

https://doi.org/10.26637/MJM0804/0097

Edge induced *V*4− **magic labeling of graphs**

K.B. Libeeshkumar^{1*} and V. Anil Kumar²

Abstract

Let $V_4 = \{0, a, b, c\}$ be the Klein-4-group with identity element 0 and $G = (V(G), E(G))$ be the graph with vertex set $V(G)$ and edge set $E(G)$. Let $f: E(G) \to V_4\smallsetminus\{0\}$ be an edge labeling and $f^+ : V(G) \to V_4$ denote the induced vertex labeling of *f* defined by $f^+(u) = \sum_{m=0}^{\infty} f(uv)$ for all $u \in (V(G))$. Then f^+ again induces an edge labeling *uv*∈*E*(*G*)

 $f^{++}: E(G) \to V_4$ defined by $f^{++}(uv) = f^+(u) + f^+(v)$. Then a graph $G = (V(G), E(G))$ is said to be an edge induced V_4 -Magic graph if f^{++} is constant function. The function f , so obtained is called an edge induced *V*4-Magic labeling of *G*. In this paper we discuss edge induced *V*⁴ magic labeling of some graphs.

Keywords

Klein-4-group, edge induced *V*4-magic graphs, edge induced magic labeling

AMS Subject Classification

05C78, 05C25.

¹*Department of Mathematics, C.K.G. Memorial Government College, Perambra, Kozhikode-673525, Kerala, India.*

²*Department of Mathematics, University of Calicut, Malappuram-670007, Kerala, India.*

***Corresponding author**: 1 libeesh123@gmail.com; ²anil@uoc.ac.in

Article History: Received **12** August **2020**; Accepted **29** October **2020** c 2020 MJM.

Contents

1. Introduction

In this paper we consider simple, connected, finite and undirected graphs and the Klein 4-group, denoted by V_4 = $\{0, a, b, c\}$, which is a noncyclic Abelian group of order 4 in which every nonidentity element has order 2. We refer to Frank Harary [\[1\]](#page-5-1) for the standard terminology and notations related to graph theory.

Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The *degree* of a vertex v in G is the number of edges incident at *v* and it is denoted as *deg*(*v*). Let $f: E(G) \to V_4 \setminus \{0\}$ be an edge labeling and $f^+ : V(G) \to V_4$ denote the induced vertex labeling of *f* defined by $f^+(u) =$

∑ $uv\overline{\in E(G)}$ *f*(*uv*) for all $u \in (V(G))$. Then f^+ again induces an

edge labeling f^{++} : $E(G) \rightarrow V_4$ defined by $f^{++}(uv) = f^+(u) +$ $f^+(v)$. Then a graph $G = (V(G), E(G))$ is said to be an edge induced *V*4-magic graph or simply edge induced magic graph

if $f^{++}(e)$ is a constant for all $e \in E(G)$. If this constant is *x*, then *x* is said to be the induced edge sum of the graph *G*. The function f so obtained is called an edge induced V_4 -magic labeling of *G* or simply edge induced magic labeling of *G* and it is denoted by EIM*V*4L or simply EIML. In this paper we discuss edge induced *V*4-Magic labeling of some graphs which belongs to the following categories:

- (i) $\sigma_a(V_4)$: = Set of all edge induced V_4 -magic graphs with edge induced magic labeling *f* satisfying $f^{++}(u) = a$ for all $u \in V$.
- (ii) $\sigma_0(V_4)$: Set of all edge induced V_4 -magic graphs with edge induced magic labeling *f* satisfying $f^{++}(u) = 0$ for all $u \in V$.
- (iii) $\sigma(V_4) := \sigma_a(V_4) \cap \sigma_0(V_4)$.

Figure 1 and Figure 2 represent edge induced *V*⁴ magic labeling of graph G_1 and G_2 with induced edge sums 0 and a respectively.

2. Main results

Theorem 2.1. Let $G = (V, E)$ be a graph with either each *vertex is of odd degree or even degree then* $G \in \sigma_0(V_4)$.

Proof. Let *G* be a graph with $deg(v_i) = r_i$ for $v_i \in V$, $i =$ 1,2,3,...,*n*.

Case 1: r_i is odd.

In this case, define $f : E \to V_4 \setminus \{0\}$ as $f(e) = a$ for all $e \in E$. Then $f^+(u_i) = deg(u_i)a = r_i a = a$. Thus *f*⁺⁺(*e*) = 0 for all *e* \in *E*.

Case 2: r_i is even.

In this case, define $f : E \to V_4 \setminus \{0\}$ as $f(e) = a$ for all $e \in E$. Then $f^+(u_i) = deg(u_i)a = r_i a = 0$. Thus *f*⁺⁺(*e*) = 0 for all *e* \in *E*.

