, we can state the following theorem:

Theorem 3.2. A (NR)n is of constant curvature if and only if (3.1) holds.

Now, taking covariant derivative of (3.1) with respect to V , we get

[(DV A)(U) + (DV B)(U)]r + n(n− 1)(DV B)U = 0. (3.2)

Interchanging U and V in (3.2) and then subtracting, we get

[(dA(U, V ) + dB(U, V )]r + n(n− 1)dB(U, V ) = 0. (3.3)

Thus we have the following theorem:

Theorem 3.3. In a nearly recurrent space of non-zero constant scalar curvature r, if the 1-forms B is closed
then A is closed , if A is closed then B is also closed.

From (1.3), we have

(DV R)(X,Y )Z = [A(V ) +B(V )]R(X,Y )Z +B(V )[g(Y,Z)X − g(X,Z)Y ].

This gives

(DUDV R)(X,Y )Z =[(DUA)(V ) +A(DUV ) + (DUB)(V ) +B(DUV )]R(X,Y )Z

+ [A(U) +B(U)][A(V ) +B(V )]R(X,Y )Z+

[A(V ) +B(V )]B(U)[g(Y,Z)X − g(X,Z)Y ]

(3.4)

Therefore from(3.4), we have

(DV DUR)(X,Y )Z =[(DV A)(U) +A(DV U) + (DV B)(U) +B(DV U)]R(X,Y )Z

+ [A(U) +B(U)][A(V ) +B(V )]R(X,Y )Z+

[A(U) +B(U)]B(V )[g(Y,Z)X − g(X,Z)Y ]

(3.5)

and

(D[U,V ]R)(X,Y )Z = [A ([U, V ]) +B ([U, V ])]R(X,Y )Z+

B ([U, V ]) [g(Y,Z)X − g(X,Z)Y ].
(3.6)

Now, subtracting (3.5) and (3.6) from (3.4), we get

(R(U, V ).R)(X,Y )Z =[(dA(U, V ) + dB(U, V )]R(X,Y )Z+

dB(U, V )[g(Y,Z)X − g(X,Z)Y ]+

[A(V )B(U)−A(U)B(V )].

(3.7)

Thus, we can state the following theorem:
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Theorem 3.4. In a (NR)n with constant scalar curvature , R(X,Y).R=0 if and only if

[(dA(U, V ) + dB(U, V )]R(X,Y )Z + dB(U, V )[g(Y,Z)X − g(X,Z)Y ]+

[A(V )B(U)−A(U)B(V )] = 0.

Next, we consider the case when the scalar curvature r is not constant.
From (2.3) it follows that

V Ur = (DV A)(U)r +A(U)(V r) + n(n− 1)(DV B)(U). (3.8)

Interchanging U and V in (3.8) and then subtracting, we get

[(DV A)(U)− (DUA)(V ) + (DV B)(U)− (DUB)(V )]r+

n(n− 1) {(DV B)(U)− (DUB)(V )}+ [r + n(n− 1)][A(U)B(V )−A(V )B(U)] = 0.

which gives

[dA(V,U) + dB(V,U)]r + n(n− 1)dB(V,U)+

[r + n(n− 1)][A(U)B(V )−A(V )B(U)] = 0.
(3.9)

Thus we have the following theorem:

Theorem 3.5. In a nearly recurrent space of non-zero constant scalar curvature r, the 1-forms A and B are
closed if and only if the 1-forms A and B are co-directional.

4. (NR)n with cyclic Ricci tensor

In this section we consider a (NR)n in which the Ricci tensor is a cyclic tensor, i.e.

