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Abstract. In this paper we study the notion of Z and Z*-equal convergence in linear 2-normed spaces and some of their
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1. Introduction

The idea of usual convergence of a real sequence was extended to statistical convergence independently by
Fast [11] and Steinhaus [21] in the year 1951. Lot of developments were made on this notion of convergence after
the pioneering works of Salat [22] and Fridy [12]. After long fifty years, the concept of statistical convergence
was extended to the idea of Z-convergence depending on the structure of ideals Z of N, the set of natural numbers,
by Kostyrko et al. [17]. Throughout the paper N and R denote the set of all positive integers and the set
of all real numbers respectively. Z C 2 is said to be an ideal of N if A, B € Z implies AU B € T and
B € T whenever B C A € T. T is called an admissible ideal of N if {z} € Z for each x € N. T c 2V
is called non-trivial ideal if Z # {¢} and N ¢ Z. If 7 is a non-trivial proper ideal of N then the family of sets
F(IT)={M CcN:3AecT:M=N\A}isafilteron N, called the filter associated with the ideal Z. Indeed, the
concept of Z- convergence of real sequences is a generalization of statistical convergence which is based on the
structure of the ideal Z of subsets of N. Z-convergence of real sequences coincides with the ordinary convergence
if Z is the ideal of all finite subsets of N and with the statistical convergence if Z is the ideal of N of natural density
zero. In [17] the concept of Z*-convergence was also introduced. Last few years several works on Z-convergence
and its related areas were carried out in different directions in different spaces viz. metric spaces, normed linear
spaces, probabilistic metric spaces, S-metric spaces, linear 2-normed spaces, cone metric spaces, topological
spaces etc. (see [3, 4, 6, 18] and many more references therein). Ordinary convergence always implies statistical
convergence and when Z is admissible ideal, Z*-convergence implies Z-convergence. But the reverse implication
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does not hold in general. But when Z satisfies the condition (AP), Z-convergence implies Z*-convergence. A
remarkable observation is that a statistically convergent sequence and Z and Z*-convergent sequence need not
even be bounded.

Recently some significant investigations have been done on sequences of real valued functions by using
the idea of statistical and Z-convergence [8, 10, 15, 19]. The interesting notion of equal convergence was
introduced by Csaszar and Laczkovich [7] for sequences of real valued functions (also known as quasinormal
convergence [2]). It is known that equal convergence is weaker than uniform convergence and stronger than
pointwise converegence for the sequences of real valued functions. A detailed investigation was carried out by
Csaszar and Laczkovich in [7] on such type of convergence. In [9, 10, 13] the concept of equal convergence of
sequences of real functions was generalized to the ideas of Z and Z*-equal convergence using ideals of N and the
relationship between them were investigated. Z-equal convergence is weaker than Z-uniform convergence and
stronger than Z-pointwise convergence [10].

The notion of linear 2-normed spaces was initially introduced by Géhler [14] and since then the concept has
been studied by many authors. In [24] some significant investigations on Z-uniform and Z-pointwise convergence
have been studied in this space.

2. Preliminaries

Throughout the paper Z C 2N will stand for an admissible ideal. Now we recall some basic definitions and
notations.

A sequence {z,, } nen of real numbers is said to be Z-convergent to x € R if for each ¢ > 0 the set A(e) =
{n € N: |z, —x| > e} € Z. The sequence {x, }nen Of real numbers is said to be Z*-convergent to z € R
if there exists aset M = {m; < mg < --- < my < ---} € F(Z) such that z is the limit of the subsequence
{@my Fren [17].

Let f, f,, be real valued functions defined on a non empty set X . The sequence { f,, } nen is said to be equally
convergent ([7]) to f if there exists a sequence {&, },en Of positive reals with lim,, ,~ €, = 0 such that for every
x € X there is m = m(x) € N with |f,,(z) — f(z)| < €, for n > m. In this case we write f,, = f.

Now we see the key ideas of Z-uniform convergent [5] and Z and Z*-equal convergent [10] sequences of real
valued functions which will be needed for generalizations into linear 2-normed spaces.