Thus in both cases $f^{++} \equiv 0$. Therefore $G \in \sigma_0(V_4)$. Hence the proof.

Theorem 2.2. *Let* $G = (V, E)$ *be a graph with* $uv \in E$ *and* $f: E \to V_4 \setminus \{0\}$ *be an edge label of G then* $f^{++}(uv) =$ $\sum_{u\alpha\in E} f(u\alpha) + \sum_{\beta v\in E}$ $f(\beta v)$, *where* $\alpha \neq v$ *and* $\beta \neq u$.

Proof. Let $f : E \to V_4 \setminus \{0\}$ be an edge label of *G*, then $f^+(u) = \sum_{u \alpha \in E}$ *f*($u\alpha$) for all $u \in V$. Thus we have:

$$
f^{++}(uv) = f^+(u) + f^+(v)
$$

\n
$$
= \sum_{u\alpha \in E} f(u\alpha) + \sum_{\beta v \in E} f(\beta v)
$$

\n
$$
= \sum_{\substack{u\alpha \in E \\ v \neq \alpha}} f(u\alpha) + f(uv) + \sum_{\substack{\beta v \in E \\ u \neq \beta}} f(\beta v) + f(uv)
$$

\n
$$
= \sum_{\substack{u\alpha \in E \\ v \neq \alpha}} f(u\alpha) + \sum_{\substack{\beta v \in E \\ u \neq \beta}} f(\beta v) \text{ (Since } f(uv) \in V_4).
$$

Theorem 2.3. Induced edge sum theorem.

For any graph G, *f is an edge induced V*4*-Magic labeling of*

G if and only if the induced edge sum

$$
x = f^{++}(uv) = \sum_{\substack{u\alpha \in E \\ v \neq \alpha}} f(u\alpha) + \sum_{\substack{\beta v \in E \\ u \neq \beta}} f(\beta v) \text{ for all } (u, v) \in E.
$$
\n(2.1)

The Equation [\(2.1\)](#page-1-1) corresponding to an edge *uv* in *G*, is called induced edge sum equation of the edge *uv*.

Proof. Proof follows from the definition of edge induced magic labeling and Theorem [2.2.](#page-1-2) \Box

3. Edge Induced *V*⁴ **Magic Graphs**

In this section we discuss the necessary and sufficient condition for the admissibility of edge induced magic labeling of some general graphs like the path graph on *n* vertices P_n , the cycle graph on *n* vertices C_n , the star graph $K_{1,n}$, the complete bipartite graph $K_{m,n}$ and the complete graph K_n .

Theorem 3.1. $P_2 \in \sigma_0(V_4)$ and $P_2 \notin \sigma_a(V_4)$.

Proof. Consider the path P_2 : $v_1e_1v_2$. Let $f: E \rightarrow V_4 \setminus \{0\}$ be defined by $f(e_1) = x$, for some $x \in V_4 \setminus \{0\}$. Then $f^+(v_1) =$ *f*⁺(*v*₂) = *x*. Therefore *f*⁺⁺(*e*₁) = 0. Hence *P*₂ $\in \sigma_0(V_4)$ and $P_2 \notin \sigma_a(V_4)$. □

Corollary 3.2. $P_2 \notin \sigma(V_4)$.

Proof. Proof follows from Theorem [3.1.](#page-1-3)

Theorem 3.3. $P_3 \in \sigma_a(V_4)$ and $P_3 \notin \sigma_0(V_4)$.

Proof. Consider the path P_3 : $v_1e_1v_2e_2v_3$. Let $f: E \rightarrow V_4$. {0} be defined by $f(e_1) = x_1, f(e_2) = x_2$ for some $x_1, x_2 \in$ $V_4 \setminus \{0\}$. Then $f^+(v_1) = x_1, f^+(v_2) = x_1 + x_2, f^+(v_3) = x_2$. Therefore $f^{++}(e_1) = x_2, f^{++}(e_2) = x_1$. Then $P_3 \in \sigma_0(V_4)$ or $P_3 \in \sigma_a(V_4)$ accordingly $x_1 = x_2 = 0$ or $x_1 = x_2 = a$. Since $x_1, x_2 \in V_4 \setminus \{0\}, x_1 = x_2 = 0$ is not possible. Therefore $P_2 \notin$ $\sigma_0(V_4)$. Therefore if we take $x_1 = x_2 = a$ then f is an EIML of P_3 . Thus $P_3 \in \sigma_a(V_4)$. Hence the proof. \Box

Corollary 3.4. $P_3 \notin \sigma(V_4)$.