(DXS)(Y,Z) + (DY S)(Z,X) + (DZS)(X,Y ) = 0, (4.1)

which implies
dr(X) = 0. (4.2)

From (1.3), we have
dr(X) = [A(X) +B(X)]r + n(n− 1)B(X). (4.3)

Therefore from (4.2) and (4.3), we get

[A(X) +B(X)]r + n(n− 1)B(X) = 0. (4.4)

From (4.1), we have

[A(X) +B(X)]S(Y,Z) + [A(Y ) +B(Y )]S(Z,X) + [A(Z) +B(Z)]S(X,Y )

+ (n− 1)[B(X)g(Y,Z) +B(Y )g(X,Z) +B(Z)g(X,Y )] = 0,

which yields on contraction

A(QX) +B(QX) =
r

n
[A(X) +B(X)]

or S(X, ρ1) + S(X, ρ2) =
r

n
[g(X, ρ1) + g(X, ρ2)]

or S(X, ρ1 + ρ2) =
r

n
[g(X, ρ1 + ρ2)
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Above can be written as

S(X,µ) =
r

n
g(X,µ), (4.5)

where µ = ρ1 + ρ2.
Hence we have the following theorem:

Theorem 4.1. If (NR)n has cyclic Ricci tensor, then r
n is an eigen value of Ricci tensor S and µ is an eigen

vector corresponding to the eigen value.

5. (ER)n with Codazzi type of Ricci tensor

In this section, we consider an (NR)n in which the Ricci tensor is a Codazzi type of Ricci tensor Ferus [17]

(DXS)(Y,Z) = (DZS)(Y,X). (5.1)

By view of Bianchi identity and (5.1), we have

(divR)(X,Y )Z = 0. (5.2)

In view of (1.3), we get on contraction

(divR)(X,Y )Z = A(R(X,Y )Z) +B(R(X,Y )Z) +B(X)g(Y,Z)−B(Y )g(X,Z). (5.3)

Now using (5.2) in (5.3), we get

A(R(X,Y )Z) +B(R(X,Y )Z) +B(X)g(Y,Z)−B(Y )g(X,Z) = 0. (5.4)

In view of (5.4), we get
A(QX) +B(QX) = −(n− 1)B(X). (5.5)

From (2.2) and (5.1), we have

[A(X) +B(X)]S(Y, Z)− [A(Z) +B(Z)]S(Y,X)

+ (n− 1)[B(X)g(Y, Z)−B(Z)g(X,Y )] = 0.
(5.6)

On contracting of (5.6), we have

[A(X) +B(X)]r = [A(QX) +B(QX)]− (n− 1)2B(X). (5.7)

Using (5.5) and (5.7) in (2.3), we have
dr(X) = 0. (5.8)

Again it is known [18] that in a Riemannian manifold (Mn, g)(n > 3)

(divC)(X,Y )Z =
n− 3

n− 2
[(DXS)(Y, Z)− (DZS)(Y,X)]+

1

2(n− 1)
[g(X,Y )dr(Z)− g(Y,Z)dr(X)],

(5.9)

where C denotes the conformal curvature.
As a consequences of (5.1) and (5.8), (5.9) reduces to

(divC)(X,Y )Z = 0,

which shows that the tensor is conservative [19].
Hence we can state the following theorem:

Theorem 5.1. If in a (NR)n the Ricci tensor is a Codazzi type tensor then its conformal curvature tensor is
conservative.
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6. Nearly recurrent with concurrent vector field

In this section first we suppose that the (NR)n admits a concurrent unit vector fields Ṽ ,

DX Ṽ = ρX, (6.1)

where ρ is a non-zero constant .
By Ricci-identity

R(X,Y )Ṽ = 0. (6.2)

Taking covariant derivative of (6.2), we get

(DWR)(X,Y )Ṽ = −ρR(X,Y )W (6.3)

Also by definition of (NR)n,we find

(DWR)(X,Y )Ṽ = [A(W ) +B(W )]R(X,Y )Ṽ +B(W )[g(Y, Ṽ )X − g(X, Ṽ )Y ]. (6.4)

In view of (6.2),(6.3)and (6.4),we get

−ρR(X,Y )W = B(W )[g(Y, Ṽ )X − g(X, Ṽ )Y ].

