MALAYA JOURNAL OF MATEMATIK

Malaya J. Mat. 11(02)(2023), 151-157. http://doi.org/10.26637/mjm1102/004

On \mathcal{I} and \mathcal{I}^* -equal convergence in linear 2-normed spaces

AMAR KUMAR BANERJEE^{*1} AND NESAR HOSSAIN²

^{1,2} Department of Mathematics, The University of Burdwan, Golapbag, Burdwan - 713104, West Bengal, India.

Received 25 March 2022; Accepted 20 March 2023

Abstract. In this paper we study the notion of \mathcal{I} and \mathcal{I}^* -equal convergence in linear 2-normed spaces and some of their properties. We also establish the relationship between them.

AMS Subject Classifications: 40A35, 40A30, 40A05, 54A20

Keywords: Ideal, linear 2-normed spaces, \mathcal{I} -equal convergence, condition (*AP*), \mathcal{I}^* -equal convergence.

Contents

1	Introduction	151
2	Preliminaries	152
3	Main Results	153
4	Acknowledgement	156

1. Introduction

The idea of usual convergence of a real sequence was extended to statistical convergence independently by Fast [11] and Steinhaus [21] in the year 1951. Lot of developments were made on this notion of convergence after the pioneering works of Šalát [22] and Fridy [12]. After long fifty years, the concept of statistical convergence was extended to the idea of \mathcal{I} -convergence depending on the structure of ideals \mathcal{I} of \mathbb{N} , the set of natural numbers, by Kostyrko et al. [17]. Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers respectively. $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to be an ideal of \mathbb{N} if $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$ and $B \in \mathcal{I}$ whenever $B \subset A \in \mathcal{I}$. \mathcal{I} is called an admissible ideal of \mathbb{N} if $\{x\} \in \mathcal{I}$ for each $x \in \mathbb{N}$. $\mathcal{I} \subset 2^{\mathbb{N}}$ is called non-trivial ideal if $\mathcal{I} \neq \{\phi\}$ and $\mathbb{N} \notin \mathcal{I}$. If \mathcal{I} is a non-trivial proper ideal of \mathbb{N} then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A\}$ is a filter on \mathbb{N} , called the filter associated with the ideal \mathcal{I} . Indeed, the concept of \mathcal{I} - convergence of real sequences is a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subsets of \mathbb{N} . \mathcal{I} -convergence of real sequences coincides with the ordinary convergence if \mathcal{I} is the ideal of all finite subsets of \mathbb{N} and with the statistical convergence if \mathcal{I} is the ideal of \mathbb{N} of natural density zero. In [17] the concept of \mathcal{I}^* -convergence was also introduced. Last few years several works on \mathcal{I} -convergence and its related areas were carried out in different directions in different spaces viz. metric spaces, normed linear spaces, probabilistic metric spaces, S-metric spaces, linear 2-normed spaces, cone metric spaces, topological spaces etc. (see [3, 4, 6, 18] and many more references therein). Ordinary convergence always implies statistical convergence and when \mathcal{I} is admissible ideal, \mathcal{I}^* -convergence implies \mathcal{I} -convergence. But the reverse implication

^{*}Corresponding author. Email address: akbanerjee@math.buruniv.ac.in; akbanerjee1971@gmail.com (Amar Kumar Banerjee) nesarhossain24@gmail.com (Nesar Hossain)

A. K. Banerjee and N. Hossain

does not hold in general. But when \mathcal{I} satisfies the condition (AP), \mathcal{I} -convergence implies \mathcal{I}^* -convergence. A remarkable observation is that a statistically convergent sequence and \mathcal{I} and \mathcal{I}^* -convergent sequence need not even be bounded.

Recently some significant investigations have been done on sequences of real valued functions by using the idea of statistical and \mathcal{I} -convergence [8, 10, 15, 19]. The interesting notion of equal convergence was introduced by Császár and Laczkovich [7] for sequences of real valued functions (also known as quasinormal convergence [2]). It is known that equal convergence is weaker than uniform convergence and stronger than pointwise convergence for the sequences of real valued functions. A detailed investigation was carried out by Császár and Laczkovich in [7] on such type of convergence. In [9, 10, 13] the concept of equal convergence of sequences of real functions was generalized to the ideas of \mathcal{I} and \mathcal{I}^* -equal convergence using ideals of \mathbb{N} and the relationship between them were investigated. \mathcal{I} -equal convergence is weaker than \mathcal{I} -uniform convergence and stronger than \mathcal{I} -pointwise convergence [10].

The notion of linear 2-normed spaces was initially introduced by Gähler [14] and since then the concept has been studied by many authors. In [24] some significant investigations on \mathcal{I} -uniform and \mathcal{I} -pointwise convergence have been studied in this space.

2. Preliminaries

Throughout the paper $\mathcal{I} \subset 2^{\mathbb{N}}$ will stand for an admissible ideal. Now we recall some basic definitions and notations.

A sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers is said to be \mathcal{I} -convergent to $x \in \mathbb{R}$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - x| \ge \varepsilon\} \in \mathcal{I}$. The sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers is said to be \mathcal{I}^* -convergent to $x \in \mathbb{R}$ if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \in \mathcal{F}(\mathcal{I})$ such that x is the limit of the subsequence $\{x_m\}_{k\in\mathbb{N}}$ [17].

