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1. Introduction

The idea of usual convergence of a real sequence was extended to statistical convergence independently by
Fast [11] and Steinhaus [21] in the year 1951. Lot of developments were made on this notion of convergence after
the pioneering works of Šalát [22] and Fridy [12]. After long fifty years, the concept of statistical convergence
was extended to the idea of I-convergence depending on the structure of ideals I of N, the set of natural numbers,
by Kostyrko et al. [17]. Throughout the paper N and R denote the set of all positive integers and the set
of all real numbers respectively. I ⊂ 2N is said to be an ideal of N if A,B ∈ I implies A ∪ B ∈ I and
B ∈ I whenever B ⊂ A ∈ I. I is called an admissible ideal of N if {x} ∈ I for each x ∈ N. I ⊂ 2N

is called non-trivial ideal if I ≠ {ϕ} and N /∈ I. If I is a non-trivial proper ideal of N then the family of sets
F(I) = {M ⊂ N : ∃A ∈ I : M = N\A} is a filter on N, called the filter associated with the ideal I. Indeed, the
concept of I- convergence of real sequences is a generalization of statistical convergence which is based on the
structure of the ideal I of subsets of N. I-convergence of real sequences coincides with the ordinary convergence
if I is the ideal of all finite subsets of N and with the statistical convergence if I is the ideal of N of natural density
zero. In [17] the concept of I∗-convergence was also introduced. Last few years several works on I-convergence
and its related areas were carried out in different directions in different spaces viz. metric spaces, normed linear
spaces, probabilistic metric spaces, S-metric spaces, linear 2-normed spaces, cone metric spaces, topological
spaces etc. (see [3, 4, 6, 18] and many more references therein). Ordinary convergence always implies statistical
convergence and when I is admissible ideal, I∗-convergence implies I-convergence. But the reverse implication

∗Corresponding author. Email address: akbanerjee@math.buruniv.ac.in; akbanerjee1971@gmail.com (Amar Kumar Banerjee)
nesarhossain24@gmail.com (Nesar Hossain)

https://www.malayajournal.org/index.php/mjm/index ©2023 by the authors.



A. K. Banerjee and N. Hossain

does not hold in general. But when I satisfies the condition (AP ), I-convergence implies I∗-convergence. A
remarkable observation is that a statistically convergent sequence and I and I∗-convergent sequence need not
even be bounded.

Recently some significant investigations have been done on sequences of real valued functions by using
the idea of statistical and I-convergence [8, 10, 15, 19]. The interesting notion of equal convergence was
introduced by Császár and Laczkovich [7] for sequences of real valued functions (also known as quasinormal
convergence [2]). It is known that equal convergence is weaker than uniform convergence and stronger than
pointwise converegence for the sequences of real valued functions. A detailed investigation was carried out by
Császár and Laczkovich in [7] on such type of convergence. In [9, 10, 13] the concept of equal convergence of
sequences of real functions was generalized to the ideas of I and I∗-equal convergence using ideals of N and the
relationship between them were investigated. I-equal convergence is weaker than I-uniform convergence and
stronger than I-pointwise convergence [10].

The notion of linear 2-normed spaces was initially introduced by Gähler [14] and since then the concept has
been studied by many authors. In [24] some significant investigations on I-uniform and I-pointwise convergence
have been studied in this space.

2. Preliminaries

Throughout the paper I ⊂ 2N will stand for an admissible ideal. Now we recall some basic definitions and
notations.

A sequence {xn}n∈N of real numbers is said to be I-convergent to x ∈ R if for each ε > 0 the set A(ε) =

{n ∈ N : |xn − x| ≥ ε} ∈ I. The sequence {xn}n∈N of real numbers is said to be I∗-convergent to x ∈ R
if there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F(I) such that x is the limit of the subsequence
{xmk