On contraction, we find
−ρS(Y,W ) = (n− 1)B(W )g(Y, Ṽ ). (6.5)

Again on contraction of (6.5), we get

−ρr = (n− 1)B(Ṽ ) = (n− 1)g(ρ2, Ṽ ), (6.6)

Since ρ ̸= 0 and r ̸= 0,then from (6.6),we get

g(ρ2, Ṽ ) ̸= 0. (6.7)

Hence we have the following theorem:

Theorem 6.1. If a (NR)n the associated vector field ρ2 cannot concurrent vector field .

7. Example

Example (7.1) Let us consider M4 =
{
(x1, x2, x3, x4) ∈ R4

}
be an open subset of R4 endowed with the metric

ds2 = gijdx
idxj = (x4)

3
2 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2 (7.1)

where i, j = 1, 2, 3, 4.

Then the only non-vanishes components of the Christoffel symbols and curvature tensor are

Γ1
14 = Γ2

24 = Γ3
34 =

3

4(x4)
, Γ4

11 = Γ4
22 = Γ4

33 = −3

4
(x4)

1
2

R1441 = R2442 = R3443 = − 3

16(x4)
1
2

(7.2)

The non-vanishing components of the Ricci tensor are

R11 = R22 = R33 = − 3

16(x4)
1
2

, R44 = − 3

16(x4)2
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and scalar curvature is
R = giiRii = − 3

16(x4)2

Taking covariant derivative of (7.2), we get

R1441,4 =
3

32(x4)
3
2

, R2442,4 =
3

32(x4)
3
2

, R3443,4 =
3

32(x4)
3
2

(7.3)

Consequently, the manifold under consideration is not recurrent .
Let us choose the associated 1-form as

Ai =

{
3
32 .

64(x4)2−1
(x4)3−4(x4)2 , i = 4

0, otherwise
(7.4)

Bi =

{
3
32 .

1
(x4)3−4(x4)2 , i = 4

0, otherwise
(7.5)

From (1.3), we have
Rhiih,i = (Ai +Bi)Rhiih +Bi[giighh − ghigih] (7.6)

By virtue of (7.2), (7.3),(7.4) and (7.5), it can be easily seen that the Riemannian manifold satisfies relation (7.6).
Hence the manifold under consideration is a nearly recurrent Riemannian manifold (M4, g), which is neither
recurrent nor symmetric.
This leads to the following theorem:

Theorem 7.1. There exist a nearly recurrent Riemannian manifold (M4, g), which is neither recurrent nor
symmetric.

Example (7.2) Let us consider the 3-dimensional manifold M =
{
(x, y, z) ∈ R3, z ̸= 0

}
, where (x, y, z)

are standard co-ordinate of R3.
We choose the vector fields

e1 =
1

2

∂

∂y
, e2 =

∂

∂x
− z

∂

∂y
, e3 =

∂

∂z
(7.7)

which is linearly independently at each point of M.

Let g be the Riemannian metric denoted by

g(ei, ej) =

{
1, i = j

0, i ̸= j
(7.8)

Let D be the Levi-Civita connection with respect to metric g. Then from equation (7.7), we have

[e1, e2] = 0, [e1, e3] = 2e1, [e2, e3] = 0. (7.9)

The Riemannian connection D of the metric g is given by

2g (DXY, Z) =Xg (Y,Z) + Y g (X,Z)− Zg (X,Y )− g (X, [Y,Z])

− g (Y, [X,Z]) + g (Z, [X,Y ]) ,
(7.10)

which is known as Koszul’s formula. Using (7.8) and (7.9) in (7.10), we get

De1e3 = −e2, De1e2 = e3, De1e1 = 0,

De2e3 = e1, De2e2 = 0, De2e1 = −e3,

De3e3 = 0, De3e2 = −e1, De3e1 = e2.

(7.11)
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The curvature tensor is given by

R(X,Y )Z =DXDY Z −DY DXZ −D[X,Y ]Z (7.12)

Using (7.9) and (7.11) in (7.12) , we get

R (e1, e2) e1 = e2, R (e1, e2) e2 = e1, R (e1, e2) e3 = 0

R (e2, e3) e1 = 0, R (e2, e3) e2 = 3e3, R (e2, e3) e3 = e2

R (e1, e3) e1 = −e3, R (e1, e3) e2 = 0 R (e1, e3) e3 = −e1

R (e1, e1) e1 = R (e1, e1) e2 = R (e1, e1) e3 = 0

R (e2, e2) e1 = R (e2, e2) e2 = R (e2, e2) e3 = 0

R (e3, e3) e1 = R (e3, e3) e2 = R (e3, e3) e3 = 0.

