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Mathematical analysis of mosquito population
global dynamics using delayed-logistic growth
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Abstract
Malaria is a major public health issue in many parts of the world, and the anopheles mosquitoes which drive
transmission are key targets for interventions. Consequently, a best understanding of mosquito populations
dynamics is necessary in the fight against the disease. Hence, in this paper we propose a delayed mathematical
model of the life cycle of anopheles mosquitoes by using delayed-logistic population growth. The model is
formulated by inserting the time delay into the logistic population growth rate, that accounts for the period of
growth from eggs to the last aquatic stage, which is pupae. Depending on the system parameters, we establish
a threshold for survival and extinction of the anopheles mosquitoes population. Moreover, by choosing the time
delay as a bifurcation parameter, we prove that the system loses its stability and a Hopf bifurcation occurs when
time delay passes through some critical values. Finally, we perform some numerical simulations and the results
are well in keeping with the analytical analysis.
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1. Introduction
Many diseases such as malaria, dengue, West Nile virus

etc, are transmitted by mosquitoes. To achieve a high level
of effectiveness in reducing the mosquito population and ac-
cordingly the vector-borne diseases, a best understanding of
mosquito populations dynamics is necessary [12, 18]. Math-
ematical models have been used for many years to gain in-
sights into the complex underlying the global dynamic of the
mosquito populations. And then, different perspectives of the
mosquito growth mechanism such as density dependence, age

structure, seasonal variation have been raised and treated by
several authors. Therefore, most of the earlier studies dealing
with mosquito population dynamics are ordinary differential
equations (ODE). Otherwise, it is well known that introducing
the time delays into ODE models is an excellent approach
to deal with the latency period in the vector growth dynamic.
The last source of delays in vector-borne models comes from
the adaptive maturation delays of the vector. Many vectors,
which are arthropods, undergo several life stages before they
reach adulthood and are able to transmit the disease. For
instance, a mosquito’s life cycle consists of three successive
juvenile phases (egg, larva, pupa) before reaching the adult
phase. It usually takes about 1-2 weeks before mosquitoes
mature to adulthood, a time frame which is largely relative
to the average lifespan of the mosquito. To account for this
delay, delay-differential equation models with delay in recruit-
ment are composed [11, 24]. Indeed, the three first stages are
all aquatic and the adult stage is aerial. The newly emerged
adult rests on the surface of the water for a short time to allow
itself to dry and all to harden its body parts. The wings have
to spread out and dry properly before the mosquito can fly.
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Blood feeding and mating does not occur before a couple of
days following the adults emergence.

Studies on the population structure of mosquitoes have
important implications for the prediction and the assessment
of the effects of many vector control strategies. In the ex-
isting literatures there are several papers which deal with
mosquito populations growth dynamics. In [12], Koutou et
al. have proposed an autonomous mathematical model of
mosquito growth dynamics including the immature stages of
the vectors. And more recently, by considering the climate
effects and applying the theory of uniform persistence and
the Floquet theory, Traoré et al. [24] have extended the study
proposed by Koutou et al. Due to the complexity of the dynam-
ics of mosquito populations, and since only the adult female
mosquitoes are responsible for transmitting diseases, therefore
in general, models only focus on describing the dynamics of
adult female mosquitoes, [7, 17]. Usually, the total size of the
mosquito population is treated as a constant value or the sim-
plest model of population growth due to Malthus is used. This
model is fairly unrealistic, especially for a long term popula-
tion growth. Indeed, for a better growth, each of these aquatic
stages needs some available sustaining resources which is
called the carrying capacity of environment. All these reasons
lead to the introduction of the classical logistic equation by
P. F. Verhulst, [9, 18, 27] to describe populations growth in
an environment with limited resources. Furthermore, many
other factors enter in the development from the immature
stages to the adult one. For instance, how long each stage
lasts depends on both temperature and species characteris-
tics. Hutchinson [9, 25] pointed out that the classical logistic
population growth would be inappropriate for the description
of population growth in the case where there is a time lag
involved in the processes. He has then proposed in [10] a
delay logistic-growth model to study the dynamics of single
species.

Generally, two different techniques are usually used to de-
termine the asymptotic stability of delay differential equations.
One is to study the eigenvalues of the linearized equations.
The other is the direct Lyapunov’s method, which is most
frequently and simply used to establish the global stability
[15, 22]. However, the main difficulty is to find suitable Lya-
punov functionals for delay differential equations. In this
work we propose a delay logistic growth model to investigate
how delay affects the mosquitoes growth dynamics. Moreover,
the stability of the model has been established by using the
eigenvalues of the linearized system. The analysis presented
in this paper improves and extends some earlier results on
global stability for delay single species population models
[2, 3, 20, 26].

