

https://doi.org/10.26637/MJM0804/0092

Fuzzy α - ψ^* operator on fuzzy hyperconnected, fuzzy door and fuzzy Urysohn spaces

M. Rowthri^{1*} and B. Amudhambigai²

Abstract

In this paper, based on the concept of ψ^* operator on a family of fuzzy α -open sets in a fuzzy topological space, the notion of fuzzy $\alpha - \psi^*$ semi-open sets is introduced and fuzzy $\alpha - \psi^*$ hyperconnected spaces is established via fuzzy $\alpha \cdot \psi^*$ semi-open sets. Likely, the ideas of fuzzy $\alpha \cdot \psi^*$ -submaximal spaces, fuzzy $\alpha \cdot \psi^*$ -door spaces and fuzzy $\alpha \cdot \psi^*$ -Urysohn spaces are established and a few of their captivating properties are examined.

Keywords

Fuzzy $\alpha - \psi^*$ -semi-open sets, fuzzy $\alpha - \psi^*$ -dense sets, fuzzy $\alpha - \psi^*$ -hyperconnected spaces, fuzzy $\alpha - \psi^*$ -nowhere dense sets, fuzzy $\alpha - \psi^*$ -submaximal spaces, fuzzy $\alpha - \psi^*$ -door spaces and fuzzy $\alpha - \psi^*$ -Urysohn spaces.

AMS Subject Classification 54A40, 03E72.

^{1,2} Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India. *Corresponding author: ¹rowth3.m@gmail.com ²rbamudha@yahoo.co.in Article History: Received 14 August 2020; Accepted 18 October 2020

©2020 MJM.

Contents

1	Introduction1890
2	Preliminaries
3	Fuzzy α - ψ *-hyperconnected spaces, Fuzzy α - ψ *-door spaces and fuzzy α - ψ *-Urysohn spaces 1891
4	Conclusion1893
	References

1. Introduction

Zadeh [9] initiated fuzzy set in 1965. Chang [2] characterized fuzzy topological space. α -open sets were instigated and explored by Njastad [5] in ordinary perspective. Bin Shahna [1], proposed fuzzy α -open sets and fuzzy α -closed sets. Thompson inquested the notion of irreducible or hyperconnected topological spaces. In this paper, based on the concept of ψ^* operator on a family of fuzzy α -open sets in a fuzzy topological space [7], the notion of fuzzy $\alpha - \psi^*$ semi-open sets is propounded and fuzzy $\alpha \cdot \psi^*$ hyperconnected spaces is established via fuzzy $\alpha \cdot \psi^*$ semi-open sets. Likely, the ideas of fuzzy α - ψ *-submaximal spaces, fuzzy α - ψ *-door spaces and fuzzy $\alpha - \psi^*$ -Urysohn spaces are established and a few of their captivating properties are examined.

2. Preliminaries

In this section some basic definitions and preliminary results are presented.

Definition 2.1. [4] A non-empty subset *F* of a topological space is irreducible if whenever $F \subseteq A \cup B$ for closed sets A and *B* then $F \subseteq A$ or $F \subseteq B$.

Definition 2.2. [7] Let (X, τ) be a fuzzy topological space. A function

$$\psi^*: F\alpha O(X, \tau) \to I^X$$

is called a fuzzy operator on $F\alpha O(X,\tau)$, if for each $\mu \in$ $F\alpha O(X,\tau)$ with $\mu \neq 0_X$, $Fint(\mu) \leq \psi^*(\mu)$ and $\psi^*(0_X) = 0_X$.

Remark 2.1. [7] It is easy to check that some examples of fuzzy operators on $F\alpha O(X, \tau)$ are the well known fuzzy operators viz. *Fint*, *Fint*(*Fcl*), *Fcl*(*Fint*), *Fint*(*Fcl*(*Fint*)) and Fcl(Fint(Fcl)).

Definition 2.3. [7] Let (X, τ) be a fuzzy topological space and Ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Then any fuzzy α -open set $\mu \in I^X$ is called fuzzy $\alpha \cdot \psi^*$ -open if $\mu \leq \psi^*(\mu)$. The complement of a fuzzy $\alpha - \psi^*$ -open set is said to be a fuzzy α - ψ *-closed set.