(7.13)

The Ricci tensor is given by

S(ei, ei) =

3∑
i=1

g(R(ei, X)Y, ei) (7.14)

From (7.13) and (7.14), we get

S(e1, e1) = 0, S(e2, e2) = 2, S(e3, e3) = 0 (7.15)

and the scalar curvature is 2.
Since {e1, e2, e3} forms a basis of Riemannian manifold any vector field X,Y, Z ∈ χ(M) can be written as

X = a1e1 + b1e2 + c1e3, Y = a2e1 + b2e2 + c2e3, Z = a3e1 + b3e2 + c3e3,

where ai, bi, ci ∈ R+ ( the set of all positive real numbers), i = 1, 2, 3.

Hence
R(X,Y )Z = l1e1 +m1e2 + n1e3 (7.16)

g(Y,Z)X − g(X,Z)Y = l2e1 +m2e2 + n2e3 (7.17)

By view of (7.16), we get

(DeiR)(X,Y )Z = uie1 + vie2 + wie3 for i = 1, 2, 3. (7.18)

where

l1 = a1b2b3 + a2c1c3 − c1c2c3,

m1 = a1b2a3 + a3b1b2 − b1a2a3 + b1c2c3,

n1 = 3b1b3c2 − 3b3c1b2 − a1a3c2,

l2 = a1b2b3 + a1c2c3 − a2b1b3 − a2c1c3,

m2 = a2a3b1 + b1c2c3 − a1a3b2 − b2c1c3,

n2 = a2a3c1 + b2b3c1 − a1a3c2 − b1b3c2,

u1 = a2a3c1 − a2b3c1 − a1b3c2,

v1 = 2b2b3c1 − 2b1b3c2 + a1a3c2 − a2a3c1,

w1 = 2a2a3b1 − 2a1a3b2 − a3b1b2 + 2b1c2c3,

u2 = 4b1b3c2 − 3b2b3c1 − 2a1a3c2 − c1c2c3 + a2a3c1,

v2 = −2a1b2c3 + 2a3b1c2 + a2b1c3 + a2b2c3,

w2 = −4a1b2b3 − 2a2c1c3 + c1c2c3 + 3a2b2b3 − a3c1c2 − 3a3b2c1 + a1a2c3,

u3 = −2a1a3b2 − a3b1b2 + 2a2a3b1 − 2b1c2c3 − 2a1a2b3 + b2c1c3,

v3 = 2a1b2b3 + a2c1c3 − c1c2c3 − a1a2c3 + a3c1c3 + a2b1b3,

w3 = −3a1b3c2 − a3b1c2 + 3a2b3c1 + 2a3b2c1.
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Consequently, the manifold under consideration is not recurrent. Let us now consider 1-form non vanishes

A (ei) =
4(ui + vi + wi)

3(l1 +m1 + n1)− (l2 +m2 + n2)

B (ei) =
−(ui + vi + wi)

3(l1 +m1 + n1)− (l2 +m2 + n2)
(7.19)

such that
3(l1 +m1 + n1)− (l2 +m2 + n2) ̸= 0.

From (1.3), we have

(DeiR) (X,Y )Z = [A(ei) +B(ei)]R(X,Y )Z +B(ei)[g(Y,Z)X − g(X,Z)Y ]. (7.20)

By virtue of (7.16), (7.17), (7.18) and (7.19), it can be easily seen that the Riemannian manifold satisfies relation
(7.20). Hence the manifold under consideration is a nearly recurrent Riemannian manifold (M3, g), which is
neither recurrent nor symmetric. Thus we have the following theorem:

Theorem 7.2. There exist a nearly recurrent Riemannian manifold (M3, g), which is neither recurrent nor
symmetric.
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