Let f, f_n be real valued functions defined on a non empty set X. The sequence $\{f_n\}_{n \in \mathbb{N}}$ is said to be equally convergent ([7]) to f if there exists a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_{n \to \infty} \varepsilon_n = 0$ such that for every $x \in X$ there is $m = m(x) \in \mathbb{N}$ with $|f_n(x) - f(x)| < \varepsilon_n$ for $n \ge m$. In this case we write $f_n \stackrel{e}{\to} f$.

Now we see the key ideas of \mathcal{I} -uniform convergent [5] and \mathcal{I} and \mathcal{I}^* -equal convergent [10] sequences of real valued functions which will be needed for generalizations into linear 2-normed spaces.

A sequence $\{f_n\}_{n\in\mathbb{N}}$ is said to be \mathcal{I} -uniformly convergent to f if for each $\varepsilon > 0$ there exists a set $B \in \mathcal{I}$ such that for all $n \in B^c$ and for all $x \in X$, $|f_n(x) - f(x)| < \varepsilon$. In this case we write $f_n \xrightarrow{\mathcal{I}-u} f$. f is called \mathcal{I} -equal limit of the sequence $\{f_n\}_{n\in\mathbb{N}}$ if there exists a sequence $\{\varepsilon_n\}_{n\in\mathbb{N}}$ of positive reals with \mathcal{I} -lim $_{n\to\infty} \varepsilon_n = 0$ such that for any $x \in X$, the set $\{n \in \mathbb{N} : |f_n(x) - f(x)| \ge \varepsilon_n\} \in \mathcal{I}$. In this case we write $f_n \xrightarrow{\mathcal{I}-e} f$. The sequence $\{f_n\}_{n\in\mathbb{N}}$ is said to be \mathcal{I}^* -equal convergent to f if there exists a set $M = \{m_1 < m_2 < \cdots < m_k \cdots\} \in \mathcal{F}(\mathcal{I})$ such that f is the equal limit of the subsequence $\{f_m_k\}_{k\in\mathbb{N}}$. In this case we write $f_n \xrightarrow{\mathcal{I}^*-e} f$.

Now we recall the following two important notions which are basically equivalent to each other (due to Lemma 3.9. and Definition 3.10. in [20]). Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. \mathcal{I} is called *P*-ideal if for every sequence of mutually disjoint sets $\{A_1, A_2, \cdots\}$ belonging to \mathcal{I} there exists a sequence $\{B_1, B_2, \cdots\}$ of sets belonging to \mathcal{I} such that $A_j \triangle B_j$ is finite for $j \in \mathbb{N}$ and $B = \bigcup_{j \in \mathbb{N}} B_j \in \mathcal{I}$. This notion is also called condition (AP) while in [20] it is denoted as $AP(\mathcal{I}, Fin)$. An ideal \mathcal{I} is a *P*-ideal if for any sets A_1, A_2, \cdots belonging to \mathcal{I} there exists a set $A \in \mathcal{I}$ such that $A_n \setminus A$ is finite for $n \in \mathbb{N}$.

Now we state some results from [16] for the sequences of real numbers.

Theorem 2.1. Suppose that $\{x_n\}_{n\in\mathbb{N}}$ is a sequence of real numbers and \mathcal{I} is an admissible ideal in \mathbb{N} . If $\mathcal{I}^*-\lim_{n\to\infty} x_n = \xi$ then $\mathcal{I}-\lim_{n\to\infty} x_n = \xi$.

Theorem 2.2. \mathcal{I} - $\lim_{n\to\infty} x_n = \xi$ implies \mathcal{I}^* - $\lim_{n\to\infty} x_n = \xi$ if and only if \mathcal{I} satisfies the condition (AP).

We will now recall the definition of linear 2-normed spaces which will play very important role throughout the paper.

On \mathcal{I} and \mathcal{I}^* -equal convergence in linear 2-normed spaces

Definition 2.3. ([14]) Let X be a real vector space of dimension d, where $2 \le d < \infty$. A 2-norm on X is a function $\|.,.\|: X \times X \to \mathbb{R}$ which satisfies the following conditions: (C1) $\|x, y\| = 0$ if and only if x and y are linearly dependent in X; (C2) $\|x, y\| = \|y, x\|$ for all x, y in X; (C3) $\|\alpha x, y\| = |\alpha| \|x, y\|$ for all α in \mathbb{R} and for all x, y in X; (C4) $\|x + y, z\| \le \|x, z\| + \|y, z\|$ for all x, y, z in X.

The pair $(X, \|., .\|)$ is called a linear 2-normed space. A simple example ([24]) of a linear 2-normed space is $(\mathbb{R}^2, \|., .\|)$ where the equipped 2-norm is given by $\|x, y\| = |x_1y_2 - x_2y_1|, x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.