}k∈N [17].
Let f, fn be real valued functions defined on a non empty set X . The sequence {fn}n∈N is said to be equally

convergent ([7]) to f if there exists a sequence {εn}n∈N of positive reals with limn→∞ εn = 0 such that for every
x ∈ X there is m = m(x) ∈ N with |fn(x)− f(x)| < εn for n ≥ m. In this case we write fn

e−→ f .
Now we see the key ideas of I-uniform convergent [5] and I and I∗-equal convergent [10] sequences of real

valued functions which will be needed for generalizations into linear 2-normed spaces.
A sequence {fn}n∈N is said to be I-uniformly convergent to f if for each ε > 0 there exists a set B ∈ I such

that for all n ∈ Bc and for all x ∈ X , |fn(x)− f(x)| < ε. In this case we write fn
I−u−−−→ f . f is called I-equal

limit of the sequence {fn}n∈N if there exists a sequence {εn}n∈N of positive reals with I- limn→∞ εn = 0 such
that for any x ∈ X , the set {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I. In this case we write fn

I−e−−−→ f . The sequence
{fn}n∈N is said to be I∗-equal convergent to f if there exists a set M = {m1 < m2 < · · · < mk · · · } ∈ F(I)
such that f is the equal limit of the subsequence {fmk

}k∈N. In this case we write fn
I∗−e−−−→ f .

Now we recall the following two important notions which are basically equivalent to each other (due to
Lemma 3.9. and Definition 3.10. in [20]). Let I ⊂ 2N be an admissible ideal. I is called P -ideal if for every
sequence of mutually disjoint sets {A1, A2, · · · } belonging to I there exists a sequence {B1, B2, · · · } of sets
belonging to I such that Aj△Bj is finite for j ∈ N and B =

⋃
j∈N Bj ∈ I. This notion is also called condition

(AP ) while in [20] it is denoted as AP (I, F in). An ideal I is a P -ideal if for any sets A1, A2, · · · belonging to
I there exists a set A ∈ I such that An \A is finite for n ∈ N.

Now we state some results from [16] for the sequences of real numbers.

Theorem 2.1. Suppose that {xn}n∈N is a sequence of real numbers and I is an admissible ideal in N. If
I∗- limn→∞ xn = ξ then I- limn→∞ xn = ξ.

Theorem 2.2. I- limn→∞ xn = ξ implies I∗- limn→∞ xn = ξ if and only if I satisfies the condition (AP ).

We will now recall the definition of linear 2-normed spaces which will play very important role throughout
the paper.
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Definition 2.3. ([14]) Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ∥., .∥ : X ×X → R which satisfies the following conditions:
(C1) ∥x, y∥ = 0 if and only if x and y are linearly dependent in X;
(C2) ∥x, y∥ = ∥y, x∥ for all x, y in X;
(C3) ∥αx, y∥ = |α| ∥x, y∥ for all α in R and for all x, y in X;
(C4) ∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all x, y, z in X .

The pair (X, ∥., .∥) is called a linear 2-normed space. A simple example ([24]) of a linear 2-normed space is
(R2, ∥., .∥) where the equipped 2-norm is given by ∥x, y∥ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2) ∈ R2.

Let X be a 2-normed space of dimension d, 2 ≤ d < ∞. A sequence {xn}n∈N in X is said to be convergent
([1]) to ξ ∈ X if limn→∞ ∥xn − ξ, z∥ = 0, for every z ∈ X . In such a case ξ is called limit of {xn}n∈N.
The sequence {xn}n∈N in X is said to be I-convergent ([23]) to ξ ∈ X if for each ε > 0 and z ∈ X , the set
A(ε) = {n ∈ N : ∥xn − ξ, z∥ ≥ ε} ∈ I. The number ξ is called I- limit of {xn}n∈N.

3. Main Results

In this paper we study the concepts of I and I∗-equal convergence of sequences of functions and investigate
relationship between them in linear 2-normed spaces. Throughout the paper we propose X as a non empty set
and Y as a linear 2-normed space having dimension d with 2 ≤ d < ∞.

Definition 3.1. Let f, fn : X → Y, n ∈ N. The sequence {fn}n∈N is said to be equally convergent to f if
there exists a sequence {εn}n∈N of positive reals with limn→∞ εn = 0 such that for every x ∈ X there is
m = m(x) ∈ N with ∥fn(x)− f(x), z∥ < εn for n ≥ m and for every z ∈ Y . In this case we write fn

e−→ f .

Definition 3.2. Let f, fn : X → Y, n ∈ N. The sequence {fn}n∈N is said to be I-uniformly convergent to f if
for any ε > 0 there exists a set A ∈ I such that for all n ∈ Ac and for all x ∈ X, z ∈ Y , ∥fn(x)− f(x), z∥ < ε.