A sequence { f,, }nen is said to be Z-uniformly convergent to f if for each ¢ > 0 there exists a set B € Z such

that for all n € B and for all z € X, |f,(x) — f(x)| < e. In this case we write f,, —2 f. f is called Z-equal
limit of the sequence { f,, }nen if there exists a sequence {e,, },,cn of positive reals with Z-lim,,_, o, £, = 0 such

that for any = € X, the set {n € N: |f,,(z) — f(x)| > e,,} € Z. In this case we write f, i f. The sequence
{fn}nen is said to be Z*-equal convergent to f if there exists a set M = {m1 < may < < myg--- € F@)

such that f is the equal limit of the subsequence { fo,, }ren. In this case we write f,, EaN f.

Now we recall the following two important notions which are basically equivalent to each other (due to
Lemma 3.9. and Definition 3.10. in [20]). Let Z C 2~ be an admissible ideal. 7 is called P-ideal if for every
sequence of mutually disjoint sets { A, Ao, - - } belonging to Z there exists a sequence {Bj, Ba,--- } of sets
belonging to Z such that A; A B; is finite for j € Nand B = Uj en Bj € Z. This notion is also called condition
(AP) while in [20] it is denoted as AP(Z, Fiin). Anideal Z is a P-ideal if for any sets Ay, Az, - - - belonging to
T there exists a set A € Z such that A,, \ A is finite for n € N.

Now we state some results from [16] for the sequences of real numbers.

Theorem 2.1. Suppose that {x,}ncn is a sequence of real numbers and T is an admissible ideal in N. If
T*-limy, 00 T, = &€ then Z-limy, o0 T, = &.

Theorem 2.2. Z-lim,_, oo x,, = & implies T*-lim,,_, o x,, = £ if and only if T satisfies the condition (AP).

We will now recall the definition of linear 2-normed spaces which will play very important role throughout
the paper.
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Definition 2.3. ([14]) Let X be a real vector space of dimension d, where 2 < d < oo. A 2-norm on X is a
Sunction ||, .|| : X x X — R which satisfies the following conditions:

(Cl) ||z, y|| = 0 if and only if x and y are linearly dependent in X;

(C2) ||z, y|l = lly, x| for all z,y in X;

(C3) |laz, y|| = |a| |z, y|| for all « in R and for all z,y in X;

(C4) ||z +y, 2| <z, 2| + |y, z|| for all z,y, z in X.

The pair (X, ||, .||) is called a linear 2-normed space. A simple example ([24]) of a linear 2-normed space is
(R?,]|.,.]|) where the equipped 2-norm is given by ||z, y|| = |z1y2 — 2ay1|, © = (z1,22),y = (v1,y2) € R

Let X be a 2-normed space of dimension d, 2 < d < co. A sequence {z, }ren in X is said to be convergent
(1D to € € X if limy, o0 |2 — &, 2|| = 0, for every z € X. In such a case ¢ is called limit of {z;, }nen.
The sequence {, }nen in X is said to be Z-convergent ([23]) to £ € X if foreach e > 0 and z € X, the set
A(e) ={n eN: |z, — &, z|| > e} € Z. The number ¢ is called Z- limit of {z,, },en.

3. Main Results

In this paper we study the concepts of Z and Z*-equal convergence of sequences of functions and investigate
relationship between them in linear 2-normed spaces. Throughout the paper we propose X as a non empty set
and Y as a linear 2-normed space having dimension d with 2 < d < oc.

Definition 3.1. Let f,f, : X — Y,n € N. The sequence {f,}nen is said to be equally convergent to f if
there exists a sequence {c, }nen of positive reals with lim,,_, o €, = 0 such that for every x € X there is
m =m(x) € Nwith || f.(x) — f(x),z|| < e, for n > m and for every z € Y. In this case we write f, — f.

Definition 3.2. Let f, f,, : X — Y,n € N. The sequence {f,,} nen is said to be T-uniformly convergent to f if
forany € > 0 there exists a set A € T such that foralln € A andforallz € X,z €Y, || fn(z) — f(2), 2| <e.

. . -
In this case we write f, — f.