Proof. Clearly the proof follows from Theorem [3.3.](#page-1-4) \Box

Theorem 3.5. $P_4 \in \sigma_a(V_4)$ and $P_4 \notin \sigma_0(V_4)$.

Proof. Consider the path P_4 : $v_1e_1v_2e_2v_3e_3v_4$. Let $f: E \rightarrow$ *V*₄ \setminus {0} be defined by $f(e_1) = x_1, f(e_2) = x_2, f(e_3) = x_3$ for some $x_1, x_2, x_3 \in V_4 \setminus \{0\}$. Then $f^+(v_1) = x_1, f^+(v_2) =$ $x_1 + x_2, f^+(v_3) = x_2 + x_3, f^+(v_4) = x_3$. Therefore $f^{++}(e_1) =$ $x_2, f^{++}(e_2) = x_1 + x_3, f^{++}(e_3) = x_2$. Then $P_4 \in \sigma_0$ or $P_4 \in \sigma_a$ accordingly $x_2 = x_1 + x_3 = 0$ or $x_2 = x_1 + x_3 = a$. But $x_2 = a$ 0 is not possible. Therefore $P_4 \notin \sigma_0(V_4)$. Thus if we take $x_1 = b, x_2 = a, x_3 = c$, then *f* is an EIML of *P*₄. Hence the proof. \Box

Corollary 3.6. $P_4 \notin \sigma(V_4)$.

 \Box

Proof. Proof follows from Theorem [3.5.](#page-1-5)

 \Box

Theorem 3.7. *Pⁿ is not an edge induced magic graph for any* $n \geq 5$.

Proof. Suppose that $n \geq 5$. Consider the path defined by $P_n := v_1 e_1 v_2 e_2 v_3 e_3 \cdots v_{n-1} e_n v_n$. Let $f : E \to V_4 \setminus \{0\}$ be defined by $f(e_i) = x_i$ for some $x_i \in V_4 \setminus \{0\}$ for $i = 1, 2, 3, \ldots$, *n* − 1. Then $f^+(v_1) = x_1$, $f^+(v_2) = x_1 + x_2$, $f^+(v_3) = x_2 + x_1$ $x_3, f^+(v_4) = x_3 + x_4$ and so on. Therefore $f^{++}(e_1) = x_2$, $f^{++}(e_2) = x_1 + x_3, f^{++}(e_3) = x_2 + x_4$. Now if possible, suppose *f* is an EIML of P_n . Then we have $f^{++}(e_1) = x_2 =$ $x_2 + x_4 = f^{++}(e_3)$, which implies $x_4 = 0$, which is a contradiction to our assumption. Hence $P_n \notin \sigma_0(V_4)$ and $P_n \notin \sigma_a(V_4)$ for $n \geq 5$. \Box Hence the proof.

Corollary 3.8. $P_n \notin \sigma(V_4)$ *for any n*.

Proof. Proof of the corollary follows from Corollary [3.2,](#page-1-6) Corollary [3.4,](#page-1-7) Corollary [3.6](#page-1-8) and Theorem [3.7.](#page-2-0) \Box

Theorem 3.9. $C_n \in \sigma_0(V_4)$ *for all n.*

Proof. We can observe that the proof follows from Theorem [2.1.](#page-0-2)

Theorem 3.10. $C_n \in \sigma_a(V_4)$ *if and only if n is a multiple of* 4.

Proof. Consider the cycle defined by $C_n := v_1 e_1 v_2 e_2 v_3 e_3 \cdots$ $v_{n-1}e_{n-1}v_ne_nv_1$. Suppose *n* is a multiple of 4, say $n = 4k$, for some integer *k*. Define $f : E(C_n) \to V_4 \setminus \{0\}$ as

$$
f(e_j) = \begin{cases} b & \text{for } j = 1, 5, 9, \dots, 4k - 3, 2, 6, 10, \dots, 4k - 2 \\ c & \text{for } j = 3, 7, 11, \dots, 4k - 1, 4, 8, 12, \dots, 4k. \end{cases}
$$

Then we can prove that $f^{++}(e_j) = a$ for $j = 1, 2, 3, ..., n$. That is *f* is an EIML of C_n . Therefore in this case, $C_n \in \sigma_a(V_4)$. Conversely, suppose that *n* is not a multiple of 4. Then $n =$ $4k+1$ or $n = 4k+2$ or $n = 4k+3$ for some integer k. If possible, suppose *f* is an EIML of C_n with $f(e_i) = x_i$ for $i = 1, 2, 3, \ldots, n$. Then from the induced edge sum equation of each edge, we get

$$
x_n + x_2 = x_1 + x_3 = x_2 + x_4 = x_3 + x_5 = \dots = x_{n-1} + x_1. (3.1)
$$

Case 1: $n = 4k + 1$.