Notation 2.1. [7] Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. The family of all fuzzy $\alpha - \psi^*$ -open (resp. fuzzy $\alpha - \psi^*$ -closed) sets in (X, τ) is denoted by $F\alpha - \psi^* - O(X, \tau)$ (resp. $F\alpha - \psi^* - C(X, \tau)$).

Definition 2.4. [7] Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. For any $\mu \in I^X$, the fuzzy $\alpha - \psi^*$ -interior of μ (briefly, $F\alpha - \psi^* - int(\mu)$) is defined by

$$F\alpha \cdot \psi^* \cdot int(\mu) = \lor \{ \sigma : \sigma \le \mu \text{ and each } \sigma \in I^X \text{ is a fuzzy} \\ \alpha \cdot \psi^* \text{ open set } \}.$$

Definition 2.5. [7] Let (X, τ) be a fuzzy topological space. Let ψ^* be a fuzzy operator on $F \alpha O(X, \tau)$. For any $\mu \in I^X$, the fuzzy $\alpha \cdot \psi^*$ -closure of μ (briefly, $F \alpha \cdot \psi^* \cdot cl(\mu)$) is defined by

$$F\alpha \cdot \psi^* \cdot cl(\mu) = \wedge \{ \sigma : \sigma \ge \mu \text{ and each } \sigma \in I^X \text{ is a fuzzy} \\ \alpha \cdot \psi^* \text{-closed set } \}.$$

Definition 2.6. [7] Let (X, τ) be a fuzzy topological space. Let ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Then (X, τ) is said to be a fuzzy $\alpha - \psi^*$ -irreducible space, if for any $\mu_1, \mu_2 \in F\alpha - \psi^* - O(X, \tau)$ where $\mu_1 \neq 0_X, \mu_2 \neq 0_X, \mu_1 q \mu_2$.

Definition 2.7. [8] A fuzzy point p in X is a fuzzy set with membership function

$$\mu_p(x) = \begin{cases} y, & \text{for } x = x_0 \\ 0, & \text{otherwise} \end{cases}$$

where 0 < y < 1. p is said to have support x_0 and value y. The collection of all fuzzy points in (X, τ) is denoted by $\mathscr{FP}(X)$

Definition 2.8. [6] A fuzzy set μ_A is quasi-coincident with the fuzzy set μ_B iff $\exists x \in X$ such that $\mu_A(x) + \mu_B(x) > 1$.

Definition 2.9. [3] A prelilter \mathfrak{F} on *X* is a nonempty collection of subsets of I^X with the properties: (i) If $F_1, F_2 \in \mathfrak{F}$ then $F_1 \wedge F_2 \in \mathfrak{F}$ (ii) If $F \in \mathfrak{F}$ and $F' \geq \mathfrak{F}$, then $F' \in \mathfrak{F}$ (iii) $0 \notin \mathfrak{F}$.

3. Fuzzy α - ψ^* -hyperconnected spaces, Fuzzy α - ψ^* -door spaces and fuzzy α - ψ^* -Urysohn spaces

In this section the characterisation of fuzzy $\alpha - \psi^*$ -Hyper connected Spaces using the concept of fuzzy $\alpha - \psi^*$ -semi-open sets is studied. In addition, $\alpha - \psi^*$ -submaximal spaces, fuzzy $\alpha - \psi^*$ -door spaces and fuzzy $\alpha - \psi^*$ -Urysohn spaces are discussed.

Definition 3.1. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F \alpha O(X, \tau)$. Any $\lambda \in I^X$ is said to be a fuzzy $\alpha - \psi^*$ -semi-open, if there exists a $\gamma \in F \alpha - \psi^* - O(X, \tau)$ such that $\gamma \leq \lambda \leq F \alpha \psi^* c l(\gamma)$. Then the complement of fuzzy $\alpha - \psi^*$ -semi-open is said to be fuzzy $\alpha - \psi^*$ -semi-closed.

Notation 3.1. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Then the collection of all fuzzy $\alpha - \psi^*$ -semi-open sets in (X, τ) is denoted by $F\alpha - \psi^* - SO(X, \tau)$ and the collection of all fuzzy $\alpha - \psi^*$ -semiclosed sets in (X, τ) is denoted by $F\alpha - \psi^* - SC(X, \tau)$.

