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Abstract
In this paper, we introduce a new class of diagram algebras which are subalgebras of cyclic G-Brauer algebras,
called the Walled cyclic G-Brauer algebras denoted by Wr,s(x), where r,s ∈N and x is an indeterminate. The
cellularity and the necessary and sufficient condition for Wr,s(x) to be quasi- hereditary are established.
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1. Introduction
Walled Brauer algebras is an algebra consisting of walled

Brauer diagrams as basis which are studied in various aspects
by [1, 3, 5, 16]. Walled Brauer algebra is a subalgebra of
Brauer algebra introduced by [2].

This motivated Kethesan [9], to introduce walled signed
Brauer algebras which are subalgebras of signed Brauer alge-
bras introduced by [14]. Walled signed Brauer algebra is an
algebra consisting of walled signed Brauer diagrams as basis.

In this paper, we generalize the algebra to walled cyclic G-
Brauer algebra and study its generators, relations, cellularity
and the necessary and sufficient condition for cyclic G-Brauer
algebra to be quasi heriditary. Walled cyclic G-Brauer algebra
is an algebra consisting of walled cyclic G-Brauer diagrams
which are subalgebra of cyclic G-Brauer algebra introduced
by [15].

2. Preliminaries
In this section, we give the fundamental definitions and

theorems from [7].

Definition 2.1. Let q,Q1, . . . ,Qr be elements of a commuta-
tive ring R with unity and q invertible. An associative unital
R-algebra with generators T0,T1, . . . ,Tn−1 is said to be Ariki-
Koike algebra H subject to the following relations

(T0−Q1) · · ·(T0−Qr) = 0
T0T1T0T1 = T1T0T1T0

(Ti +1)(Tiq) = 0 for i = 1 to n−1
Ti+1TiTi+1 = TiTi+1Ti for i = 1 to n−2

TiTj = TjTi for 0≤ i < j−1≤ n−2

Definition 2.2. Suppose that a = {a1,a2, . . . ,ar} is an r−
tuple of integers such that 0 ≤ ai ≤ n for all i. Let u+a =
ua,1ua,2 . . .ua,r where

ua,k =
ak

∏
m=1

(Lm−Qk)

for 1 ≤ k ≤ r where Lm = q1−mTm−1 · · ·T1T0T1 · · ·Tm−1 for
m = 1,2, . . . ,n.

A finite sequence α = (α1,α2, . . .) of non-negative inte-
gers is called a composition. Denote |α| = the sum of this
sequence. An ordered r-tuple λ = (λ (1), . . . ,λ (r)) of compo-
sitions λ (k) such that ∑

r
k=1 |λ (k)|= n is called a multicomposi-

tion of n. We call λ (k) the kth component of λ . A composition
whose parts are non-increasing is called a partition. A mul-
tipartition if all its components are partitions is said to be
multicomposition.



Cellularity and representations of walled cyclic G-Brauer algebras — 1907/1911

To each multicomposition λ = (λ (1), . . . ,λ (r)) of n we
associate the Young subgroup Sλ =Sλ1 ×Sλ2 ×·· ·×λ (r)

of Sn.
Let λ = (λ1, . . . ,λm) be a composition of n. A Young

diagram is an array of boxes having m left justified rows with
row j containing λ j boxes.

A λ -tableau t = (t(1), . . . , t(r)), with λ = (λ1, . . . ,λr) a
multicomposition of n, is obtained from the Young diagram
of λ by filling each boxes 1,2, . . . ,n without repetition. We
call the tableaux t(k) the components of t.

A λ -tableau t = (t(1), . . . , t(r)), with λ = (λ1, . . . ,λr) is
row standard if the entries in each row of each component
increase from left to right, let t ↓ m, with 1≤ m≤ n, denotes
this multicomposition. A λ -tableau t = (t(1), . . . , t(r)), with
λ = (λ1, . . . ,λm) is standard if the rows are increasing from
left to right and columns are increasing from top to bottom in
each component.