Let X be a 2-normed space of dimension $d, 2 \le d < \infty$. A sequence $\{x_n\}_{n \in \mathbb{N}}$ in X is said to be convergent ([1]) to $\xi \in X$ if $\lim_{n \to \infty} ||x_n - \xi, z|| = 0$, for every $z \in X$. In such a case ξ is called limit of $\{x_n\}_{n \in \mathbb{N}}$. The sequence $\{x_n\}_{n \in \mathbb{N}}$ in X is said to be \mathcal{I} -convergent ([23]) to $\xi \in X$ if for each $\varepsilon > 0$ and $z \in X$, the set $A(\varepsilon) = \{n \in \mathbb{N} : ||x_n - \xi, z|| \ge \varepsilon\} \in \mathcal{I}$. The number ξ is called \mathcal{I} -limit of $\{x_n\}_{n \in \mathbb{N}}$.

3. Main Results

In this paper we study the concepts of \mathcal{I} and \mathcal{I}^* -equal convergence of sequences of functions and investigate relationship between them in linear 2-normed spaces. Throughout the paper we propose X as a non empty set and Y as a linear 2-normed space having dimension d with $2 \le d < \infty$.

Definition 3.1. Let $f, f_n : X \to Y, n \in \mathbb{N}$. The sequence $\{f_n\}_{n \in \mathbb{N}}$ is said to be equally convergent to f if there exists a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with $\lim_{n \to \infty} \varepsilon_n = 0$ such that for every $x \in X$ there is $m = m(x) \in \mathbb{N}$ with $||f_n(x) - f(x), z|| < \varepsilon_n$ for $n \ge m$ and for every $z \in Y$. In this case we write $f_n \stackrel{e}{\to} f$.

Definition 3.2. Let $f, f_n : X \to Y, n \in \mathbb{N}$. The sequence $\{f_n\}_{n \in \mathbb{N}}$ is said to be \mathcal{I} -uniformly convergent to f if for any $\varepsilon > 0$ there exists a set $A \in \mathcal{I}$ such that for all $n \in A^c$ and for all $x \in X, z \in Y$, $||f_n(x) - f(x), z|| < \varepsilon$. In this case we write $f_n \xrightarrow{\mathcal{I}-u} f$.

Definition 3.3. Let $f, f_n : X \to Y, n \in \mathbb{N}$. Then the the sequence $\{f_n\}_{n \in \mathbb{N}}$ is said to be \mathcal{I} -equal convergent to f if there exists a sequence $\{\varepsilon_n\}_{n \in \mathbb{N}}$ of positive reals with \mathcal{I} - $\lim_{n\to\infty} \varepsilon_n = 0$ such that for any $x \in X$ and for any $z \in Y$, the set $\{n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge \varepsilon_n\} \in \mathcal{I}$. In this case f is called \mathcal{I} -equal limit of the sequence $\{f_n\}_{n \in \mathbb{N}}$ and we write $f_n \xrightarrow{\mathcal{I}-e} f$.

Example 3.4. Let \mathcal{I} be a non trivial proper admissible ideal. Let $X = \mathbb{R}^2$ and $Y = \{(a, 0) : a \in \mathbb{R}\}$. Define $f_n(x_1, x_2) = (\frac{1}{n+1}, 0)$ and $f(x_1, x_2) = (0, 0)$ for all $(x_1, x_2) \in \mathbb{R}^2$. Suppose $\varepsilon_n = \frac{1}{n}$. Then \mathcal{I} - $\lim_{n\to\infty} \varepsilon_n = 0$. Here we use the 2-norm on \mathbb{R}^2 by $||x, y|| = |x_1y_2 - x_2y_1|$, $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. Now we consider the set $A = \{n \in \mathbb{N} : ||f_n(x_1, x_2) - f(x_1, x_2), z|| \ge \varepsilon_n\}$ for all $z = (y_1, y_2) \in Y$. Then $A = \{n \in \mathbb{N} : ||(\frac{1}{n+1}, 0) - (0, 0), (y_1, y_2)|| \ge \frac{1}{n}\} = \{n \in \mathbb{N} : \frac{y_2}{n+1} \ge \frac{1}{n}\} = \{n \in \mathbb{N} : 0 \ge \frac{1}{n}\} = \phi \in \mathcal{I}$, since $y_2 = 0$. Therefore $f_n \xrightarrow{\mathcal{I} - e} f$.

Now we investigate some arithmetical properties of \mathcal{I} -equal convergent sequences of functions.

Theorem 3.5. Let $f, f_n : X \to Y, n \in \mathbb{N}$. If $f_n \xrightarrow{\mathcal{I}-e} f$ then f is unique.

Proof. If possible let f and g be two distinct \mathcal{I} -equal limit of $\{f_n\}_{n\in\mathbb{N}}$. Then there are two sequences $\{\varepsilon_n\}_{n\in\mathbb{N}}$ and $\{\gamma_n\}_{n\in\mathbb{N}}$ of positive reals with \mathcal{I} - $\lim_{n\to\infty} \varepsilon_n = 0$ and \mathcal{I} - $\lim_{n\to\infty} \gamma_n = 0$ and for any $x \in X$ and for any $z \in Y$, the sets $K_1 = \{n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge \varepsilon_n\}$, $K_2 = \{n \in \mathbb{N} : ||f_n(x) - g(x), z|| \ge \gamma_n\} \in \mathcal{I}$. Therefore $K_1^c = \{n \in \mathbb{N} : ||f_n(x) - f(x), z|| < \varepsilon_n\}$, $K_2^c = \{n \in \mathbb{N} : ||f_n(x) - g(x), z|| < \gamma_n\} \in \mathcal{F}(\mathcal{I})$. Let $z \in Y$ be linearly independent with f(x) - g(x). Put $\varepsilon = \frac{1}{2} ||f(x) - g(x), z|| > 0$. As \mathcal{I} - $\lim_{n\to\infty} \varepsilon_n = 0$ and \mathcal{I} - $\lim_{n\to\infty} \gamma_n = 0$, the sets $K_3^c = \{n \in \mathbb{N} : \varepsilon_n < \varepsilon\}$, $K_4^c = \{n \in \mathbb{N} : \gamma_n < \varepsilon\}$.