Definition 3.2. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Any $\lambda \in I^X$ is said to be a fuzzy $\alpha - \psi^*$ -dense set in (X, τ) if there exists no $\mu \in F\alpha - \psi^* - C(X, \tau)$ in (X, τ) such that $\lambda < \mu < 1_X$. That is, $F\alpha - \psi^* - cl(\lambda) = 1_X$

Definition 3.3. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F \alpha O(X, \tau)$. Then (X, τ) is said to be a fuzzy $\alpha - \psi^*$ -hyperconnected space if every $\lambda \in F \alpha - \psi^* - O(X, \tau)$ is fuzzy $\alpha - \psi^*$ -dense in (X, τ) .

Remark 3.1. Let (X, τ) be a fuzzy $\alpha - \psi^*$ -hyperconnected space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Any $\lambda \in F\alpha - \psi^* - SO(X, \tau)$ if and only if there exists a $\mu \in F\alpha - \psi^* - O(X, \tau)$ such that $\mu \leq \lambda$.

Proof. Let $\lambda \in F \alpha \cdot \psi^* \cdot SO(X, \tau)$. By the Definition 3.1, there exists $\gamma \in F \alpha \cdot \psi^* \cdot O(X, \tau)$ such that $\gamma \leq \lambda$.

Conversely assume that, $\gamma \leq \lambda$, $\gamma \in F \alpha \cdot \psi^* \cdot O(X, \tau)$. Since (X, τ) is a fuzzy $\alpha \cdot \psi^*$ -hyperconnected space, $F \alpha \cdot \psi^* \cdot cl(\gamma) = 1_X$. Thus $\gamma \leq \lambda \leq F \alpha \cdot \psi^* \cdot cl(\gamma)$. Hence $\lambda \in F \alpha \cdot \psi^* \cdot SO(X, \tau)$.

Definition 3.4. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Any fuzzy set $\lambda \in I^X$ in (X, τ) is said to be a fuzzy $\alpha - \psi^*$ -nowhere dense if there exists no $\mu \in \alpha - \psi^* - O(X, \tau)$ with $\mu \neq 0_X$ such that $\mu < F\alpha - \psi^* - cl(\lambda)$. That is., $F\alpha - \psi^* - int(F\alpha - \psi^* - cl(\lambda)) = 0_X$ or $F\alpha - \psi^* - cl(F\alpha - \psi^* - int(1_X - \lambda)) = 1_X$.

Proposition 3.1. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Then the following statements are equivalent:

- (a) (X, τ) is fuzzy $\alpha \psi^*$ -hyperconnected;
- (b) λ is fuzzy α-ψ^{*}-dense or fuzzy α-ψ^{*}-nowhere dense for every λ ∈ l^X;
- (c) (X, τ) is fuzzy $\alpha \psi^*$ -irreducible

Proof. (**a**) \Rightarrow (**b**)

Let (X, τ) be fuzzy $\alpha \cdot \psi^*$ -hyperconnected and $\lambda \in I^X$. Suppose λ is not a fuzzy $\alpha \cdot \psi^*$ -nowhere dense. Then

 $F \alpha - \psi^* - cl(F \alpha - \psi^* - int(1_X - \lambda)) \neq 1_X;$ Thus $F \alpha - \psi^* - cl(1_X - F \alpha - \psi^* - cl(\lambda)) \neq 1_X;$ this implies that $1_X - F \alpha - \psi^* - int(F \alpha - \psi^* - cl(\lambda)) \neq 1_X;$ and so $F \alpha - \psi^* - int(F \alpha - \psi^* - cl(\lambda)) \neq 0_X.$ Since (X, τ) is fuzzy $\alpha - \psi^*$ -hyperconnected, $F \alpha - \psi^* - cl(F \alpha - \psi^* - int(F \alpha - \psi^* - cl(\lambda))) = 1_X.$ Since $F \alpha - \psi^* - cl(F \alpha - \psi^* - int(F \alpha - \psi^* - cl(\lambda)))$ $\leq F \alpha - \psi^* - cl(\lambda),$

it follows that $1_X \leq F \alpha \cdot \psi^* \cdot cl(\lambda)$. Also, $F \alpha \cdot \psi^* \cdot cl(\lambda) \leq 1_X$. Thus $F \alpha \cdot \psi^* \cdot cl(\lambda) = 1_X$. Hence λ is fuzzy $\alpha - \psi^*$ -dense. (**b**) \Rightarrow (**c**)