We say s dominates t (sD t) if s ↓mD t ↓m for all m with
1≤ m≤ n. If sD t and s 6= t then sB t where s and t are row
standard λ -tableau and µ-tableau respectively.

Let tλ be the λ -tableau where 1,2, . . . ,n appear in order
along the rows of the first component, second component and
so on. The row stabiliser tλ is the Young subgroup Sλ of Sn.

For a row standard λ -tableau s, let s = tλ d(s) where
d(s) ∈ Sn. Then d(s) is a distinguished right coset repre-
sentative of Sλ in Sn.

Notation 2.3. Let λ be a multicomposition of n and define
a = {a1,a2, . . . ,ar} by ak = ∑

k−1
i=1 ai. Let xλ = ∑w ∈ Sλ Tw,

mλ = u+a xλ and mst = T ∗d(s)mλ Td(t) where s and t are row
standard λ -tableaux.

Let Nλ be the R− module spanned by mst for all standard
µ-tableaux s and t of n with µDλ for some multipartition µ

of n.
Let Nλ be the R− module spanned by mst for all standard

µ-tableaux s and t of n with µBλ for some multipartition µ

of n.
Let zλ = (Nλ +mλ )/Nλ . The Specht module Sλ is the

submodule of H/Nλ given by Sλ = zλH.
Let Dλ = Sλ/radSλ .

Theorem 2.4. [7] Suppose that R is a field. Then the non-zero
H modules in {Dλ |λ a multipartition of n} form a complete
set of non-isomorphic irreducible H−modules. Moreover,
each irreducible module Dλ is absolutely irreducible.

Definition 2.5. [8, 9] Let A be an associative algebra over
the field K. The associative algebra A is called a cellular
algebra with cell datum (Λ,M,C, i) if following conditions
are satisfied:

1. The finite set Λ is partially ordered. Associated with
each λ ∈ Λ there is a finite set M(λ ). The algebra A
has an K− basis Cλ

S,T where (S,T ) runs through all
elements of M(λ )×M(λ ) for all λ ∈ Λ.

2. The map i is an K− linear anti-automorphism of A with
i2 = id which sends Cλ

S,T to Cλ
T,S.

3. For each λ ∈ Λ and S,T ∈M(λ ) and each a ∈ A, the
product aCλ

S,T can be written as(
∑

U∈M(λ )
ra(U,S)Cλ

U,T

)
+ r′, where r′ is a linear com-

bination of basis elements with upper index µ strictly
smaller than λ , and where the coefficients ra(U,S) ∈ K
do not depend on T.

An equivalent definition which does not use bases is as
follows.

Definition 2.6. [9, 11] Let A be an algebra over a Noetherian
commutative integral domain R. Assume there is an involution
i on A. A two sided ideal J in A is called a cell ideal if and only
if i(J) = J and there exists a left ideal ∆ ⊂ J such that ∆ is
finitely generated and free over R and there is an isomorphism
of A-bimodules α : J ' ∆⊗R i(∆) (where i(∆) ⊂ J is the i-
image of ∆) making the following diagram commutative.
The algebra A (with the involution i) is called cellular if and
only if there is an R-module decomposition A = J′1⊕ J′2⊕
. . .⊕ J′n (for some n) with i(J′j) = J′j for some j and such that

setting J j = ⊕ j
i=1J′i gives a chain of two-sided ideals of A:

0 = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = A (each of them fixed by i)
and for each j( j = 1, ......,n) the quotient J′j = J j/J j−1 is a
cell ideal( with respect to the involution induced by i on the
quotient) of A/J j−1.

Definition 2.7. Given a k-algebra C , a k-vector space V,
and a bilinear form φ : V ⊗V → C , Konig and Xi define a
(possibly nonunital) algebra structure on Aφ

C ,V =V ⊗V ⊗C
by setting the product of two basis elements to be

(a⊗b⊗ x).(c⊗d⊗ y) = a⊗d⊗ xφ(b,c)y.