The rest of the paper is organized as follows. In Section
2, we first derive the main model and then we give some
results for our mathematical analysis in Section 3. Section
4 is devoted to the model analysis and the numerical results
illustrations. Finally, we comment ours findings and conclude
the paper in Section 5.

2. Mathematical formulation of the model

As described above, the complete metamorphosis of the
mosquito entails going through four distinct stages of develop-
ment, namely egg, larva, pupa that are aquatic states and adult
mosquito stages that is terrestrial. Eggs can resist dessication
and wait for several months before hatching. When stimu-
lated or under suitable conditions, eggs hatch and give rise
to larvae, who feed on small particles in the water, and take
from 3 days to several weeks especially in tempered areas to
develop fully and reach the pupa stage. Pupae still move in
the water but do not feed anymore. This stage lasts 1-3 days
and leads to emergence, that is the beginning of the aerial or
adult stage. So, we have two life stages for mosquitoes with
different nutritional and habitat requirements. However, for
the sake of simplicity we consider the same natural death rate
dm for both aquatic state Lm and terrestrial state Nm(that are
assumed to be only female mosquitoes).

Several works do exist that are addressing mosquito popu-
lation dynamics modeling. However, in most of the previous
models that have been proposed, the authors have explicitly
considered each stage of the vector life cycle when formu-
lating the campartmental model [14, 23, 25]. To study the
impact of time on the dynamics, we skip certain steps in the
mosquito’s biology and then represent the rest of the steps by
a delay parameter. Furthermore, to be more realistic, we con-
sider the bio-transition or mass transfer coefficient from the
aquatic stage to the terrestrial state, that is νm. Perhaps using
νmαmLm as a first term in the second equation will account for
successful transition from Lm to Nm through the mass transfer
coefficient νm.

So, when we denote by τ , the maturation delay, then the

classical logistic coefficient becomes 1− Lm(t− τ)

K
.

Lm Nm
αm

dm dm

b

Figure 1. Transfer diagram of mosquito population growth:
the dashed arrows indicate the direction of oviposition and
the solid arrows represent the transition from one stage to
another.

On the one hand, with regards to the different parame-
ters that have been carefully described in Table 1 and on the
other hand by making the input-output balance through the
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Para. Description
b represents the intrinsic laying egg of the females,
αm is the transfer rate from the last immature

stage to adult mosquito,
dm is the natural death rate,
νm is the bio-transition coefficient from Lm to Nm,
τ is the length of maturation delay from egg to pupa.

Table 1. Description of the model parameters

flowchart in Figure 1 we obtain the following system :
L′m(t) = bNm(t)

(
1− Lm(t− τ)

K

)
− (dm +αm)Lm(t),

N′m(t) = νmαmLm(t)−dmNm(t),
(2.1)

3. Mathematical analysis of the model
Let us introduce the following initial conditions for system

(2.1).
For any θ ∈ [−τ,0],

Lm(θ) = ϕ1(θ), Nm(θ) = ϕ2(θ), ϕ = (ϕ1,ϕ2)
T ∈ C (3.1)

such that ϕi(θ)≥ 0, (i = 1,2) for all θ ∈ [−τ,0].
Let C denotes the Banach space C([−τ,0],R2

+) of con-
tinuous functions mapping the interval [−τ,0] into R2

+ is
equipped with the sup norm: ||ϕ|| = sup

−τ≤θ≤0
|ϕi(θ)|, (i =

1,2).
For a biological meaning, [13, 27], we suppose that, ϕ1(θ)>

0 and ϕ2(θ)> 0.

Proposition 3.1. Let X :=C([−τ,0],R2
+\{(0,0)}). Then for

any given initial conditions ϕ(θ) = (ϕ1(θ),ϕ2(θ))∈X, there
is a unique solution of system (2.1) satisfying (Lm(θ),Nm(θ))=
ϕ(θ), θ ∈ [−τ,0], and the solution remains positive and
bounded.

Proof. We aim at establishing the boundedness of the solution.
By method used in [3], one can show that for each ϕ(θ) ∈ X ,
there is a unique solution of (2.1) through out ϕ(θ). Denote
this solution by (Lm(t,ϕ),Nm(t,ϕ)). If t0 > 0 is the first time
that Lm(t0) and Nm(t0) become zero respectively, then L′m(t)≥
0 and N′m(t)≥ 0 by (2.1), which is impossible. Therefore, the
solution (Lm(t),Nm(t)) remains positive for all t ≥ 0.