In this case, Equation [\(3.1\)](#page-2-1) implies that $x_1 = x_5 = x_9 =$ $\cdots = x_n = x_4 = x_8 = x_{12} = \cdots = x_{n-1} = x_3 = x_7 = x_{11} =$ $\cdots = x_{n-2} = x_2 = x_6 = x_{10} = \cdots = x_{n-3}$. Thus in this case if we let $x_i = f(e_i) = a$ for all *i* then $f^{++}(e_i) = 0$ for all *i*. Hence $C_n \notin \sigma_a(V_4)$.

Case 2: $n = 4k + 2$.

In this case, Equation [\(3.1\)](#page-2-1) implies that $x_1 = x_5 = x_9 =$ $\cdots = x_{n-1} = x_3 = x_7 = x_{11} = \cdots = x_{n-3}$ and $x_2 = x_6 =$ $x_{10} = \cdots = x_n = x_4 = x_8 = x_{12} = \cdots = x_{n-2}$. Then if we let $f(e_1) = a$ and $f(e_2) = b$ then $f^+(v_j) = c$ for all *j*. Thus $f^{++}(e_i) = 0$ for all *i*. Hence $C_n \notin \sigma_a(V_4)$

Case 3: $n = 4k + 3$. In this case, Equation [\(3.1\)](#page-2-1) implies that $x_1 = x_5 = x_9 =$ $\cdots = x_{n-2} = x_2 = x_6 = x_{10} = \cdots = x_{n-1} = x_3 = x_7 =$

 $x_{11} = \cdots = x_n = x_4 = x_8 = x_{12} = \cdots = x_{n-3}$. Thus in this case, if we let $x_i = f(e_i) = a$ for all *i* then $f^{++}(e_i) = 0$ for all *i*. Hence $C_n \notin \sigma_a(V_4)$.

Thus from all the three cases above, we have $C_n \notin \sigma_a(V_4)$. Thus $C_n \in \sigma_a(V_4)$ if and only if *n* is a multiple of 4. Hence the proof. \Box

Corollary 3.11. $C_n \in \sigma(V_4)$ *if and only if n is a multiple of 4.*

Proof. Proof follows from Theorem [3.9](#page-2-2) and Theorem [3.10.](#page-2-3) □

Theorem 3.12. *Consider the star graph K*1,*n*, *then we have the following.*

(i) $K_{1,n} \in \sigma_0(V_4)$ *if and only if n is odd.*

(ii) $K_{1,n} \in \sigma_a(V_4)$ *if and only if n is even.*

Proof. Consider $K_{1,n}$ with vertex set $\{v, v_i : 1 = 1, 2, 3, ..., n\}$, where $vv_i \in E(K_{1,n})$ for $i = 1, 2, 3, \ldots, n$. Let f be an edge label of $K_{1,n}$, with $f(vv_i) = x_i$, then from the induced edge sum equation of each edge we have the equation:

$$
x_2 + x_3 + x_4 + \dots + x_n = x_1 + x_3 + x_4 + \dots + x_n
$$

= $x_1 + x_2 + x_3 + \dots + x_n$
:
= $x_1 + x_2 + x_3 + \dots + x_{n-1}$.

Thus we have *f* is an EIML of $K_{1,n}$ if and only if $x_1 = x_2$ $x_3 = \cdots = x_n$.

case (1) *n* is an odd integer.

Let $f(vv_i) = x_i = a$, then $f^+(v) = na = a$ and $f^+(v_i) = a$ *a*. Thus $f^{++}(vv_i) = a + a = 0$ for all *i*. Hence in this case, we can conclude that $K_{1,n} \in \sigma_0(V_4)$ and $K_{1,n} \notin$ $\sigma_a(V_4)$.

case (2) *n* is an even integer.

Let $f(vv_i) = x_i = a$, then $f^+(v) = na = 0$ and $f^+(v_i) =$ *a*. Thus $f^{++}(vv_i) = 0 + a = a$ for all *i*. Hence in this case, we can conclude that $K_{1,n} \in \sigma_a(V_4)$ and $K_{1,n} \notin$ $\sigma_0(V_4)$.

Hence the proof.

From the Theorem [3.12,](#page-2-4) we have the following corollary.

Corollary 3.13. $K_{1,n} \notin \sigma(V_4)$ *for any n*.

Theorem 3.14. *Consider the bipartite graph Km*,*n*, *then we have the following.*

(i)
$$
K_{m,n} \in \sigma_0(V_4)
$$
 for $m+n$ is even.
\n(ii) $K_{m,n} \in \sigma_0(V_1)$ for $m+n$ is even.