If i is an involution on C with i(φ(v,w)) = φ(v,w) then there
is an involution j on Aφ

C ,V given by

j(a⊗b⊗ x) = b⊗a⊗ i(x).

The algebra Aφ

C ,V is called the inflation of C along V.

Proposition 2.8. [9, 12] An inflation of a cellular algebra is
cellular again. In particular, an iterated inflation of n copies
of R is cellular, with a cell chain of length n.

Theorem 2.9. [9, 12] Any cellular algebra over R is the iter-
ated inflation of finitely many copies of R. Conversely, any
iterated inflation of finitely many copies of R is cellular.

Definition 2.10. [9, 13] Let A be a k-algebra. An ideal J in
A is called a heredity ideal if J is idempotent, J(rad(A))J = 0
and J is a projective left(or, right) A-module. The algebra
A is called quasi-hereditary provided there is a finite chain
0 = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = A of ideals of A such that
J j/J j−1is a heredity ideal in A/J j−1 for all j. Such a chain is
then called a heredity chain of the quasi-hereditary algebra A.
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3. Walled cyclic G-Brauer algebra
An edge is said to be a signed edge if the edge is labelled

by the elements of the cyclic group Zk. Hereafter, edge means
signed edge.

Definition 3.1. A walled cyclic G-Brauer diagram is a signed
diagram with r + s = n signed edges, 2(r + s) vertices ar-
ranged in two rows of r+ s vertices each which is separated
by a wall between r and n− r vertices in the top and bottom
row such that

• degree of each vertex is one

• each edge consists of exactly two vertices

• the horizontal edge (the edge joining the vertices in the
same row) must cross the wall and the vertical edge
(the edge joining the vertices in different rows) should
not cross the wall.

Let Vr,s be the set of all walled cyclic G-Brauer diagrams.
For example, the diagram in V3,2 is

1 2 3 4 5

1’ 2’ 3’ 4’ 5’

g

g

gg2

Multiplication in Vr,s

Let d1,d2 ∈ Vr,s. Draw d2 below d1 and join the vertex i of
d2 with vertex (i′) of d1. Then d1d2 = x∑i lid, where li is the
number of loops labelled by gi and new edge (new loop)
obtained in the product d1d2 is labelled by the product of
group elements obtained from d1 and d2 to form this new
edge (new loop).

Let d1,d2 ∈V3,2.

Then d1d2 is

1 2 3 4 5

1’ 2’ 3’ 4’ 5’

1 2 3 4 5

1’ 2’ 3’ 4’ 5’

1d  =2d

g g2
g

g

g

g

g3

g2

g2

g4

1 2 3 4 5

1’ 2’ 3’ 4’ 5’

g

g

gg2

e

=x 3

Definition 3.2. The walled cyclic G-Brauer algebra Wr,s(x)
is a vector space spanned by Vr,s over F(x), where F is any
field of characteristic p≥ 0 which is algebraically closed and
x is arbitrary.

The group algebra F(Zk oSr+s), where Sr+s is a symmetric
group of (r+ s) symbols and Zk is a cyclic group of order
k, can be viewed as walled cyclic G-Brauer diagram with no
horizontal edge.

Now we can compare walled cyclic G-Brauer algebra
Wr,s(x) with F(Zk oSr+s).

Define a map f : F(Zk o Sr+s)→Wr,s(x) by making the
vertical edges crossing the wall as horizontal edges without
changing the labelling. Clearly the map f is an isomorphism.

Hence, dim(Wr,s(x)) = dim(F(Zk oSr+s)) = kr+s(r+ s) !
Let

1 2 i (i+1) (r+ s)

1′ 2′ i′ (i+1)′ (r+ s)′

(i−1)

(i−1)′
hi = eg eee e

1 2 i (i+1) (r+ s)

1′ 2′ i′ (i+1)′ (r+ s)′

si = ee e e e

where g is the generator of Zk and e is the identity of Zk.
Recall, [DJM, AV, etc] F(Zk oSr+s) is generated by h1 and

si for i = 1 to (r+ s−1) subject to the relation

1. hk
1 = 1

2. s2
i = 1 for i = 1 to r+ s−1

3. sis j = s jsi for |i− j| ≥ 2
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4. sisi+1si = si+1sisi+1 for i = 1 to ≤ r+ s−2

5. sih1 = h1si for 2≤ i≤ r+ s−1

6. h1s1h1s1 = s1h1s1h1

7. sihi+1 = hisi

er = . . . . . .