We now show that the solution is bounded. Let M1 =
νmαmK

dm
and M2 = max

−τ≤θ≤0
ϕ2(θ).

If we denote M̄ = max{M1,M2}, then we claim that Nm(t)≤
M̄. It is obvious that Nm(t)≤M2 ≤ M̄ for t ∈ [−τ,0]. If t1 is
the first time at which Nm(t) reaches M̄, that is Nm(t) = M̄.
Then,

N′m(t) ≤ νmαmK−dmM̄

≤ dm (M1− M̄)

< 0

This implies that when Nm(t) reaches M̄, it will be decreasing.
Therefore, Nm(t)≤ M̄ for all t ≥ 0. As Lm(t)≤K for all t ≥ 0,
it then follows that the solution is bounded.

Theorem 3.2. The positive orthant{
(Lm,Nm) ∈ R2

+ : Lm ≥ 0,Nm ≥ 0
}

(3.2)

is positively invariant for system (2.1).

Proof. The right hand side of (2.1) is completely continuous
and locally Lipschitzian on C . So, from [8, 15] we deduce
that the solution (Lm(t),Nm(t)) of (2.1) exists and is unique
on [0, tmax), where tmax represents the maximal time.

Let x = (Lm,Nm). We will prove that the set {Lm ≥ 0} is
positively invariant. Then, let L(x) =−Lm. L is differentiable
and ∇L(x) = (−1,0) 6= 0R2 for all
x ∈ L−1(x) = {x ∈ R2 : L(x) = 0}.

The vector field on the set {Lm = 0} is given by A(x) =(
bNm
−dmNm

)
Then, 〈A(x)/∇L(x)〉 = −bNm < 0; this proves that the set
{Lm ≥ 0} is positively invariant. Similarly, we prove that
{Nm ≥ 0} is positively invariant.

With regards to the initial conditions given above (3.1),
the basic theory of delay differential equations guarantees that
the solution of system (2.1) exists and is unique for all t ≥ 0.

Let us consider the following threshold parameter which
is the mosquito reproduction number

Rm =
bνmαm

dm(dm +αm)
. (3.3)

The mosquito population growth dynamic is fully determined
by the threshold parameter Rm and commonly called mosquito
reproduction number. It has been highlighted in several stud-
ies dealing with mosquito growth dynamic and vector-borne
diseases. Mathematical studies have proven that this threshold
parameter is highly involved in the transmission dynamics of
arboviral diseases such as dengue fever, malaria, chikunguya
[12, 16, 25].

Let τ0 the critical delay value for the mosquito-free equi-
librium. Since (0,0) is a single nonnegative equilibrium in
the space X defined in Proposition 3.1 for τ < τ0, according
to the well-known Hayes theorem [3] and Theorem 2.3.1 of
[20, 21], we have the following theorem:

Theorem 3.3.

(i) If Rm≤ 1 and τ ≤ τ0 then system (2.1) admits mosquito-
free equilibrium (0,0) which is globally asymptotically
stable in (R∗+)2.

(ii) If Rm ≤ 1 and τ > τ0 then the mosquito-free equilib-
rium is unstable.
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Proof. By linearizing system (2.1) at mosquito-free equilib-
rium (0,0) we obtain that{

L′m(t) =−(dm +αm)L(t− τ)+bNm(t),
N′m(t) = νmαmLm(t)−dmNm(t).

(3.4)

Seeking for solutions of system (2.1) of the form (Lm(t),Nm(t))=
(Lm(0)eλ t ,Nm(0)eλ t) we are led to the following system{
−(dm +αm)Lm(0)eλ te−λτ +bNm(0)eλ t = λLm(0)eλ t

νmαmLm(0)eλ t −dmNm(0)eλ t = λNm(0)eλ t .
(3.5)

Canceling eλ t from each term and rearranging them gives{
−(dm +αm +λ )Lm(0)e−λτ +bNm(0) = 0,

νmαmLm(0)− (dm +λ )Nm(0) = 0.
(3.6)

This is equivalent to

0 = ∆(λ )

(
Lm(0)
Nm(0)

)
(3.7)

where the matrix ∆(λ ) is given by

∆(λ ) =

(
−(dm +αm +λ )e−λτ b

νmαm −(dm +λ )

)
.(3.8)

There is nontrivial solution if and only if det(∆(λ )) = 0. Thus,
the characteristic polynomial equation for the linearized sys-
tem (3.4) is

bνmαm− (dm +λ )(dm +αm +λ )e−λτ = 0. (3.9)

The asymptotic stability of the zero solution is equivalent to
the condition that all roots of the characteristic equation (3.9)
have negative real parts.