(ii) $K_{m,n} \in \sigma_a(V_4)$ *for* $m+n$ *is odd.*

Proof. Let $V(K_{m,n}) = \{v_1, v_2, v_3, \ldots, v_m, u_1, u_2, u_3, \ldots, u_n\},\$ where $v_i u_j \in E(K_{m,n})$ for $i = 1, 2, 3, \ldots, m$ and $j = 1, 2, 3, \ldots, n$. Let $f: E(K_{m,n}) \to V_4 \setminus \{0\}$ be defined by $f(v_i u_j) = a$ for all $v_i u_j \in E(K_{m,n}).$

Case 1: $m+n$ is even.

subcase (i) *m* and *n* are odd. In this case, we get $f^+(v_i) = na = a$ and $f^+(u_j) =$ $ma = a$. Thus $f^{++}(v_iu_j) = 0$ for all *i* and *j*.

subcase (ii) m and n are even. In this case, we get $f^+(v_i) = na = 0$ and $f^+(u_j) =$ $ma = 0$. Thus $f^{++}(v_i u_j) = 0$ for all *i* and *j*.

Thus, if $m + n$ is even then $K_{m,n} \in \sigma_0(V_4)$.

Case 2: $m+n$ is odd.

subcase (i) *m* is even *n* is odd. In this case, we get $f^+(v_i) = na = a$ and $f^+(u_j) =$ $ma = 0$. Thus $f^{++}(v_i u_j) = a + 0 = a$ for all *i* and *j*.

subcase (ii) m is odd n is even.

In this case, we get $f^+(v_i) = na = 0$ and $f^+(u_j) =$ $ma = a$. Thus $f^{++}(v_i u_j) = 0 + a = a$ for all *i* and *j*.

Thus if $m + n$ is even, then $K_{m,n} \in \sigma_a(V_4)$.

Hence the proof.

Theorem 3.15. *Let Kⁿ be the complete graph with n vertices, then* $K_n \in \sigma_0(V_4)$ *for all n.*

Proof. Consider the complete graph K_n . Let $f: E(K_n) \to$ $V_4 \setminus \{0\}$ be an edge label with $f(e) = a$ for all $e \in E(K_n)$. Then the induced vertex label f^+ becomes $f^+(u) = (n-1)a$, for all $u \in V(K_n)$. Using this, we have the induced edge label *f*⁺⁺ becomes $f^{++}(e) = 2(n-1)a = 0$, for all $e \in E(K_n)$. Thus $K_n \in \sigma_0(V_4)$ for all *n*. Hence the proof. \Box

4. Some Special Edge Induced *V*⁴ **Magic Graphs**

Here we need the following graphs.

Definition 4.1. [\[2\]](#page-5-3) *The Bistar Bm*,*ⁿ is the graph obtained by joining the central or apex vertex of* $K_{1,m}$ *and* $K_{1,n}$ *by an edge.*

Definition 4.2. [\[2\]](#page-5-3) *The Sun graph on* $m = 2n$ *vertices, denoted by Sunn*, *is the graph obtained by attaching a pendant vertex to each vertex of a n*−*cycle.*

Definition 4.3. *The Corona* $P_n \odot K_1$ *is called the comb graph CBn*.

Definition 4.4. [\[2\]](#page-5-3) *The sum of the graphs* C_n *and* K_1 *is called a* Wheel graph and it is denoted by W_n , that is $W_n = C_n + K_1$.

Definition 4.5. [\[2\]](#page-5-3) *Jelly fish graph J*(*m*,*n*) *is obtained from a* 4−*cycle v*1*v*2*v*3*v*4*v*¹ *by joining v*¹ *and v*³ *with an edge and appending the central vertex of* $K_{1,m}$ *to* v_2 *and appending the central vertex of* $K_{1,n}$ *to* v_4 *.*

Definition 4.6. [\[2\]](#page-5-3) *A triangular snake graph T Sⁿ is obtained from a path* $v_1, v_2, v_3, \cdots, v_n$ *by joining* v_i *and* v_{i+1} *to a new vertex* w_i *for* $i = 1, 2, 3, \cdots, n - 1$.

Definition 4.7. [\[6\]](#page-5-4) *An open ladder graph* $O(L_n)$, $n \geq 2$ *is obtained from two paths of length* $n-1$ *with* $V(G) = \{u_i, v_i :$ 1 ≤ *i* ≤ *n*} and $E(G) = \{u_iu_{i+1}, v_iv_{i+1} : 1 \le i \le n-1\} \cup \{u_iv_i :$ $2 \le i \le n-1$.