1 2 r−1 r r+1 r+2 r+ s

1′ 2′ (r−1)′ r′ (r+1)′ (r+2)′ (r+ s)′

e
e e e e e

e

Theorem 3.3. The walled cyclic G-Brauer algebra Wr,s(x)
is generated by the elements h,hr+1,s1, . . . ,sr−1,er,sr+1, . . . ,
sr+s−1 and satisfying the following relation:

1. s2
i = 1 for 1≤ i < r and r+1≤ i < r+ s

2. sis j = s jsi for |i− j|> 1

3. sisi+1si = si+1sisi+1 for 1≤ i < r−1 and
r+1≤ i < r+ s−1

4. hk
i = 1 for 1≤ i≤ r+ s

5. h1s1h1s1 = s1h1s1h1

6. hr+1sr+1hr+1sr+1 = sr+1hr+1sr+1hr+1

7. h1si = sih1 for i 6= 1

8. hr+1si = sihr+1 for i 6= r,r+1

9. sihi+1 = hisi for i 6= r

10. e2
r = xer

11. ersi = sier for 1≤ i < r−1,r+2≤ i < r+ s

12. ersier = er for i = r−1,r+1

13. sr−1sr+1ersr−1sr+1er
= ersr−1sr+1er = ersr−1sr+1ersr−1sr+1

14. erhrer = xer = erhr+1er

15. erhr+1 = erhr

16. hr+1er = hrer

17. erhi = hier for i 6= r,r+1

18. erhrsr+1er = erhr+2erhr+1sr+1er.

The Proof is similar as in [9] and [15]

4. Cellularity of Walled cyclic G-Brauer
algebra

Consider an arbitrary field F with r,s > 0 and x 6= 0 and
let er,s ∈Wr,s(x) be such that

er,s =
1
x2

. . . . . .

1 2 r−1 r r+1 r+2 r+ s

1′ 2′ (r−1)′ r′ (r+1)′(r+2)′ (r+ s)′

e
e e e e e

e

Therefore, er,s is an idempotent.
If x = 0 then we define er,s ∈Wr,s(x) for r ≥ 2 or

s≥ 2 such that

er,s = . . . . . .

1 2 r−1 r r+1 r+2 r+ s

e e e e e
e

e

1’ 2′ (r−1)′r′ (r+1)’(r+2)’ (r+s)’

Clearly, er,s is an idempotent in Wr,s(x).

Proposition 4.1. 1. For each r,s > 0, there is an algebra
isomorphism Φ between Wr−1,s−1(x) and er,sWr,s(x)er,s
if x 6= 0.

2. There is an algebra isomorphism between Wr−1,s−1(x)
and er,s Wr,s(x) er,s for x = 0 and r ≥ 2 or s≥ 2.x

The proof is similar to [4].
Now we define a sequence of idempotents er,s,i ∈Wr,s(x),

for x 6= 0 and r = s.
Set er,s,0 = er,s and er,s,i = Φr,s(~er−1,s−1,i−1), for 1 ≤ i ≤

min(r,s), where Φr,s is an algebra isomorphism between
Wr−1,s−1(x) and er,sWr,s(x)er,s.

For x = 0 and r = s, we define associate quotients, Wr,s,i =
Wr,s/Wr,s er,s,i Wr,s.

Consider a diagram d ∈Wr,s with a vertical edges to the
left of the wall, b vertical edges to the right and the remaining
r−a and s−b vertices are joined by horizontal edges. Define
the pair (a,b) to be the propagating vector of d ∈Wr,s.