A. K. Banerjee and N. Hossain

 $\varepsilon \} \in \mathcal{F}(\mathcal{I}). \text{ As } \phi \notin \mathcal{F}(\mathcal{I}), \ K_1^c \cap K_2^c \cap K_3^c \cap K_4^c \neq \phi. \text{ Then there exists } m \in \mathbb{N} \text{ such that } m \in K_1^c \cap K_2^c \cap K_3^c \cap K_4^c = \phi. \text{ Then there exists } m \in \mathbb{N} \text{ such that } m \in K_1^c \cap K_2^c \cap K_3^c \cap K_4^c \text{ Then } \|f_m(x) - f(x), z\| < \varepsilon_m, \ \|f_m(x) - g(x), z\| < \gamma_m, \ \varepsilon_m < \varepsilon \text{ and } \gamma_m < \varepsilon. \text{ Now } \|f(x) - g(x), z\| = \|f(x) - f_m(x) + f_m(x) - g(x), z\| \leq \|f_m(x) - f(x), z\| + \|f_m(x) - g(x), z\| < \varepsilon_m + \gamma_m < \varepsilon + \varepsilon = \frac{1}{2} \|f(x) - g(x), z\| + \frac{1}{2} \|f(x) - g(x), z\| = \|f(x) - g(x), z\|, \text{ which is absurd. Hence } \mathcal{I} \text{-equal limit } f \text{ of the sequence } \{f_n\}_{n \in \mathbb{N}} \text{ must be unique if it exists.}$

Theorem 3.6. Let $f, f_n : X \to Y$ and $g, g_n : X \to Y$, $n \in \mathbb{N}$. If $f_n \xrightarrow{\mathcal{I}-e} f$ and $g_n \xrightarrow{\mathcal{I}-e} g$, $f_n + g_n \xrightarrow{\mathcal{I}-e} f + g$.

Proof. Since $f_n \xrightarrow{\mathcal{I}-e} f$ and $g_n \xrightarrow{\mathcal{I}-e} g$, there exist sequences $\{\xi_n\}_{n\in\mathbb{N}}$ and $\{\rho_n\}_{n\in\mathbb{N}}$ of positive reals with \mathcal{I} - $\lim_{n\to\infty} \xi_n = 0$ and \mathcal{I} - $\lim_{n\to\infty} \rho_n = 0$ such that for $x \in X$ and $z \in Y$, we have $A_1 = \{n \in \mathbb{N} : \|f_n(x) - f(x), z\| \ge \xi_n\}, A_2 = \{n \in \mathbb{N} : \|g_n(x) - g(x), z\| \ge \rho_n\} \in \mathcal{I}$. So $A_1^c = \{n \in \mathbb{N} : \|f_n(x) - f(x), z\| < \xi_n\}, A_2^c = \{n \in \mathbb{N} : \|g_n(x) - g(x), z\| < \rho_n\} \in \mathcal{F}(\mathcal{I}).$ As $\phi \notin \mathcal{F}(\mathcal{I}), A_1^c \cap A_2^c \ne \phi$.

Now let $n \in A_1^c \cap A_2^c$ and consider the set $A_3^c = \{n \in \mathbb{N} : \|f_n(x) + g_n(x) - \{f(x) + g(x)\}, z\| < \xi_n + \rho_n\}$. As $\|f_n(x) + g_n(x) - \{f(x) + g(x)\}, z\| \le \|f_n(x) - f(x), z\| + \|g_n(x) - g(x), z\| < \xi_n + \rho_n$, therefore $n \in A_3^c$ i.e. $A_1^c \cap A_2^c \subset A_3^c$. So $A_3 \subset A_1 \cup A_2$. Since $A_1 \cup A_2 \in \mathcal{I}, A_3 \in \mathcal{I}$. i.e. $\{n \in \mathbb{N} : \|f_n(x) + g_n(x) - \{f(x) + g(x)\}, z\| \ge \xi_n + \rho_n\} \in \mathcal{I}$. As \mathcal{I} - $\lim_{n \to \infty} \xi_n + \rho_n = 0, f_n + g_n \xrightarrow{\mathcal{I} - e} f + g$. This proves the theorem.

Theorem 3.7. Let $f, f_n : X \to Y, n \in \mathbb{N}$. Let $a(\neq 0) \in \mathbb{R}$. If $f_n \xrightarrow{\mathcal{I}-e} f$, $af_n \xrightarrow{\mathcal{I}-e} af$.