Definition 3.3. Let f, f,, : X — Y,n € N. Then the the sequence { [, }nen is said to be T-equal convergent to
[ if there exists a sequence {e,, }nen of positive reals with Z-1im,,_, o €, = 0 such that for any x € X and for
any z €Y, the set {n € N: || fp(x) — f(x), 2| > en} € L. In this case [ is called I-equal limit of the sequence

{fn}neN and we write fn E} f

Example 3.4. Let T be a non trivial proper admissible ideal. Let X = R? and Y = {(a,0) : a € R}. Define
fulz1,22) = (n%_l, 0) and f(x1,22) = (0,0) for all (z1,z2) € R2. Suppose e, = ~. Then I-1imy, o0 €5, = 0.
Here we use the 2-norm on R? by ||z, y|| = |v1y2 — 2211, © = (1,72),y = (y1,y2) € R% Now we consider
the set A = {n € N : ||fp(x1,22) — f(z1,22),2|| > en}forall z = (y1,y2) € Y. Then A = {n € N :

‘(%H,O)—(O,O),(yl,yg) > =fneN: 2 > = {peN:0>1} =9 €T sincey, = 0.

n+l — n
Therefore f, N f

Now we investigate some arithmetical properties of Z-equal convergent sequences of functions.

Theorem 3.5. Let f, f,, : X > Y, ne N If f, EaniN f then f is unique.

Proof. If possible let f and g be two distinct Z-equal limit of { f,, }nen. Then there are two sequences {&,, } nen
and {7y, }nen of positive reals with Z-lim,,_, o £, = 0 and Z-lim, o, ¥, = 0 and for any x € X and for
any z € Y, the sets K1 = {n € N : |[fno(x) — f(2),2|| > en}, Ko = {n € N : | fu(z) —g(x), 2] >
Y} € Z. Therefore K¢ = {n € N : ||fu(x) — f(z),2] < en}, K§ = {n € N : ||fn(z) —g(x),z]| <
Y} € F(I). Let z € Y be linearly independent with f(z) — g(x). Pute = 1 ||f(z) — g(z),2] > 0. As
Z-lim, o0 €n, = 0 and Z-lim,, 400 7 = 0, the sets K = {n € N: g, < e}, K{ ={n € N: ~, <
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e} € F(Z). As ¢ ¢ F(I), K{ N K5 N K§NKS # ¢. Then there exists m € N such that m € K{ N
K$ N K§N K§. Then || f(z) — f(2), 2] < em, [[fm(x) —9(2),2]] < Ym, em < € and v, < . Now
1F(@) — 9@}, 2ll = I1F(@) — Fn(@) + fonl) = 9@, 2] < | fonl) — F(@), 2] + | fn(@) — 9(2), 2]l < 2 +
Ym <e+e=3|f(x) —g(@), 2|+ 5 | f(&) — g(x), 2] = || f(x) — g(x), z||, which is absurd. Hence Z-equal
limit f of the sequence { f,, } ey must be unique if it exists. [ |

Theorem 3.6. Let f, [, : X =Y andg,g, : X =Y, neN.If f, ifandgn ig, fnton E>f—&—g.

Proof. Since f, EaN f and g, RSN g, there exist sequences {&,, }nen and {py, }nen of positive reals with
Z-lim, 00 &, = 0 and Z-lim, oo pn, = 0 such that for = € X and z € Y, we have
A= fn € N i [ful@) = f@)zll = &b As = {n € N : |lga(a) —g(@),2ll = pu} € T. So
At ={n e N:|[fu(z) = f(2),2]| <&} A3 ={n € N:|ga(z) —g(z), 2| < pu} € F(I). As ¢ ¢ F(I),
A§ N AS # ¢.

Now let n € A§ N A§ and consider the set A = {n € N : || fu(2) + gn(z) — {f(x) + g()}, 2| <
En + pnte As | fo(@) + gn(z) — {f(x) + (@)}, 2| < [1fa(2) = f(@), 2] + llgn(2) — 9(2), 2[| < & + pn
therefore n € A§ie. AN A5 C AS. So A3 C A1 U Ay, Since Ay U Ay € 7, A3 € T. ie. {n € N:
”fn(m) + gn(l') - {f(l’) +g(l’)}7z|| >&n +pn} €. AsZ-limy, o0 &n + pn =0, frn+gn £_‘e_> f+g. This
proves the theorem. u

Theorem 3.7. Let f, f, : X - Y,n € N. Leta(#0) e R. If fp, I—e £ af, T—ec of.