Suppose that, for some $0_X \neq \lambda_1, \lambda_2 \in F \alpha \cdot \psi^* \cdot O(X, \tau), \lambda_1 q'$

 λ_2 . Then $F\alpha - \psi^* - cl(\lambda_1) \not\in \lambda_2$. Then λ_1 is not fuzzy $\alpha - \psi^* - dense$. Since $\lambda_1 \in F\alpha - \psi^* - O(X, \tau)$,

$$\begin{split} \lambda_1 &= F \alpha \cdot \psi^* \text{-}int(\lambda_1) \\ \text{and hence } \lambda_1 &\leq F \alpha \cdot \psi^* \text{-}int(F \alpha \cdot \psi^* \text{-}cl(\lambda_1)). \end{split}$$

Since $\lambda_1 \neq 0_X$, $F\alpha - \psi^* int(F\alpha - \psi^* - cl(\lambda_1)) \neq 0_X$. Thus λ_1 is not fuzzy $\alpha - \psi^*$ -nowhere dense. This contradicts (b). Hence $\lambda_1 q \lambda_2$, for every $\lambda_1, \lambda_2 \in F\alpha - \psi^* - O(X, \tau)$ where $\lambda_1 \neq 0_X, \lambda_2 \neq 0_X$.

 $(\mathbf{c}) \Rightarrow (\mathbf{a})$

Let (X, τ) be a fuzzy $\alpha - \psi^*$ -irreducible space. Then for every $\lambda_1, \lambda_2 \in F \alpha - \psi^* - O(X, \tau), \lambda_1 + \lambda_2 \ge 1_X$. Suppose that (X, τ) is not a fuzzy $\alpha - \psi^*$ -hyperconnected space. Then there is $\mu \in F \alpha - \psi^* - O(X, \tau)$ such that μ is not fuzzy $\alpha - \psi^*$ -dense in (X, τ) . Therefore $F \alpha - \psi^* - cl(\mu) \neq 1_X$. Thus $(1_X - F \alpha - \psi^* cl(\mu))$ and μ are fuzzy $\alpha - \psi^*$ -open sets in (X, τ) such that

 $([1_X - F\alpha\psi^* - cl(\mu)] + \mu) \le 1_X$. This contradicts (c). Hence (X, τ) is a fuzzy $\alpha \cdot \psi^*$ -hyperconnected space.

Proposition 3.2. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. If (X, τ) is fuzzy $\alpha - \psi^*$ -hyperconnected then $F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$ (0_X is excluded from $F\alpha - \psi^* - SO(X, \tau)$) is a fuzzy filter on (X, τ) .

Proof. Let (X, τ) be a fuzzy $\alpha - \psi^*$ -hyperconnected space. Then (X, τ) is a fuzzy $\alpha - \psi^*$ -irreducible space. If $\lambda_1, \lambda_2 \in F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$, then there exists $\mu_1, \mu_2 \in F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$ such that $\mu_1 \leq \lambda_1$ and $\mu_2 \leq \lambda_2$. Since (X, τ) is $\alpha - \psi^*$ -irreducible, $(\mu_1 \wedge \mu_2) \neq 0_X, (\lambda_1 \wedge \lambda_2) \neq 0_X$. Hence $\lambda_1 \wedge \lambda_2 \in F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$. Let $\lambda_1 \in F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$ and $\lambda_1 \leq \lambda_2$. Then there exists a $\mu_1 \in F\alpha - \psi^* - O(X, \tau) - \{0_X\}$ such that $\mu_1 \leq \lambda_1$. Thus $\mu_1 \leq \lambda_2$. Therefore $\lambda_2 \in F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$. Hence $F\alpha - \psi^* - SO(X, \tau) - \{0_X\}$ is a fuzzy filter on (X, τ) .