Proof. Since $f_n \xrightarrow{\mathcal{I}-e} f$, there is a sequence $\{\beta_n\}_{n\in\mathbb{N}}$ of positive reals with \mathcal{I} - $\lim_{n\to\infty} \beta_n = 0$ such that for $x \in X, z \in Y$, the set $B_1 = \{n \in \mathbb{N} : \|f_n(x) - f(x), z\| \ge \frac{\beta_n}{|a|}\} \in \mathcal{I}$. Put $B_2 = \{n \in \mathbb{N} : \|af_n(x) - af(x), z\| \ge \beta_n\}$. As, $\|af_n(x) - af(x), z\| \ge \beta_n \Rightarrow \|f_n(x) - f(x), z\| \ge \frac{\beta_n}{|a|}$. Therefore $B_2 \subset B_1$. So $B_2 \in \mathcal{I}$. This proves the result.

In [10] it has been proved for real valued functions that \mathcal{I} -uniform convergence implies \mathcal{I} -equal convergence. Now we investigate it in linear 2-normed spaces which will be needed in the sequel. First we give an important lemma which has been stated as remark in [24].

Lemma 3.8. (cf.[24]) Let $f, f_n : X \to Y$, $n \in \mathbb{N}$. If $\{f_n\}_{n \in \mathbb{N}}$ is \mathcal{I} -uniformly convergent to f then $\{\sup_{x \in X} \|f_n(x) - f(x), z\|\}_{n \in \mathbb{N}}$ is \mathcal{I} -convergent to zero for all $z \in Y$.

Proof. First we assume that $\{f_n\}_{n\in\mathbb{N}}$ is \mathcal{I} -uniformly convergent to f. Then for any $\varepsilon > 0$ there exists $M \in \mathcal{I}$ such that for all $n \in M^c$ and for $x \in X$, $z \in Y$, $||f_n(x) - f(x), z|| < \frac{\varepsilon}{2}$. This implies

$$\sup_{x \in X} \|f_n(x) - f(x), z\| \le \frac{\varepsilon}{2} < \varepsilon$$

So the set $\{n \in \mathbb{N} : |\sup_{x \in X} ||f_n(x) - f(x), z|| - 0| \ge \varepsilon\} \subset M \in \mathcal{I}$, for all $z \in Y$. Therefore $\{\sup_{x \in X} ||f_n(x) - f(x), z||\}_{n \in \mathbb{N}}$ is \mathcal{I} -convergent to zero for all $z \in Y$.

Theorem 3.9. Let $f, f_n : X \to Y, n \in \mathbb{N}$. $f_n \xrightarrow{\mathcal{I}-u} f$ implies $f_n \xrightarrow{\mathcal{I}-e} f$.

Proof. Since the sequence $\{f_n\}_{n\in\mathbb{N}}$ is \mathcal{I} -uniformly convergent to f in Y, due to the Lemma 3.8 the sequence $\{u_n\}_{n\in\mathbb{N}}$ is \mathcal{I} -convergent to zero where $u_n = \sup_{x\in X} ||f_n(x) - f(x), z||$, for all $z \in Y$. Let $\varepsilon > 0$ be given. Then the set $B = \{n \in \mathbb{N} : u_n \ge \varepsilon\} \in \mathcal{I}$. Define $\xi_n = \begin{cases} \frac{1}{n}, & \text{if } n \in B \\ u_n + \frac{1}{n}, & \text{if } n \notin B \end{cases}$. We show $\{\xi_n\}_{n\in\mathbb{N}}$ is \mathcal{I} -convergent to zero. For let $\varepsilon > 0$ we have $\{m \in \mathbb{R}, c, p\} = \{m \in \mathbb{R}, c, p\} \in \mathbb{R}$.

convergent to zero. For, let $\varepsilon_1 > 0$, we have $\{n : \xi_n \ge \varepsilon_1\} = \{n \in B : \xi_n \ge \varepsilon_1\} \cup \{n \in B^c : \xi_n \ge \varepsilon_1\} = \{n : \frac{1}{n} \ge \varepsilon_1\} \cup \{n : u_n + \frac{1}{n} \ge \varepsilon_1\} = M_1 \cup M_2$. Clearly M_1 is finite. If $n \in M_2$ then $n \in B^c$. So $u_n < \varepsilon$. Now $u_n + \frac{1}{n} \ge \varepsilon_1$ if $\frac{1}{n} \ge \varepsilon_1 - u_n$ i.e. if $\frac{1}{n} \ge \varepsilon_1 - \varepsilon$ which is for finite number values of n. Therefore M_2 is finite. As

On \mathcal{I} and \mathcal{I}^* -equal convergence in linear 2-normed spaces

 \mathcal{I} is admissible, $M_1 \cup M_2 \in \mathcal{I}$. Hence \mathcal{I} - $\lim_{n \to \infty} \xi_n = 0$. Now, for all $z \in Y$, we have $||f_n(x) - f(x), z|| \leq \sup_{x \in X} ||f_n(x) - f(x), z|| \leq \sup_{x \in X} ||f_n(x) - f(x), z|| + \frac{1}{n} = u_n + \frac{1}{n} = \xi_n$ if $n \in B^c$ where $B \in \mathcal{I}$. Therefore $\{n \in \mathbb{N} : ||f_n(x) - f(x), z|| \geq \xi_n\} \in \mathcal{I}$. As \mathcal{I} - $\lim_{n \to \infty} \xi_n = 0$, $f_n \xrightarrow{I-e} f$. Hence the theorem follows.