Theorem 4.8. *Consider Bistar graph* $B_{m,n}$ *, then we have the following.*

(i) $B_{m,n} \in \sigma_0(V_4)$ *if and only if m and n are even.*

(ii) $B_{m,n} \in \sigma_a(V_4)$ *if and only if m and n are odd.*

Proof. Let $V(B_{m,n}) = \{u, v, v_i, u_j : i = 1, 2, 3, \ldots, m, j = 1, 2, 3, \ldots, m\}$...,*n*}, where $uv, vv_i, uu_j \in E(B_{m,n})$ for $i = 1, 2, 3, ..., m$ and $j = 1, 2, 3, \ldots, n$. Let $f : E(B_{m,n}) \to V_4 \setminus \{0\}$ be an edge label defined as follows:

$$
f(e) = \begin{cases} \alpha & \text{if } e = uv \\ x_i & \text{if } e = v v_1, v v_2, v v_3, \dots, v v_m \\ y_j & \text{if } e = u u_1, u u_2, u u_3, \dots, u u_n. \end{cases}
$$

Then by considering the induced edge sum equation of the edges *vvⁱ* we have:

$$
\alpha + x_2 + x_3 + x_4 + \dots + x_m = \alpha + x_1 + x_3 + x_4 + \dots + x_m
$$

= $\alpha + x_1 + x_2 + x_3 + \dots + x_m$
: (4.1)
= $\alpha + x_2 + x_3 + x_4 + \dots + x_{m-1}$.

In the light of Equation [\(4.1\)](#page-3-1), we have $x_1 = x_2 = x_3 = \cdots =$ $x_m = \beta$ (say). Similarly by considering the induced edge sum equation of the edges uu_j one can easily prove that $y_1 = y_2$ $y_3 = \cdots = y_n = \gamma$ (say). Thus the induced edge sum equations of the edge *vvⁱ* and *uu^j* are given by

$$
\alpha + (m-1)\beta = \alpha + (n-1)\gamma.
$$

Also the induced edge sum equation of the edge *uv* is given by

$$
x_1 + x_2 + x_3 + \cdots + x_m + y_1 + y_2 + y_3 + \cdots + y_n = m\beta + n\gamma.
$$

Thus *f* is an edge induced magic label with induced edge sum *x* if and only if

$$
x = \alpha + (m-1)\beta = \alpha + (n-1)\gamma = m\beta + n\gamma.
$$
 (4.2)

Case 1: *m* and *n* are even.

In this case, Equation [\(4.2\)](#page-3-2) becomes $x = \alpha + \beta = \alpha + \beta$ $\gamma = 0$. Thus $\alpha = \beta = \gamma$, and the induced edge sum $x = 0$.

Hence in this case, $B_{m,n} \in \sigma_0(V_4)$.

Case 2: *m* and *n* are odd.

In this case, Equation [\(4.2\)](#page-3-2) becomes $x = \alpha = \beta + \gamma$. Thus in this we can choose $\beta = b$ and $\gamma = c$ then $\alpha = a$ and which implies that the induced edge sum becomes $x = a$.

Hence in this case, $B_{m,n} \in \sigma_a(V_4)$.

Case 3: *m* is even and *n* is odd.

In this case, Equation [\(4.2\)](#page-3-2) becomes $x = \alpha + \beta = \alpha = \gamma$ which implies that $\beta = 0$. That is $f(vv_i) = x_i = \beta = 0$, which a contradiction to the choice of *f*. Therefore $B_{m,n} \notin \sigma_0(V_4)$ and $B_{m,n} \notin \sigma_a(V_4)$.

Case 4: *m* is odd and *n* is even.

In this case, Equation [\(4.2\)](#page-3-2) becomes $x = \alpha = \alpha + \gamma =$ β which implies $γ = 0$. That is $f(uu_j) = y_j = γ = 0$, which a contradiction to the choice of *f*. Therefore $B_{m,n} \notin \sigma_0(V_4)$ and $B_{m,n} \notin \sigma_a(V_4)$.

Hence the proof.

Theorem 4.9. *The Sun graph Sun_n* $\in \sigma_0(V_4)$ *for all n*.

Proof. Since each vertex *Sunⁿ* is of odd degree, by Theorem [2.1](#page-0-2) the theorem follows. \Box

Theorem 4.10. *The Sun graph Sun_n* $\in \sigma_a(V_4)$ *for n is even.*

Proof. Consider a Sun graph *Sun_n* with $\{v_1, v_2, v_3, \ldots, v_n\}$ as vertex set of the corresponding C_n and w_i be the pendant vertex attached to each v_i , for $i = 1, 2, 3, \ldots, n$. Let $f : E(K_n) \to$ $V_4 \setminus \{0\}$ be defined by

$$
f(e) = \begin{cases} b & \text{if } e = v_1v_2, v_3v_4, v_5v_6, \dots, v_{n-1}v_n \\ c & \text{if } e = v_2v_3, v_4v_5, v_6v_7, \dots, v_nv_1 \\ b & \text{if } e = v_1w_1, v_3w_3, v_5w_5, \dots, v_{n-1}w_{n-1} \\ c & \text{if } e = v_2w_2, v_4w_4, v_6w_6, \dots, v_nw_n. \end{cases}
$$

Then we can easily prove that $f^{++}(e) = a$ for all $e \in E(Sun_n)$. That is $Sun_n \in \sigma_a(V_4)$. Hence the proof.