Definition 3.5. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Then (X, τ) is said to be a fuzzy α - ψ^* -submaximal space if and only if every fuzzy α - ψ^* -dense set $\lambda \in I^X$ is fuzzy α - ψ^* -open in (X, τ) .

Definition 3.6. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F \alpha O(X, \tau)$. Then (X, τ) is said to be a fuzzy $\alpha - \psi^*$ -door space if every fuzzy set $\lambda \in I^X$ is either fuzzy $\alpha - \psi^*$ -open or fuzzy $\alpha - \psi^*$ -closed in (X, τ) .

Proposition 3.3. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Every fuzzy $\alpha - \psi^*$ -door space (X, τ) is a fuzzy $\alpha - \psi^*$ -submaximal space.

Proof. Let $\lambda \in I^X$ be a fuzzy $\alpha \cdot \psi^*$ -dense set. If $\lambda \notin F \alpha \cdot \psi^* - O(X, \tau)$, then $\lambda \in F \alpha \cdot \psi^* - C(X, \tau)$, since (X, τ) is a fuzzy $\alpha \cdot \psi^*$ -door space. Then $\lambda = F \alpha \cdot \psi^* - cl(\lambda) = 1_X$. That is, $\lambda = 1_X$ which shows that λ is not a proper fuzzy set. This is a contradiction to the fact that λ is a fuzzy $\alpha \cdot \psi^*$ -dense set. Therefore $\lambda \in F \alpha \cdot \psi^* - O(X, \tau)$. Hence (X, τ) is a fuzzy $\alpha \cdot \psi^*$ -submaximal space.

Proposition 3.4. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F \alpha O(X, \tau)$. Every fuzzy $\alpha - \psi^*$ -irreducible submaximal space (X, τ) is a fuzzy $\alpha - \psi^*$ -door space.

Proof. Let $\lambda \in I^X$ and λ be a fuzzy $\alpha - \psi^*$ -dense in (X, τ) . Since (X, τ) is fuzzy $\alpha - \psi^*$ -submaximal, $\lambda \in F \alpha - \psi^* - O(X, \tau)$. Suppose that λ is not fuzzy $\alpha - \psi^*$ -dense in (X, τ) . Then there exists $\mu \in F \alpha - \psi^* - O(X, \tau)$ such that $\mu < (1_X - \lambda)$. Since (X, τ) is fuzzy $\alpha - \psi^*$ -dense in (X, τ) . Then $(1_X - \lambda)$ is fuzzy $\alpha - \psi^*$ -dense in (X, τ) . Again by submaximality of (X, τ) , $(1_X - \lambda) \in F \alpha - \psi^* - O(X, \tau)$. Therefore $\lambda \in F \alpha - \psi^* - C(X, \tau)$. Thus in any case $\lambda \in F \alpha - \psi^* - O(X, \tau)$ or $\lambda \in F \alpha - \psi^* - C(X, \tau)$. Hence (X, τ) is a fuzzy $\alpha - \psi^*$ -door space.

Definition 3.7. Let (X, τ) be a fuzzy topological space and ψ^* be a fuzzy operator on $F\alpha O(X, \tau)$. Then (X, τ) is said to be a fuzzy $\alpha - \psi^*$ -Urysohn space if for every pair of fuzzy points $x_{t_1}, y_{t_2} \in \mathscr{FP}(X)$ and $x_{t_1} \not\in y_t$ there exist $\lambda, \mu \in F\alpha - \psi^* - SO(X, \tau)$ with $\lambda \neq 1_X, \mu \neq 1_X \in I^X$ such that $x_t \leq \lambda$, $y_t \leq \mu$ and $F\alpha - \psi^* - cl(\lambda) \not\in F\alpha - \psi^* - cl(\mu)$.

Definition 3.8. Let (X, τ) and (Y, σ) be any two fuzzy topological spaces. Let ψ_1^* and ψ_2^* be fuzzy operators on $F \alpha O(X, \tau)$ and $F \alpha O(Y, \sigma)$ respectively. Any function $f : (X, \tau) \to (Y, \sigma)$ is said to be a fuzzy $\alpha - \psi_{12}^*$ -irresolute function if $f^{-1}(\lambda) \in F \alpha - \psi_1^* - O(X, \tau)$ for every $\lambda \in F \alpha - \psi_2^* - O(Y, \sigma)$.