Proof. Since f, Ie, f, there is a sequence {3, } nen of positive reals with Z- lim,, _, . 8, = 0 such that for x €
X,z €Y, theset By = {n € N: ||fu(w) = f(x),2]| > 22} € Z. Put By = {n € N: [lafu(x) — af(2), 2] >

Bn}. As, |lafn(x) —af(x),z|| = Brn = | fulz) — f(2), 2] > %"I Therefore Bo C B;. So By € Z. This proves
the result. |

In [10] it has been proved for real valued functions that Z-uniform convergence implies Z-equal convergence.
Now we investigate it in linear 2-normed spaces which will be needed in the sequel. First we give an important
lemma which has been stated as remark in [24].

Lemma 3.8. (c¢f.[24]) Let f,f, : X — Y, n € N. If {fu}nen is Z-uniformly convergent to f then
{sup,ex | fn(z) — f(2), z|| }nen is Z-convergent to zero for all z € Y.

Proof. First we assume that { f,, } ,en is Z-uniformly convergent to f. Then for any € > 0 there exists M € T
such that foralln € M¢andforx € X,z €Y, || fu(z) — f(x), z|| < §. This implies

sup [[fu(@) — F(@). 2] < 5 <.
reX

So the set {n € N : |sup,cx || fu(z) — f(2),2]| =0 > ¢} € M € Z,forall z € Y. Therefore
{sup,ex | fn(x) — f(2), 2||}nen is Z-convergent to zero for all z € Y. |

Theorem 3.9. Let f, f, : X — Y,n € N. f, =% f implies f, — f.

Proof. Since the sequence {f, }nen is Z-uniformly convergent to f in Y, due to the Lemma 3.8 the sequence

{tn }nen is Z-convergent to zero where u, = sup,cx ||fn(z) — f(x), 2|, forall z € Y. Let ¢ > 0 be given.
1 .

Then the set B = {n € N : u,, > ¢} € Z. Define &, = ¢ "™’ L ?fne B. We show {&,, }nen is Z-
U+, ifn¢g B

convergent to zero. For,lete; > 0,wehave {n:§, > e1}={ne€B: & >e1}U{neB: & >t ={n:

L>e}U{n:u,+ £ > e} = My U M,. Clearly M; is finite. If n € M, then n € B®. So u,, < £. Now

Un+ 1 >e1if L >y —u,ie if L > ey — e which is for finite number values of n. Therefore M is finite. As
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7 is admissible, M7 U My € Z. Hence Z-lim,,—, o &, = 0. Now, for all z € Y, we have || f,,(z) — f(x), z|| <
supex || fn(2) = f(2), 2| < supyex [|fu(@) = f(2), 2] + & = un+ 5 = & ifn € B® where B € L.
Therefore {n € N : || fn(z) — f(2),2|| > &} € Z. AsZ-limy, o0&y = 0, fo 1=¢, ¢, Hence the theorem
follows. |

Now we intend to proceed with the notion of /*-equal convergence in linear 2-normed spaces.

Definition 3.10. Let f, f, : X — Y,n € N. The sequence {f }nen is said to be T*-equal convergent to f if
there exists a set M = {m; < mg < --- < my---} € F(Z) and a sequence {c } e of positive reals with
limy o0 € = O such that for every x € X, there is a number p € N and for every z € Y, || fm, () — f(2), 2|| <

ek for all k > p. In this case we write f, Lize, f.

We proceed to investigate the relationship between Z-equal and Z*-equal convergence in linear 2-normed
spaces.

Theorem 3.11. Let f, f,: X — Y,n € N. If f, Z—5% f then f, =% f.

Proof. We assume f,, ESEN f. Then there existaset M = {m; < ma < -+ < mg---} € F(ZT) and a
sequence {eg }xeas Of positive reals with limy o, €, = 0 such that for every x € X, there is a number p € N
and for every z € Y, ||fm, () — f(x), 2]] < e for k > p. Then clearly || f.(x) — f(), 2| > &, holds for
n € (N\M)U{mq,ma,--- ,my}. Thisimplies {n : || fn(x) — f(x), 2] > e} C (N\M)U{mq, mao, -+ ,mp}.
Since Z is admissible, {n : || fn(z) — f(x),z|| > €,} € Z. Hence f, =t |

Remark 3.12. The converse of the above theorem may not hold in general as shown by the following example.