If τ = 0, then the characteristic equation (3.9) becomes

λ
2 +(αm +2dm)λ +dm(dm +αm)−bνmαm = 0.(3.10)

In this case the discriminant of equation (3.10) is given by

D = α
2
m (1−4bνmdm)+4d2

m (1−bνmαm)+4dmαm

Assuming dm ≤
1
4

αm and bνmαm ≤ 1, we have the following
roots

λ1 =−(αm +2dm)−
√

D

and λ2 =−(αm +2dm)+
√

D

It is obvious that λ1 < 0. Otherwise, λ2 < 0 means leads to
bνmαmdm (dm +αm)< 0 which is absurd since all the constant
involved are positive. Thus, for τ = 0 the mosquito-free
equilibrium is unstable.

Now, suppose that τ > 0. By corollary 2.4 in [19], it fol-
lows that if instability occurs for a particular value of the delay,
a characteristic root of (3.9) must intersect the imaginary axis.
Suppose that (3.9) has a purely imaginary root iω , with ω > 0.
Let

p1 = αm +2dm, q1 = dm(dm +αm) and r1 = bνmαm.(3.11)

It follows that

λ
2e−λτ + p1λe−λτ +q1e−λτ − r1 = 0. (3.12)

Then, by developing and separating real and imaginary parts
in (3.12), we have

(q1−ω
2)cos(ωτ)+ p1ω sin(ωτ) =−r1 (3.13)

(q1−ω
2)sin(ωτ)+ p1ω cos(ωτ) = 0. (3.14)

Squaring both sides of (3.13) and (3.14) at a first time and
adding them at a second time, the following equation is hold

ω
4 +(p2

1−2q1)ω
2 +q2

1− r2
1 = 0. (3.15)

This means that, there exists at least one root for the char-
acteristic equation (3.12) which crosses the positive part of
the imaginary axis of the complex plane. So, an instability
occurs.

From the equation (3.14), we obtain a critical delay value
for the mosquito-free equilibrium as follows

τ0 =
1
ω

(
arctan

(
p1ω

ω2−q1

)
+ lπ

)
, l ∈ N,q1−ω

2 6= 0.(3.16)

Theorem 3.4. Let τ1 be the critical time delay for the endemic
equilibrium.

(i) If Rm > 1 and τ ≤ τ1 holds, the positive equilibrium
E∗=(L∗m,N

∗
m) of system (2.1) is globally asymptotically

stable in R2
+.

(ii) If Rm > 1 and τ > τ1 holds, the positive equilibrium
E∗ = (L∗m,N

∗
m) of system (2.1) is unstable.

Proof. We assume that Rm > 1. The problem of Cauchy
associated with system (2.1) is described by{ dF

dt
(t) = F(Xt),

X0 = ϕ,
(3.17)

where ϕ represents an initial condition defined in 3.1 and the
function F is C ∞ given by

F(ϕ) =

 b
(

1− Lm(t− τ)

K

)
Nm− (dm +αm)Lm

νmαmLm−dmNm

 .(3.18)

Then, the function is locally Lipschitzian. So, we deduce the
existence and the uniqueness of the solution for (3.17).

Let us consider system (2.1) with delay and logistic equa-
tion. Since the presence of the delay does not change the
number of the equilibrium solutions in the system, the exis-
tence of the equilibria follows from the same argument as for
the ODE systems in [6]. So, L̄m(t) = L̄m(t− τ) and then we
seek the equilibria of our system (2.1) by solving

b
(

1− L∗m
K

)
N∗m− (dm +αm)L∗m = 0 (3.19)

αmαmL∗m−dmN∗m = 0. (3.20)

From (3.20), we have

N∗m =
νmαm

dm
L∗m
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and substituting it in (3.19) we obtain

L∗m = K
(

1− 1
Rm

)
.

So, we find the same equilibrium point as in the ODE case.
The linearization of (2.1) at

E∗ =
(

K
(

1− 1
Rm

)
,

Kνmαm

dm

(
1− 1

Rm

))
gives

L′m(t) =−
bνmαm

dm
Lm(t− τ)+

b
Rm

Nm(t)

N′m = νmαmLm(t)−dmNm(t).
(3.21)

Positing

Lm(t) = Lm(0)eλ t and Nm(t) = Nm(0)eλ t ,

it follows that −
(

λ +
bνmαm

dm

)
Lm(0)e−λτ +

b
Rm

Nm(0) = 0

νmαmLm(0)− (λ +dm)Nm(0) = 0.
(3.22)