Now we intend to proceed with the notion of I^* -equal convergence in linear 2-normed spaces.

Definition 3.10. Let $f, f_n : X \to Y, n \in \mathbb{N}$. The sequence $\{f_n\}_{n \in \mathbb{N}}$ is said to be \mathcal{I}^* -equal convergent to f if there exists a set $M = \{m_1 < m_2 < \cdots < m_k \cdots\} \in \mathcal{F}(\mathcal{I})$ and a sequence $\{\varepsilon_k\}_{k \in M}$ of positive reals with $\lim_{k \to \infty} \varepsilon_k = 0$ such that for every $x \in X$, there is a number $p \in \mathbb{N}$ and for every $z \in Y$, $||f_{m_k}(x) - f(x), z|| < \varepsilon_k$ for all $k \geq p$. In this case we write $f_n \xrightarrow{\mathcal{I}^* - e} f$.

We proceed to investigate the relationship between \mathcal{I} -equal and \mathcal{I}^* -equal convergence in linear 2-normed spaces.

Theorem 3.11. Let $f, f_n : X \to Y, n \in \mathbb{N}$. If $f_n \xrightarrow{\mathcal{I}^* - e} f$ then $f_n \xrightarrow{\mathcal{I} - e} f$.

Proof. We assume $f_n \xrightarrow{\mathcal{I}^* - e} f$. Then there exist a set $M = \{m_1 < m_2 < \cdots < m_k \cdots\} \in \mathcal{F}(\mathcal{I})$ and a sequence $\{\varepsilon_k\}_{k \in M}$ of positive reals with $\lim_{k \to \infty} \varepsilon_k = 0$ such that for every $x \in X$, there is a number $p \in \mathbb{N}$ and for every $z \in Y$, $\|f_{m_k}(x) - f(x), z\| < \varepsilon_k$ for k > p. Then clearly $\|f_n(x) - f(x), z\| \ge \varepsilon_n$ holds for $n \in (\mathbb{N} \setminus M) \cup \{m_1, m_2, \cdots, m_p\}$. This implies $\{n : \|f_n(x) - f(x), z\| \ge \varepsilon_n\} \subset (\mathbb{N} \setminus M) \cup \{m_1, m_2, \cdots, m_p\}$. Since \mathcal{I} is admissible, $\{n : \|f_n(x) - f(x), z\| \ge \varepsilon_n\} \in \mathcal{I}$. Hence $f_n \xrightarrow{\mathcal{I} - e} f$.

Remark 3.12. The converse of the above theorem may not hold in general as shown by the following example.

Example 3.13. Consider a decomposition $\mathbb{N} = \bigcup_{i=1}^{\infty} D_i$ such that each D_i is infinite and $D_i \cap D_j = \phi$ for $i \neq j$. Let \mathcal{I} be the class of all subsets of \mathbb{N} which intersects only a finite number of D'_i s. Then \mathcal{I} is a non-trivial admissible ideal. Let $f, f_n : X \to Y, n \in \mathbb{N}$ such that $\{f_n\}_{n \in \mathbb{N}}$ is uniformly convergent to f and $f_n \neq f$ for any $n \in \mathbb{N}$. Then for each $\varepsilon > 0$ there exists $p \in \mathbb{N}$ such that for all $x \in X, z \in Y$, $||f_n(x) - f(x), z|| < \varepsilon$ for all n > p. Define a sequence $\{g_n\}_{n \in \mathbb{N}}$ by $g_n = f_j$ if $n \in D_j$. Then for all $x \in X, z \in Y$ the set $\{n \in \mathbb{N} : ||g_n(x) - f(x), z|| \ge \varepsilon\} \subset D_1 \cup D_2 \cup \cdots \cup D_p$. Therefore $\{n \in \mathbb{N} : ||g_n(x) - f(x), z|| \ge \varepsilon\} \in \mathcal{I}$. Hence $g_n \xrightarrow{\mathcal{I} - \omega} f$. By the Theorem 3.9, $g_n \xrightarrow{\mathcal{I} - \omega} f$.

Now we shall show that $\{g_n\}_{n\in\mathbb{N}}$ is not \mathcal{I}^* -equal convergent in Y. If possible let $g_n \xrightarrow{\mathcal{I}^*-e} f$. Now, by definition, if $H \in \mathcal{I}$, then there is a $p \in \mathbb{N}$ such that $H \subset D_1 \cup D_2 \cup \cdots \cup D_p$. Then $D_{P+1} \subset \mathbb{N} \setminus H$ and so we have $g_{m_k} = f_{p+1}$ for infinitely many of k's. Let $z \in Y$ be linearly independent with $f_{p+1} - f(x)$. Now we have $\lim_{n\to\infty} \|g_{m_k}(x) - f(x), z\| = \|f_{p+1}(x) - f(x), z\| \neq 0$. Which shows that $\{g_n\}_{n\in\mathbb{N}}$ is not \mathcal{I}^* -equal convergent in Y.