In this case we write fn
I−u−−−→ f .

Definition 3.3. Let f, fn : X → Y, n ∈ N. Then the the sequence {fn}n∈N is said to be I-equal convergent to
f if there exists a sequence {εn}n∈N of positive reals with I- limn→∞ εn = 0 such that for any x ∈ X and for
any z ∈ Y , the set {n ∈ N : ∥fn(x)− f(x), z∥ ≥ εn} ∈ I. In this case f is called I-equal limit of the sequence

{fn}n∈N and we write fn
I−e−−−→ f .

Example 3.4. Let I be a non trivial proper admissible ideal. Let X = R2 and Y = {(a, 0) : a ∈ R}. Define
fn(x1, x2) = ( 1

n+1 , 0) and f(x1, x2) = (0, 0) for all (x1, x2) ∈ R2. Suppose εn = 1
n . Then I- limn→∞ εn = 0.

Here we use the 2-norm on R2 by ∥x, y∥ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2) ∈ R2. Now we consider
the set A = {n ∈ N : ∥fn(x1, x2)− f(x1, x2), z∥ ≥ εn} for all z = (y1, y2) ∈ Y . Then A = {n ∈ N :∥∥∥( 1

n+1 , 0)− (0, 0), (y1, y2)
∥∥∥ ≥ 1

n} = {n ∈ N : y2

n+1 ≥ 1
n} = {n ∈ N : 0 ≥ 1

n} = ϕ ∈ I, since y2 = 0.

Therefore fn
I−e−−−→ f .

Now we investigate some arithmetical properties of I-equal convergent sequences of functions.

Theorem 3.5. Let f, fn : X → Y, n ∈ N. If fn
I−e−−−→ f then f is unique.

Proof. If possible let f and g be two distinct I-equal limit of {fn}n∈N. Then there are two sequences {εn}n∈N
and {γn}n∈N of positive reals with I- limn→∞ εn = 0 and I- limn→∞ γn = 0 and for any x ∈ X and for
any z ∈ Y , the sets K1 = {n ∈ N : ∥fn(x)− f(x), z∥ ≥ εn}, K2 = {n ∈ N : ∥fn(x)− g(x), z∥ ≥
γn} ∈ I. Therefore Kc

1 = {n ∈ N : ∥fn(x)− f(x), z∥ < εn}, Kc
2 = {n ∈ N : ∥fn(x)− g(x), z∥ <

γn} ∈ F(I). Let z ∈ Y be linearly independent with f(x) − g(x). Put ε = 1
2 ∥f(x)− g(x), z∥ > 0. As

I- limn→∞ εn = 0 and I- limn→∞ γn = 0, the sets Kc
3 = {n ∈ N : εn < ε}, Kc

4 = {n ∈ N : γn <
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ε} ∈ F(I). As ϕ /∈ F(I), Kc
1 ∩ Kc

2 ∩ Kc
3 ∩ Kc

4 ̸= ϕ. Then there exists m ∈ N such that m ∈ Kc
1 ∩

Kc
2 ∩ Kc

3 ∩ Kc
4 . Then ∥fm(x)− f(x), z∥ < εm, ∥fm(x)− g(x), z∥ < γm, εm < ε and γm < ε. Now

∥f(x)− g(x), z∥ = ∥f(x)− fm(x) + fm(x)− g(x), z∥ ≤ ∥fm(x)− f(x), z∥ + ∥fm(x)− g(x), z∥ < εm +

γm < ε+ ε = 1
2 ∥f(x)− g(x), z∥+ 1

2 ∥f(x)− g(x), z∥ = ∥f(x)− g(x), z∥ , which is absurd. Hence I-equal
limit f of the sequence {fn}n∈N must be unique if it exists. ■

Theorem 3.6. Let f, fn : X → Y and g, gn : X → Y , n ∈ N. If fn
I−e−−−→ f and gn

I−e−−−→ g, fn+gn
I−e−−−→ f+g.