System (3.22) can be rewritten as

0 = ∆1(λ )

(
Lm(0)
Nm(0)

)
(3.23)

where the matrix ∆1(λ ) is

∆1(λ ) =

 −(λ +
bνmαm

dm

)
e−λτ

b
Rm

νmαm −(dm +λ )

 .(3.24)

There is nontrivial solution if and only if det(∆1(λ )) = 0. This
implies that

(λ +dm)

(
λ +

bνmαm

dm

)
e−λτ −dm(dm +αm) = 0.(3.25)

If τ = 0, then the characteristic equation (3.25) becomes

λ
2 +

(
dm +

bνmαm

dm

)
λ +bνmαm−dm(dm +αm) = 0.(3.26)

From (3.26), it follows that all the characteristic roots have
negative real parts. And then, the endemic equilibrium is
locally asymptotically stable.

Now, consider that τ > 0. We let λ = iξ ,(ξ > 0) be a
root of the characteristic equation (3.26). Then, positing

p = dm +
bνmαm

dm
, q = bνmαm and r = dm(dm +αm)

we have(
(iξ )2 + ipξ +q

)
(cos(ξ τ)− isin(ξ τ))− r = 0. (3.27)

Developing and separating equation (3.27) into real part and
imaginary part, we have

(q−ξ
2)cos(ξ τ)+ pξ sin(ξ τ) =−r (3.28)

(q−ξ
2)sin(ξ τ)− pξ cos(ξ τ) = 0 (3.29)

Squaring both sides of (3.28) and (3.29) at a first time and
adding them at a second time, we obtain the following result

ξ
4 +(p2−2q)ξ 2 +q2− r2 = 0. (3.30)

It implies that there is at least one positive root for the charac-
teristic equation (3.10). In this case, it exists a critical delay
value for what the endemic equilibrium is unstable.

From equation (3.29), we have the critical delay value as
follows for ξ τ 6= kπ,k ∈ N,

τ1 =
1
ξ

(
arctan

(
pξ

q−ξ 2

)
+ jπ

)
, j ∈ N, q−ξ

2 6= 0(3.31)

4. Some numerical results
In this section, we present a few samples of numerical

simulations to illustrate our theoretical results using Matlab
solver dde23. Stable, periodic and unstable solutions have
been presented according to the different values of the delay
τ . For the positive equilibrium, we have first used a value of
the delay less than the critical value τ1 and we have obtained
stable solutions. Then, we have taken a delay value greater
than the critical delay value τ1 to show the occurrence of Hopf
bifurcation. The following initial conditions have been used:
Lm(0) = 120 and Nm(0) = 60.

Figure 2 shows that mosquito-free equilibrium is globally
asymptotically stable whenever the threshold parameter Rm
is less than unity and the time delay is below the critical delay
value τ0.

Figure 3 illustrates the global stability of the positive equi-
librium. It is obtained by choosing parameter values that lead
to Rm greater than one and a delay value that is below to the
critical delay τ1.

Increasing of the time delay value leads to the loss of
monotonicity and to the appearance of oscillations and causes
the system to lose stability and exhibit limit cycle behavior
(see Figure 4). Then, as the length of the time delay is increas-
ing, the mosquito population size is decreasing.

5. Discussions and conclusion
Time delays are integral parts of ecological systems, and

as such, may help in explaining underlying mechanisms of
complex population dynamics such as population fluctuations.
Moreover, the choice of the delayed underlying ecological
process is an important determinant of overall population dy-
namics. Hence, the idea developed in this study is addressing
a very salient issue in mosquito control which in turn will
be useful for the vector-borne diseases control problem. The
equilibrium points of the system have been determined and the
basic reproduction number Rm of the mosquito population is
defined. However, the stability of equilibria is one of the most
important issues in the study of any model of single species
population [2, 4, 5]. We have mainly investigated the effect of
time delays on the stability of the model equilibria by using

1902



Mathematical analysis of mosquito population global dynamics using delayed-logistic growth — 1903/1905

Figure 2. Evolution of eggs, larva, pupa and adults for b = 2,
dm = 0.36, αm = 0.07, νm = 0.27, K = 500, τ = 0.64. We
get Rm = 0.90 which is less than unity.

the eigenvalues of the linearized system method. Based on the
numerical simulations presented in our paper, we found that
large delays would make the steady states unstable because
they would lead to oscillations and cyclic behavior that are not
observed when delays are very small [1, 2, 11, 22]. However,
a delay in negative feedback mechanisms such as intraspecific
competition always results in an instability and thus leads to
populations cycles or even to populations extinction [11].
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