Proposition 3.5. Let (X, τ) and (Y, σ) be any two fuzzy topological spaces. Let ψ_1^* and ψ_2^* be fuzzy operators on $F\alpha O(X, \tau)$ and $F\alpha O(Y, \sigma)$ respectively. Then for any function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (a) *f* is a fuzzy α - ψ_{12}^* -irresolute function;
- (b) $f(F\alpha \psi_1^* cl(\lambda)) \leq F\alpha \psi_2^* cl(f(\lambda))$ for every $\lambda \in I^X$;
- (c) $F \alpha \psi_1^* cl(f^{-1}(\mu)) \le f^{-1}(F \alpha \psi_2^* cl(\mu))$ for every $\mu \in I^Y$.

Proof. (a) \Rightarrow (b) Let f be a fuzzy $\alpha \cdot \psi_{12}^*$ -irresolute function. Let $\lambda \in I^X$. Then $F\alpha \cdot \psi_2^* - cl(f(\lambda)) \in F\alpha \cdot \psi_2^* - C(Y, \sigma)$. By (a), $f^{-1}(F\alpha \cdot \psi_2^* - cl(f(\lambda))) \in F\alpha \cdot \psi_1^* - C(X, \tau)$. Now, $\lambda \leq f^{-1}(f(\lambda))$ Thus $F\alpha \cdot \psi_1^* - cl(\lambda) \leq F\alpha \cdot \psi_1^* - cl(f^{-1}(f(\lambda)))$ $\leq F\alpha \cdot \psi_1^* - cl(f^{-1}(F\alpha - \psi_2^* cl(f(\lambda))))$ $= f^{-1}(F\alpha - \psi_2^* - cl(f(\lambda)))$. Hence, $f(F\alpha - \psi_1^* cl(\lambda)) \leq F\alpha \cdot \psi_2^* cl(f(\lambda))$. (b) \Rightarrow (c) Let $\mu \in I^Y$ then $f^{-1}(\mu) \in I^X$. By (b), $f(F\alpha - \psi_1^* - cl(f^{-1}(\mu))) \leq F\alpha - \psi_2^* - cl(f(f^{-1}(\mu)))$

$$f(F\alpha - \psi_1 - ci(f(\mu))) \leq F\alpha - \psi_2 - ci(f(f(\mu))))$$
$$\leq F\alpha - \psi_1^* ci(\mu)$$

Thus $f^{-1}(f(F\alpha - \psi_1^* - cl(f^{-1}(\mu)))) \leq f^{-1}(F\alpha - \psi_2^* - cl(\mu))$ Then $F\alpha - \psi_1^* - cl(f^{-1}(\mu)) \leq f^{-1}(F\alpha - \psi_2^* - cl(\mu))$. (c) \Rightarrow (a) Let $\gamma \in F \alpha - \psi_2^* - C(Y, \sigma)$. Then, $F \alpha - \psi_2^* - cl(\gamma) = \gamma$. By (c), it follows that

 $F\alpha - \psi_1^* - cl(f^{-1}(\gamma)) \le f^{-1}(F\alpha - \psi_2^* - cl(\gamma))$ = $f^{-1}(\gamma)$

But, $f^{-1}(\gamma) \leq F \alpha \cdot \psi_1^* \cdot cl(f^{-1}(\gamma))$. Therefore, $f^{-1}(\gamma) = F \alpha \cdot \psi_1^* \cdot cl(f^{-1}(\gamma))$. Hence $f^{-1}(\gamma) \in F \alpha \cdot \psi_1^* \cdot C(X, \tau)$. Thus f is a fuzzy $\alpha \cdot \psi_{12}^*$ -irresolute function.