Corollary 4.11. *The Sun graph* $Sun_n \in \sigma(V_4)$ *if and only if n is even.*

Proof. Proof follows from Theorem [4.9](#page-4-0) and Theorem [4.10.](#page-4-1) \Box

Theorem 4.12. *The Comb graph CBⁿ is not an edge induced magic graph, for any n*.

Proof. Let $\{u_i, v_i : 1 \le i \le n\}$ be the vertex set of CB_n , where $v_i(1 \leq i \leq n)$ are the pendant vertices adjacent to $u_i(1 \leq i \leq n)$. If possible, suppose $f : E(CB_n) \to V_4 \setminus \{0\}$ is an induced edge label of*CBn*. Then using the induced edge sum equation of the edges u_1v_1 and u_2v_2 we get, $f^{++}(u_1v_1) = f^{++}(u_2v_2)$, which implies $f(u_1u_2) = f(u_1u_2) + f(u_2u_3)$. That is $f(u_2u_3) = 0$, which is a contradiction. Thus CB_n is not an edge induced magic graph \Box

Hence the proof.

Theorem 4.13. *The Wheel graph* $W_n \in \sigma_0(V_4)$ *for n is odd.*

Proof. Suppose *n* is odd. Then, since each vertex of *Wⁿ* is of odd degree, by Theorem [2.1](#page-0-2) the proof follows. \Box

Theorem 4.14. *Let J*(*m*,*n*) *be the Jelly fish graph. Then*

(i) $J(m,n) \in \sigma_0(V_4)$ *if and only m and n are of same parity.*

(ii) $J(m, n) \notin \sigma_a(V_4)$ *for any m and n*.

Proof. Consider the Jelly fish graph with $V(J(m,n)) = \{v_k :$ *k* = 1, 2, 3, 4} ∪{*u_i* : *i* = 1, 2, 3, . . . , *m*}∪ {*w_j* : *j* = 1, 2, 3, . . . , *n*}, where v'_k s are the vertices of C_4 and u_i , w_j are the vertices of corresponding $K_{1,m}$ and $K_{1,n}$ respectively. Let $f: E(J(m,n)) \to$ $V_4 \setminus \{0\}$ be an edge induced magic label with $f(v_1v_2) =$ $x_1, f(v_1v_4) = x_2, f(v_3v_4) = x_3, f(v_2v_3) = x_4, f(v_1v_3) = x_5,$ $f(v_2u_i) = e_i$, and $f(v_4w_j) = y_j$ for $i = 1, 2, 3, ..., m$ and $j =$ 1,2,3,...,*n*.

Using the induced edge sum equation of the edges v_2u_i , we get

$$
\sum_{\substack{i=1 \ i \neq 1}}^{m} e_i + x_1 + x_4 = \sum_{\substack{i=1 \ i \neq 2}}^{m} e_i + x_1 + x_4
$$
\n
$$
= \sum_{\substack{i=1 \ i \neq 3}}^{m} e_i + x_1 + x_4
$$
\n
$$
\vdots
$$
\n
$$
= \sum_{\substack{i=1 \ i \neq m}}^{m} e_i + x_1 + x_4.
$$

The above equations imply that $e_1 = e_2 = e_3 = \cdots = e_m = \alpha$ (say). Thus the induced edge sum equation of v_2u_i reduces to $(m-1)\alpha + x_1 + x_4$.

In a similar way, by considering the induced edge sum equation of the edges v_4w_j , we get $y_1 = y_2 = y_3 = \cdots = y_n = \beta$ (say). Thus the induced edge sum equation of v_4w_j reduces to $(n-1)\beta + x_2 + x_3$.

Now consider the induced edge sum equation of the edges *v*₁*v*₂ and *v*₂*v*₃, then we get $m\alpha + x_2 + x_4 + x_5 = m\alpha + x_1 +$ $x_3 + x_5$ which implies $x_2 + x_4 = x_1 + x_3$.