Let d1,d2 ∈Wr,s with propagating vectors (a1,b1) and
(a2,b2) respectively then d1d2 ∈Wr,s must be a diagram with
propagating vector (a,b) where a≤ min(a1,a2) and
b≤ min(b1,b2).

Let Ji =Wr,ser,s,iWr,s then we get filtration of ideals

· · · ⊂ Ji ⊂ Ji−1 ⊂ ·· · ⊂ J1 ⊂ J0 =Wr,s (4.1)

Thus, the ideal Ji has a basis of all diagrams with propagating
vector (a,b) for some a≤ r− i and b≤ s− i. In particular, the
section Ji/Ji+1 in the filtration of equation (4.1) has a basis
of all diagrams with propagating vector (r− i,s− i).
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Clearly, we have

Wr,s/J1 ∼= F(Zk oSr×Zk oSs). (4.2)

We will denote Zk oSr×Zk oSs by Br,s.

Definition 4.2. A multi-partition µ ` qn is p-regular if it does
not contain p equal parts in all the residue classes.

Since F is algebraically closed, by Theorem 10.33 in [6],
we have

∧r,s
reg = {(λ L,λ R)|λ L,λ R are p-regular multipartition

of r and srespectively}.
If p = 0 or p > max(r,s) then the group algebra FBr,s is

semisimple, and
∧r,s

reg, consists of all pairs of partitions of r and
s. Hence F is Br,s-semisimple when p = 0 or p > max(r,s).

Let
∧r,s denote an indexing set for the simple Wr,s-modules.

By Proposition 4.1, define

Fr,s : Wr,s-mod→Wr−1,s−1-mod

by Fr,s(M) = er,sM where M ∈Wr,s. Clearly Fr,s is a left exact
localisation functor and define Gr−1,s−1 in the opposite direc-
tion which takes a Wr−1,s−1-module N to Wr,ser,s⊗er,sBr,ser,s N
to be the right exact globalisation functor. By standard prop-
erties of localisation functors and equation 4.2 we have for
r,s > 0 that

∧
r,s =

∧
r−1,s−1t

∧reg
r,s .

As Wr,0 ∼=W0,r ∼= F(Zk oSr) we deduce

Proposition 4.3. For x 6= 0 or r 6= s,
∧

r,s =
⊔min(r,s)

i=0
∧r−i,s−i

reg .

For convenience, we see the walled cyclic G-Brauer dia-
grams as partial one-row diagrams.

Consider d ∈Wr,s with t signed horizontal edges. Let v
represent the signed horizontal edge in the first row of d, w
represent the signed horizontal edge in the second row of d
and σd = (σ , f ) ∈ Zk oΣr−t ×Zk oΣs−t represent the signed
vertical edge such that σ(i) = j if the ith vertex in the first row
connected to the jth lower vertex in the second row where σ ∈
Sr−t×Ss−t and f : {1, . . . ,r−t,r−t+1, . . . ,r+s−2t, . . . ,r+
s− kt} −→ Zk with f (i) = j, if the corresponding edge is
labelled by g j. Therefore d = Xv,w,σd is unique.

Denote νr,s,t = {v|v ∈ d = Xv,w,σd}, which is the set of
partial one-row (r,s, t) diagrams.

Lemma 4.4. For l > 0, the algebra Jl/Jl+1 is isomorphic to
an inflation Vl ⊗Vl ⊗FBr−l,s−l of FBr−l,s−l along a free F-
module Vl of rank | νr,s,l | with respect to some bilinear form,
where Vl is the vector space over F(x) with basis νr,s,l .

Proof. The proof is similar to [5, 9, 10], we give it here for
the sake of completion.

Consider a product Xu,v,σ1 Ẋw,z,σ2 for some u,x ∈ νr,s,l and
σ1,σ2 ∈ Br−l,s−l .

Define the map φ : Vl×Vl → FBr−l,s−l as

φ(v,w) =

 0, if the product does not have
propagating vector (r− l,s− l);

xtσ , otherwise

where t is the number of closed loops in the product and σ is
the unique permutation such that Xu,v,σ1 Ẋw,z,σ2 = xtXu,z,σ1σσ2 .