Proof. Since fn
I−e−−−→ f and gn

I−e−−−→ g, there exist sequences {ξn}n∈N and {ρn}n∈N of positive reals with
I- limn→∞ ξn = 0 and I- limn→∞ ρn = 0 such that for x ∈ X and z ∈ Y , we have
A1 = {n ∈ N : ∥fn(x)− f(x), z∥ ≥ ξn}, A2 = {n ∈ N : ∥gn(x)− g(x), z∥ ≥ ρn} ∈ I. So
Ac

1 = {n ∈ N : ∥fn(x)− f(x), z∥ < ξn}, Ac
2 = {n ∈ N : ∥gn(x)− g(x), z∥ < ρn} ∈ F(I). As ϕ /∈ F(I),

Ac
1 ∩Ac

2 ̸= ϕ.
Now let n ∈ Ac

1 ∩ Ac
2 and consider the set Ac

3 = {n ∈ N : ∥fn(x) + gn(x)− {f(x) + g(x)}, z∥ <

ξn + ρn}. As ∥fn(x) + gn(x)− {f(x) + g(x)}, z∥ ≤ ∥fn(x)− f(x), z∥ + ∥gn(x)− g(x), z∥ < ξn + ρn,
therefore n ∈ Ac

3 i.e. Ac
1 ∩ Ac

2 ⊂ Ac
3. So A3 ⊂ A1 ∪ A2. Since A1 ∪ A2 ∈ I, A3 ∈ I. i.e. {n ∈ N :

∥fn(x) + gn(x)− {f(x) + g(x)}, z∥ ≥ ξn + ρn} ∈ I. As I- limn→∞ ξn + ρn = 0, fn + gn
I−e−−−→ f + g. This

proves the theorem. ■

Theorem 3.7. Let f, fn : X → Y, n ∈ N. Let a(̸= 0) ∈ R. If fn
I−e−−−→ f , afn

I−e−−−→ af .

Proof. Since fn
I−e−−−→ f , there is a sequence {βn}n∈N of positive reals with I- limn→∞ βn = 0 such that for x ∈

X, z ∈ Y , the set B1 = {n ∈ N : ∥fn(x)− f(x), z∥ ≥ βn

|a|} ∈ I. Put B2 = {n ∈ N : ∥afn(x)− af(x), z∥ ≥
βn}. As, ∥afn(x)− af(x), z∥ ≥ βn ⇒ ∥fn(x)− f(x), z∥ ≥ βn

|a| . Therefore B2 ⊂ B1. So B2 ∈ I. This proves
the result. ■

In [10] it has been proved for real valued functions that I-uniform convergence implies I-equal convergence.
Now we investigate it in linear 2-normed spaces which will be needed in the sequel. First we give an important
lemma which has been stated as remark in [24].

Lemma 3.8. (cf.[24]) Let f, fn : X → Y , n ∈ N. If {fn}n∈N is I-uniformly convergent to f then
{supx∈X ∥fn(x)− f(x), z∥}n∈N is I-convergent to zero for all z ∈ Y .

Proof. First we assume that {fn}n∈N is I-uniformly convergent to f . Then for any ε > 0 there exists M ∈ I
such that for all n ∈ M c and for x ∈ X , z ∈ Y , ∥fn(x)− f(x), z∥ < ε

2 . This implies

sup
x∈X

∥fn(x)− f(x), z∥ ≤ ε

2
< ε.

So the set {n ∈ N : | supx∈X ∥fn(x)− f(x), z∥ − 0| ≥ ε} ⊂ M ∈ I, for all z ∈ Y . Therefore
{supx∈X ∥fn(x)− f(x), z∥}n∈N is I-convergent to zero for all z ∈ Y . ■

Theorem 3.9. Let f, fn : X → Y, n ∈ N. fn
I−u−−−→ f implies fn

I−e−−−→ f .

Proof. Since the sequence {fn}n∈N is I-uniformly convergent to f in Y , due to the Lemma 3.8 the sequence
{un}n∈N is I-convergent to zero where un = supx∈X ∥fn(x)− f(x), z∥, for all z ∈ Y . Let ε > 0 be given.