Example 3.13. Consider a decomposition N = | J;°, D; such that each D is infinite and D; N D; = ¢ for
i # j. Let T be the class of all subsets of N which intersects only a finite number of D;s. Then T is a non-trivial
admissible ideal. Let f, f, : X — Y,n € N such that {f, }nen is uniformly convergent to f and f, # [ for
any n € N. Then for each € > 0 there exists p € N such that forall x € X,z € Y, ||fo(x) — f(2), 2| < €
for all n > p. Define a sequence {gn}tnen by gn = f; if n € D;. Then forall x € X,z € Y the set
{n € N: |jgn(z) — f(x),2|| > e} C D1 UDyU---UD,. Therefore {n € N : ||g,(x) — f(z),z]| > e} € L.

Hence gy, EAiN f. By the Theorem 3.9, g, RN I

Now we shall show that {gn }nen is not T*-equal convergent in'Y. If possible let g, Lie, f. Now, by
definition, if H € I, then there is a p € N such that H C Dy UDy U ---U D,,. Then Dpy1 C N\ H and
so we have gy,, = fp+1 for infinitely many of k's. Let z € Y be linearly independent with fy11 — f(x). Now
we have lim,_s oo ||gm, () — f(2), z|| = || fp41(z) — f(2), || # 0. Which shows that {gy, }nen is not T*-equal
convergent in'Y.

Now we see, if X and Y are countable and Z satisfies the condition (AP) then the converse of the Theorem

. . - - .
3.11 also holds. In the next theorem we investigate whether the two concepts f,, —— f and f,, — f coincide
in linear 2-normed spaces when 7 is a P-ideal.

Theorem 3.14. Let f,f, : X — Y,n € Nand let X and Y be countable sets. Then f, EaN f implies

fn ﬁ f whenever T is a P-ideal.

Proof. From the given condition there exists a sequence {0, } nen Of positive reals with Z- lim,,, o 0, = 0 and
for every z € Y and for each x € X, there is aset B = B(z,z) € F(I), ||fu(z) — f(z), 2] < oy, for all
n € B. Now by Theorem 2.2, Z*-1lim,,_,o, 0, = 0. So we will get a set H € F(Z) for which {0}, }ncq is
convergent to zero. Since X and Y are countable sets, so X x Y is countable. So let us enumerate X x Y by
{(xi,2;) :x; € X,z € Y,i=1,2,...}. So for each element (z;, z;) € X x Y, there is a set B; = B(z;,2;) €
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F(I), we have || frn(x;) — f(x;), 2| < oy, forall n € B;. Z-being a P-ideal, there is a set A € F(Z) such that
A\ B; is finite for all 7. So for every z € Y and for all n € AN H except for finite number of values, we have

lfn(z) — f(x), z]| < 0. Therefore f, Loe, f. Hence the theorem follows. [ |

Theorem 3.15. Let f, f, : X — Y,n € N. Suppose that f, SN f implies f, Lze, f. Then T satisfies the
condition (AP).

Proof. Let f, f, : X — Y,n € N such that {f, } nen is uniformly convergent to f and f,, # f for any n € N.
Then for each € > 0 there exists p € Nsuch thatforallz € X,z € Y, || fu(x) — f(2), 2] < e forall n > p.
Suppose { M7, Ma, - - - } be a class of mutually disjoint non empty sets from Z. Define a sequence {h,, } nen by

) fj, ifne M;
S ifneN\U,; M
set M = My UMsU...UM, €Zandforallz € X,z €Y, we have ||h,(z) — f(x),z] < eforalln € M°.
ie. {n e N: ||h,(z) — f(z),2]| > e} C M1 UMy U---UM, € Z. Therefore h,, Iy f. By the Theorem 3.9
we have h,, I, f. So by the given condition h,, E2EN f. Therefore there is a set B € Z such that

h, . First of all we shall show that h,, 1_—% f. Lete > 0 be given. Observe that the

H=N\B={a;<ay<---<ay<---}€F(T)and h,, = f. (3.1)

Put B = M; N B (j = 1,2,--). So {Bi,By,---} is a class of sets belonging to Z. Now ;2 B; =
Uj=1(M; N B) = (BN{Uj2, M;} C B. Since B € Tt follows | J;~, B; € Z. Now from the equation 3.1 we
see that the set M; has a finite number of elements common with the set N\ B. So M;AB; C M; N (N\ B).
Therefore M; A B; is finite. Therefore 7 satisfies the condition AP. |
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