Similarly by considering the induced edge sum equation of *v*₁*v*₄ and *v*₃*v*₄, we get $n\beta + x_1 + x_3 + x_5 = n\beta + x_2 + x_4 + x_5$. Also from the induced edge sum equation of v_1v_3 , we get its induced edge sum equal to $x_1 + x_2 + x_3 + x_4 = 0$, since $x_2 + x_4 = x_1 + x_3$.

Thus from the above discussion we have the induced edge sum is given by:

$$
x = (m-1)\alpha + x_1 + x_4 = (n-1)\beta + x_2 + x_3
$$

= $m\alpha + x_2 + x_4 + x_5 = m\alpha + x_1 + x_3 + x_5$ (4.3)
= $n\beta + x_1 + x_3 + x_5 = n\beta + x_2 + x_4 + x_5$
= 0.

Since the induced sum is 0, we have $J(m,n) \notin \sigma_a(V_4)$ for any *m*,*n*.

Now consider the following cases

Case 1 : *m* and *n* are even.

In this case, equation [\(4.3\)](#page-4-2) becomes

$$
x = \alpha + x_1 + x_4 = \beta + x_2 + x_3 = x_2 + x_4 + x_5 = x_1 + x_3 + x_5 = 0.
$$
\n(4.4)

Choose $\alpha = \beta = x_5 = c$, $x_1 = x_2 = a$, $x_3 = x_4 = b$, then above Equation [\(4.4\)](#page-5-5) follows. Thus in this case, $J(m,n) \in \sigma_0(V_4)$

Case 2 : *m* and *n* are odd.

In this case, equation [\(4.3\)](#page-4-2) becomes

$$
x = x_1 + x_4 = x_2 + x_3
$$

= $\alpha + x_2 + x_4 + x_5 = \alpha + x_1 + x_3 + x_5(4.5)$
= $\beta + x_1 + x_3 + x_5 = \beta + x_2 + x_4 + x_5$
= 0.

Choose $\alpha = \beta = x_5 = a$, $x_1 = x_2 = x_3 = x_4 = b$, then above Equation [\(4.5\)](#page-5-6) follows. Thus in this case, $J(m, n) \in$ $\sigma_0(V_4)$

Case 3 : *m* odd and *n* even.

In this case, Equation [\(4.3\)](#page-4-2) becomes

$$
x = x_1 + x_4 = \beta + x_2 + x_3
$$

= $\alpha + x_2 + x_4 + x_5 = \alpha + x_1 + x_3 + x_5$
= $x_1 + x_3 + x_5 = x_2 + x_4 + x_5$
= 0.

Note that above equations imply that $\alpha = e_i = f(v_2u_i)$ 0, which is not admissible. Thus in this case, $J(m,n) \notin$ $\sigma_0(V_4)$.

Case 4 : *m* even and *n* odd.

In this case, Equation [\(4.3\)](#page-4-2) becomes

$$
x = \alpha + x_1 + x_4 = x_2 + x_3
$$

= $x_2 + x_4 + x_5 = x_1 + x_3 + x_5$
= $\beta + x_1 + x_3 + x_5 = \beta + x_2 + x_4 + x_5$
= 0.

Note that above equations imply that $\beta = y_i = f(y_i \wedge y_j)$ 0, which is not admissible. Thus in this case, $J(m,n) \notin$ $\sigma_0(V_4)$.

Thus $J(m,n) \in \sigma_0(V_4)$ if and only if *m* and *n* are of same parity. \Box

Hence the proof.

Theorem 4.15. *The triangular snake graph* $TS_n \in \sigma_0(V_4)$ *for all n*.

Proof. Since each vertex of TS_n is of even degree, by Theorem [2.1](#page-0-2) the proof follows. \Box

Theorem 4.16. *The open ladder graph* $O(L_n) \in \sigma_0(V_4)$ *for all n*.

Proof. Since each vertex of $O(L_n)$ is of odd degree, by Theorem [2.1](#page-0-2) the proof follows. \Box

References

- [1] Frank Harary *Graph Theory*, Narosa Publishing House, 2009.
- [2] J.A. Gallian, *A Dynamic Survey of Labeling,* Twenty First Edition, 2018
- [3] S.M. Lee, F. Saba, E. Salehi and H. Sun, *On the V*4*-Magic Graphs, Congressus Numerantium*, 156(2002), 59–67.
- [4] R. Balakrishnan and K. Ranganathan, *A Text Book of Graph Theory,* Springer-Verlag, NewYork, 2012.
- [5] K. B. Libeeshkumar and V. Anil Kumar, Induced Magic Labeling of Some Graphs, *Malaya Journal of Matematik*, 8(1)(2020), 59–61.
- [6] P. Sumathi and A. Rathi, Quotient Labeling of Some Ladder Graphs, *American Journal of Engineering Research*, 7(12)(2018), 38–42.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $***$ *******