Then the set B = {n ∈ N : un ≥ ε} ∈ I. Define ξn =

{
1
n , if n ∈ B

un + 1
n , if n /∈ B

. We show {ξn}n∈N is I-

convergent to zero. For, let ε1 > 0, we have {n : ξn ≥ ε1} = {n ∈ B : ξn ≥ ε1} ∪ {n ∈ Bc : ξn ≥ ε1} = {n :
1
n ≥ ε1} ∪ {n : un + 1

n ≥ ε1} = M1 ∪M2. Clearly M1 is finite. If n ∈ M2 then n ∈ Bc. So un < ε. Now
un + 1

n ≥ ε1 if 1
n ≥ ε1 −un i.e. if 1

n ≥ ε1 − ε which is for finite number values of n. Therefore M2 is finite. As
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I is admissible, M1 ∪M2 ∈ I. Hence I- limn→∞ ξn = 0. Now, for all z ∈ Y , we have ∥fn(x)− f(x), z∥ ≤
supx∈X ∥fn(x)− f(x), z∥ < supx∈X ∥fn(x)− f(x), z∥ + 1

n = un + 1
n = ξn if n ∈ Bc where B ∈ I.

Therefore {n ∈ N : ∥fn(x)− f(x), z∥ ≥ ξn} ∈ I. As I- limn→∞ ξn = 0, fn
I−e−−→ f . Hence the theorem

follows. ■

Now we intend to proceed with the notion of I∗-equal convergence in linear 2-normed spaces.

Definition 3.10. Let f, fn : X → Y, n ∈ N. The sequence {fn}n∈N is said to be I∗-equal convergent to f if
there exists a set M = {m1 < m2 < · · · < mk · · · } ∈ F(I) and a sequence {εk}k∈M of positive reals with
limk→∞ εk = 0 such that for every x ∈ X , there is a number p ∈ N and for every z ∈ Y , ∥fmk

(x)− f(x), z∥ <

εk for all k ≥ p. In this case we write fn
I∗−e−−−→ f .

We proceed to investigate the relationship between I-equal and I∗-equal convergence in linear 2-normed
spaces.

Theorem 3.11. Let f, fn : X → Y, n ∈ N. If fn
I∗−e−−−→ f then fn

I−e−−−→ f .

Proof. We assume fn
I∗−e−−−→ f . Then there exist a set M = {m1 < m2 < · · · < mk · · · } ∈ F(I) and a

sequence {εk}k∈M of positive reals with limk→∞ εk = 0 such that for every x ∈ X , there is a number p ∈ N
and for every z ∈ Y , ∥fmk

(x)− f(x), z∥ < εk for k > p. Then clearly ∥fn(x)− f(x), z∥ ≥ εn holds for
n ∈ (N\M)∪{m1,m2, · · · ,mp}. This implies {n : ∥fn(x)− f(x), z∥ ≥ εn} ⊂ (N\M)∪{m1,m2, · · · ,mp}.

Since I is admissible, {n : ∥fn(x)− f(x), z∥ ≥ εn} ∈ I. Hence fn
I−e−−−→ f . ■

Remark 3.12. The converse of the above theorem may not hold in general as shown by the following example.

Example 3.13. Consider a decomposition N =
⋃∞

i=1 Di such that each Di is infinite and Di ∩ Dj = ϕ for
i ̸= j. Let I be the class of all subsets of N which intersects only a finite number of D

′

is. Then I is a non-trivial
admissible ideal. Let f, fn : X → Y, n ∈ N such that {fn}n∈N is uniformly convergent to f and fn ̸= f for
any n ∈ N. Then for each ε > 0 there exists p ∈ N such that for all x ∈ X, z ∈ Y , ∥fn(x)− f(x), z∥ < ε

for all n > p. Define a sequence {gn}n∈N by gn = fj if n ∈ Dj . Then for all x ∈ X, z ∈ Y the set
{n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε} ⊂ D1 ∪D2 ∪ · · · ∪Dp. Therefore {n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε} ∈ I.

Hence gn
I−u−−−→ f . By the Theorem 3.9, gn

I−e−−−→ f .