Proposition 3.6. Let (X, τ) be a fuzzy $\alpha - \psi_1^*$ -irreducible space, (Y, σ) be a fuzzy $\alpha - \psi_2^*$ -Urysohn space and ψ_1^* and ψ_2^* be fuzzy operators on $F\alpha O(X, \tau)$ and $F\alpha O(Y, \sigma)$ respectively. If $x_t \in \mathscr{FP}(X), y_t \in \mathscr{FP}(Y)$ and $f : (X, \tau) \to (Y, \sigma)$ is a fuzzy $\alpha - \psi_{12}^*$ -irresolute function, then $f(x_t) = y_t$ for all $x_t \in \mathscr{FP}(X)$.

Proof. Suppose that there exist $x_{t_1}, x_{t_2} \in \mathscr{FP}(X)$ with $x_{t_1} \not q$ x_{t_2} such that $f(x_{t_1}) \neq f(x_{t_2})$. Since (Y, σ) is a fuzzy $\alpha - \psi_2^*$ -Urysohn space, there exist $\lambda, \mu \in F\alpha - \psi_2^* - O(Y, \sigma)$ with $\lambda \neq 1_Y$ and $\mu \neq 1_Y$ such that $f(x_{t_1}) \leq \lambda, f(x_{t_2}) \leq \mu$ and $F\alpha - \psi_2^* - cl(\lambda) \not q F\alpha - \psi_2^* - cl(\mu)$. By the fuzzy $\alpha - \psi^*$ -irresoluteness of f, there exist $\gamma, \delta \in F\alpha - \psi_1^* - O(X, \tau)$, such that $x_{t_1} \leq \gamma, x_{t_2} \leq \delta$ and $f(F\alpha - \psi_1^* - cl(\gamma)) \leq F\alpha - \psi_2^* - cl(\lambda)$ and $f(F\alpha - \psi_1^* - cl(\delta)) \leq F\alpha - \psi_2^* - cl(\mu)$. Therefore, $F\alpha - \psi_1^* - cl(\gamma)$

 $f(r \ \alpha \cdot \varphi_1 \cdot ct(\delta)) \leq r \ \alpha \cdot \varphi_2 \cdot ct(\mu)$. Therefore, $r \ \alpha \cdot \varphi_1 \cdot ct(\gamma)$ $q' \ F \alpha \cdot \psi_1^* \cdot cl(\delta)$. Thus $\gamma \ q' \ \delta$. This contradicts the assumption that (X, τ) is fuzzy $\alpha \cdot \psi^*$ -irreducible. Therefore $f(x_{t_1}) = f(x_{t_2})$ for all $x_{t_1}, x_{t_2} \in \mathscr{FP}(X)$ with $x_{t_1} \ q' x_{t_2}$.

4. Conclusion

In this paper, in view of the idea of ψ^* operator on a family of fuzzy α -open sets in a fuzzy topological spaces, the notion of fuzzy α - ψ^* semi-open sets is introduced and fuzzy α - ψ^* hyperconnected spaces is established by means of fuzzy α - ψ^* semi-open sets. Likely, the ideas of fuzzy α - ψ^* -submaximal spaces, fuzzy α - ψ^* -door spaces and fuzzy α - ψ^* -Urysohn spaces are established and a few of their captivating properties are discussed.

References

- A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, *Fuzzy Sets and Systems*, 44(1991), 303–308.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [3] M. A. De Prada Vicente, Fuzzy filters, Journal of Mathematical Analysis And Applications, 129(1988), 560-568.
- [4] Z. Dondsheng and H. W. Kin, On topologies defined by irreducible sets, *Journal of Logical and Algebraic Methods in Programming*, 84(2000), 185-195.
- [5] O. Njastad, On some classes of nearly open sets, *Pacific Journal of Mathematics*, 15(1965), 961–970.
- [6] P. M. Pu and Y. M. Liu, Fuzzy topology, I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, *J. Math. Anal Appl.*, 76(1980), 571-599.

- ^[7] M. Rowthri, and B. Amudhambigai, Fuzzy α - ψ ^{*}irreducible spaces, *International Journal of Recent Technology and Engineering*, 9(2020), 208-211.
- [8] C. K. Wong, Fuzzy points and local properties of fuzzy topology, *Journal of Mathematical Analysis and Applications*, 46 (1974), 316-328.
- [9] L. A. Zadeh, Fuzzy sets, *Information and Control*, 1965, 338-353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