Now we see, if X and Y are countable and \mathcal{I} satisfies the condition (AP) then the converse of the Theorem 3.11 also holds. In the next theorem we investigate whether the two concepts $f_n \xrightarrow{\mathcal{I}-e} f$ and $f_n \xrightarrow{\mathcal{I}^*-e} f$ coincide in linear 2-normed spaces when \mathcal{I} is a P-ideal.

Theorem 3.14. Let $f, f_n : X \to Y, n \in \mathbb{N}$ and let X and Y be countable sets. Then $f_n \xrightarrow{\mathcal{I}^-e} f$ implies $f_n \xrightarrow{\mathcal{I}^+-e} f$ whenever \mathcal{I} is a P-ideal.

Proof. From the given condition there exists a sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ of positive reals with \mathcal{I} - $\lim_{n\to\infty} \sigma_n = 0$ and for every $z \in Y$ and for each $x \in X$, there is a set $B = B(x, z) \in \mathcal{F}(\mathcal{I})$, $||f_n(x) - f(x), z|| < \sigma_n$ for all $n \in B$. Now by Theorem 2.2, \mathcal{I}^* - $\lim_{n\to\infty} \sigma_n = 0$. So we will get a set $H \in \mathcal{F}(\mathcal{I})$ for which $\{\sigma_n\}_{n\in H}$ is convergent to zero. Since X and Y are countable sets, so $X \times Y$ is countable. So let us enumerate $X \times Y$ by $\{(x_i, z_i) : x_i \in X, z_i \in Y, i = 1, 2, \ldots\}$. So for each element $(x_i, z_i) \in X \times Y$, there is a set $B_i = B(x_i, z_i) \in X$.

A. K. Banerjee and N. Hossain

 $\mathcal{F}(\mathcal{I})$, we have $||f_n(x_i) - f(x_i), z_i|| < \sigma_n$ for all $n \in B_i$. \mathcal{I} -being a P-ideal, there is a set $A \in \mathcal{F}(\mathcal{I})$ such that $A \setminus B_i$ is finite for all i. So for every $z \in Y$ and for all $n \in A \cap H$ except for finite number of values, we have $||f_n(x) - f(x), z|| < \sigma_n$. Therefore $f_n \xrightarrow{\mathcal{I}^* - e} f$. Hence the theorem follows.

Theorem 3.15. Let $f, f_n : X \to Y, n \in \mathbb{N}$. Suppose that $f_n \xrightarrow{\mathcal{I}-e} f$ implies $f_n \xrightarrow{\mathcal{I}^*-e} f$. Then \mathcal{I} satisfies the condition (AP).

Proof. Let $f, f_n : X \to Y, n \in \mathbb{N}$ such that $\{f_n\}_{n \in \mathbb{N}}$ is uniformly convergent to f and $f_n \neq f$ for any $n \in \mathbb{N}$. Then for each $\varepsilon > 0$ there exists $p \in \mathbb{N}$ such that for all $x \in X, z \in Y$, $||f_n(x) - f(x), z|| < \varepsilon$ for all n > p. Suppose $\{M_1, M_2, \cdots\}$ be a class of mutually disjoint non empty sets from \mathcal{I} . Define a sequence $\{h_n\}_{n \in \mathbb{N}}$ by $h_n = \begin{cases} f_j, & \text{if } n \in M_j \\ f, & \text{if } n \in \mathbb{N} \setminus \bigcup_j M_j \end{cases}$. First of all we shall show that $h_n \xrightarrow{\mathcal{I}-u} f$. Let $\varepsilon > 0$ be given. Observe that the set $M = M_1 \cup M_2 \cup \ldots \cup M_p \in \mathcal{I}$ and for all $x \in X, z \in Y$, we have $||h_n(x) - f(x), z|| < \varepsilon$ for all $n \in M^c$. i.e. $\{n \in \mathbb{N} : ||h_n(x) - f(x), z|| \ge \varepsilon\} \subset M_1 \cup M_2 \cup \cdots \cup M_p \in \mathcal{I}$. Therefore $h_n \xrightarrow{\mathcal{I}-u} f$. By the Theorem 3.9 we have $h_n \xrightarrow{\mathcal{I}-e} f$. So by the given condition $h_n \xrightarrow{\mathcal{I}^*-e} f$. Therefore there is a set $B \in \mathcal{I}$ such that

$$H = \mathbb{N} \setminus B = \{a_1 < a_2 < \dots < a_k < \dots\} \in \mathcal{F}(\mathcal{I}) \text{ and } h_{a_k} \xrightarrow{e} f.$$
(3.1)

Put $B_j = M_j \cap B$ $(j = 1, 2, \cdots)$. So $\{B_1, B_2, \cdots\}$ is a class of sets belonging to \mathcal{I} . Now $\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} (M_j \cap B) = (B \cap \{\bigcup_{j=1}^{\infty} M_j\} \subset B$. Since $B \in \mathcal{I}$ it follows $\bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. Now from the equation 3.1 we see that the set M_j has a finite number of elements common with the set $\mathbb{N} \setminus B$. So $M_j \triangle B_j \subset M_j \cap (\mathbb{N} \setminus B)$. Therefore $M_j \triangle B_j$ is finite. Therefore \mathcal{I} satisfies the condition AP.