Now we shall show that {gn}n∈N is not I∗-equal convergent in Y . If possible let gn
I∗−e−−−→ f . Now, by

definition, if H ∈ I, then there is a p ∈ N such that H ⊂ D1 ∪ D2 ∪ · · · ∪ Dp. Then DP+1 ⊂ N \ H and
so we have gmk

= fp+1 for infinitely many of k
′
s. Let z ∈ Y be linearly independent with fp+1 − f(x). Now

we have limn→∞ ∥gmk
(x)− f(x), z∥ = ∥fp+1(x)− f(x), z∥ ̸= 0. Which shows that {gn}n∈N is not I∗-equal

convergent in Y .

Now we see, if X and Y are countable and I satisfies the condition (AP ) then the converse of the Theorem

3.11 also holds. In the next theorem we investigate whether the two concepts fn
I−e−−−→ f and fn

I∗−e−−−→ f coincide
in linear 2-normed spaces when I is a P -ideal.

Theorem 3.14. Let f, fn : X → Y, n ∈ N and let X and Y be countable sets. Then fn
I−e−−−→ f implies

fn
I∗−e−−−→ f whenever I is a P -ideal.

Proof. From the given condition there exists a sequence {σn}n∈N of positive reals with I- limn→∞ σn = 0 and
for every z ∈ Y and for each x ∈ X , there is a set B = B(x, z) ∈ F(I), ∥fn(x)− f(x), z∥ < σn for all
n ∈ B. Now by Theorem 2.2, I∗- limn→∞ σn = 0. So we will get a set H ∈ F(I) for which {σn}n∈H is
convergent to zero. Since X and Y are countable sets, so X × Y is countable. So let us enumerate X × Y by
{(xi, zi) : xi ∈ X, zi ∈ Y, i = 1, 2, . . .}. So for each element (xi, zi) ∈ X × Y , there is a set Bi = B(xi, zi) ∈
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F(I), we have ∥fn(xi)− f(xi), zi∥ < σn for all n ∈ Bi. I-being a P -ideal, there is a set A ∈ F(I) such that
A \ Bi is finite for all i. So for every z ∈ Y and for all n ∈ A ∩H except for finite number of values, we have

∥fn(x)− f(x), z∥ < σn. Therefore fn
I∗−e−−−→ f . Hence the theorem follows. ■

Theorem 3.15. Let f, fn : X → Y, n ∈ N. Suppose that fn
I−e−−−→ f implies fn

I∗−e−−−→ f . Then I satisfies the
condition (AP ).

Proof. Let f, fn : X → Y, n ∈ N such that {fn}n∈N is uniformly convergent to f and fn ̸= f for any n ∈ N.
Then for each ε > 0 there exists p ∈ N such that for all x ∈ X, z ∈ Y , ∥fn(x)− f(x), z∥ < ε for all n > p.
Suppose {M1,M2, · · · } be a class of mutually disjoint non empty sets from I. Define a sequence {hn}n∈N by

hn =

{
fj , if n ∈ Mj

f, if n ∈ N \
⋃

j Mj

. First of all we shall show that hn
I−u−−−→ f . Let ε > 0 be given. Observe that the

set M = M1 ∪M2 ∪ . . . ∪Mp ∈ I and for all x ∈ X, z ∈ Y , we have ∥hn(x)− f(x), z∥ < ε for all n ∈ M c.

i.e. {n ∈ N : ∥hn(x)− f(x), z∥ ≥ ε} ⊂ M1 ∪M2 ∪ · · · ∪Mp ∈ I. Therefore hn
I−u−−−→ f . By the Theorem 3.9

we have hn
I−e−−−→ f . So by the given condition hn

I∗−e−−−→ f . Therefore there is a set B ∈ I such that

H = N \B = {a1 < a2 < · · · < ak < · · · } ∈ F(I) and hak

e−→ f. (3.1)

Put Bj = Mj ∩ B (j = 1, 2, · · · ). So {B1, B2, · · · } is a class of sets belonging to I. Now
⋃∞

j=1 Bj =⋃∞
j=1(Mj ∩B) = (B ∩ {

⋃∞
j=1 Mj} ⊂ B. Since B ∈ I it follows

⋃∞
j=1 Bj ∈ I. Now from the equation 3.1 we

see that the set Mj has a finite number of elements common with the set N \ B. So Mj△Bj ⊂ Mj ∩ (N \ B).
Therefore Mj△Bj is finite. Therefore I satisfies the condition AP . ■
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