Define the map ψ : Vl ⊗Vl ⊗FBr−l,s−l → Jl/Jl+1 such
that v⊗w⊗σ 7→ Xv,w,σ where Vl have basis νr,s,l . Clearly ψ

is bijective.
By the definition of inflation of FBr−l,s−l along Vl , we

have for x = (u⊗ v⊗σ1), y = (w⊗ z⊗σ2),

ψ(xẏ) = ψ(u⊗ z⊗σ1φ(v,w)σ2)

= ψ(u⊗ z⊗σ1xt
σσ2)

= xtXu,z,σ1σσ2

= Xu,v,σ1 Ẋw,z,σ2

= ψ(u⊗ v⊗σ1)ψ̇(w⊗ z⊗σ2)

Hence ψ is an algebra isomorphism.

Lemma 4.5. Let d1 ∈ Jm/Jm+1 and d2 ∈ Jn/Jn+1 be two dia-
grams in Wr,s whose preimage is u⊗ v⊗σd1 and w⊗ z⊗σd2
respectively, under the bilinear forms for their respective lay-
ers. Then the product d1d2 is either an element of Jn/Jn+1
(Jm/Jm+1) or is an element of Jn+1 (Jm+1) if n≥ m (m≥ n).

The proof follows as in lemma 4.4.
By the definition of involution, it is obvious that the in-

volution on Wr,s corresponds to the standard involution on
Vl⊗Vl⊗FBr−l,s−l which sends v⊗w⊗σ to w⊗ v⊗σ−1.

Proposition 4.6. The walled cyclic G-algebra Wr,s(x) is an
iterated inflation of group algebras of the form Br−l,s−l for
0≤ l ≤ min(r,s) along Vl .

The proof is similar as in [9].

Theorem 4.7. Let Wr,s(x) be the walled cyclic G-Brauer al-
gebra. Then

1. Wr,s(x) is cellular with a cell module ∆r,s(λ
L,λ R) for

each (λ L,λ R) ∈
∧r−l,s−l with 0≤ l ≤ min(r,s).

2. The simple modules of Wr,s(x)are indexed by all pairs
(l,λ L,λ R) where 0≤ l ≤min(r,s), (λ L,λ R)∈

∧r−l,s−l
reg

if x 6= 0 or r 6= s.

3. The simple modules of Wr,s(x)are indexed by all pairs
(l,λ L,λ R) where 0≤ l < min(r,s), (λ L,λ R)∈

∧r−l,s−l
reg

if x = 0 and r = s.

Proof. (i) A cell basis for FBr,s can be obtained as a prod-
uct of cell basis for F(Zk oSr) and F(Zk oSs) from the cellular
basis definition in [8, 10].

Hence FBr,s is cellular with cell modules of the form M�
N, where M,N are cell modules for F(Zk oSr) and F(Zk oSs)
respectively. The proof follows from proposition 4.6.

(ii) By Proposition 4.3, for x 6= 0 or r 6= s, the simple
modules of Wr,s are indexed by all pair (l,λ L,λ R), where
0≤ l ≤ min(r,s) and (λ L,λ R) ∈ Λ

r−l,s−l
reg .

(iii) In the case of x = 0, the above assertion is also valid
except that the case l = 0 (which occurs only for r even) does
not contribute a simple module.
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Corollary 4.8. The walled cyclic G-Brauer algebra Wr,s(x)
is quasi-hereditary, with heredity chain induced by the idem-
potent er,s,i if F is Br,s-semisimple, r 6= s and either x 6= 0 or
x = 0. In all other cases Wr,s(x) is not quasi-hereditary.

Proof. By the theorem we are having the same number of
simples as cell modules for r 6= s and either x 6= 0 or x = 0.
Hence the cellular algebra is quasi-hereditary. In all other
cases Wr,s is not quasi-hereditary.
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