4. Acknowledgement

The second author is grateful to The Council of Scientific and Industrial Research, HRDG, India, for the grant of Junior Research Fellowship during the preparation of this paper.

References

- M.ARSLAN AND E. DÜNDAR, *I*-convergence and *I*-Cauchy sequence of functions in 2-normed spaces, *Konuralp J. Math.*, 6 (1) (2018), 57–62.
- [2] Z. BUKOVSKÁ, Quasinormal convergence, Math. Slovaca., 41 (2) (1991), 137–146, https://doi.org/10.1016/0166-8641(91)90098-7.
- [3] A.K. BANERJEE AND A. BANERJEE, *I*-convergence classes of sequences and nets in topological spaces, *Jordan J. Math. Stat.*, **11** (1) (2016), 13–31.
- [4] A.K. BANERJEE AND A. BANERJEE, A study on *I*-Cauchy sequences and *I*-divergence in S-metric spaces, Malaya J. Mat., 6 (2) (2018), 326–330, https://doi.org/10.26637/MJM0602/0004.
- [5] M. BALCERZAK, K. DEMS AND A. KOMISARSKI, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (1) (2007), 715–729, https://doi.org/10.1016/j.jmaa.2006.05.040.
- [6] A.K. BANERJEE AND R. MONDAL, Rough convergence of sequences in a cone metric space, J. Anal., 27 (4) (2019), 1179–1188, https://doi.org/10.1007/s41478-019-00168-2.
- [7] A. CSÁSZÁR AND M. LACZKOVICH, Discrete and equal convergence, *Studia Sci. Math. Hungar.*, **10** (3-4) (1975), 463–472.

On \mathcal{I} and \mathcal{I}^* -equal convergence in linear 2-normed spaces

- [8] A. CASERTA, G. DI MAIO AND L.D. KOČINAC, Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419 (2011), 11 pp, https://doi.org/10.1155/2011/420419.
- [9] P. DAS, S. DUTTA, On some types of convergence of sequences of functions in ideal context, *Filomat*, 27 (1) (2013), 157–164, https://doi.org/10.2298/FIL1301157D.
- [10] P. DAS, S. DUTTA AND S.K. PAL, On \mathcal{I} and \mathcal{I}^* -equal convergence and an Egoroff-type theorem, *Mat. Vesnik*, **66 (2)** (2014), 165–177.
- [11] H. FAST, Sur la convergence statistique, *Colloq. Math.*, **2** (**3-4**) (1951), 241–244, https://doi.org/10.4064/cm-2-3-4-241-244.
- [12] J.A. FRIDY, On statistical convergence, *Analysis*, **5** (4) (1985), 301–313, https://doi.org/10.1524/anly.1985.5.4.301.
- [13] R. FILIPÓW AND M. STANISZEWSKI, On ideal equal convergence, Cent. Eur. J. Math., 12 (6) (2014), 896–910, https://doi.org/10.2478/s11533-013-0388-4.
- [14] S. GÄHLER, 2-normed spaces, Math. Nachr., 28 (1964), 1–43, https://doi.org/10.1002/mana.19640280102.
- [15] A. KOMISARSKI, Pointwise *I*-convergence and *I*-convergence in measure of sequences of functions, *J. Math. Anal. Appl.*, **340** (2) (2008), 770–779, https://doi.org/10.1016/j.jmaa.2007.09.016.
- [16] P. KOSTYRKO, M. MAĂAJ AND T. ŠALÁT, Statistical convergence and *I*-convergence, *Real Anal. Exchange*, 25 (1) (1999),
- [17] P. KOSTYRKO, T ŠALÁT AND W. WILCZYŃSKI, *I*-convergence, *Real Anal. Exchange*, **26** (2000/2001), 669–685, https://doi.org/10.2307/44154069.
- [18] B.K. LAHIRI AND P. DAS, \mathcal{I} and \mathcal{I}^* -convergence in topological spaces, *Math. Bohem.*, **130** (2) (2005), 153–160, https://doi.org/10.21136/MB.2005.134133.
- [19] N. MROŻEK, Ideal version of Egorov's theorem for analytic *P*-ideals, *J. Math. Anal. Appl.*, **349** (2) (2009), 452–458, https://doi.org/10.1016/j.jmaa.2008.08.032.
- [20] M. MAČAJ AND M. SLEZIAK, \mathcal{I}^{K} -convergence, *Real Anal. Exchange*, **36** (1) (2010), 177–193, https://doi.org/10.14321/realanalexch.36.1.0177.
- [21] H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique, *Colloq. Math.*, **2** (1) (1951), 73–74.
- [22] T. ŠALÁT, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (2) (1980), 139–150.
- [23] A. ŞAHINER, M. GÜRDAL, S. SALTAN AND H. GUNAWAN, Ideal convergence in 2-normed spaces, *Taiwanese J. Math.*, **11** (2007), 1477–1484, https://doi.org/10.11650/twjm/1500404879.
- [24] S. SARABADAN, S TALEBI, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Int. J. Math. Math. Sci., Art. ID 517841 (2011), 10 pp, https://doi.org/10.1155/2011/517841.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

