

https://doi.org/10.26637/MJM0804/0098

β -Baire space in fuzzy soft topological spaces

K. Kamala^{1*} and V. Seenivasan²

Abstract

In this paper a property which can be used to measure and category named fuzzy soft β -Baire spaces in fuzzy soft Topological spaces is investigated. For this purpose fuzzy soft β -dense, nowhere fuzzy soft β -dense and fuzzy soft β -first category sets are defined and some results about these concepts are also obtained.

Keywords

Fuzzy soft β -dense set, fuzzy soft nowhere β -dense sets, fuzzy soft β -Baire space, fuzzy soft β - first category.

AMS Subject Classification

54A40,03E72.

^{1,2} Department of Mathematics, University College of Engineering Panruti, Panruti- 607106, Tamil Nadu, India.
*Corresponding author: ¹ krsaut@gmail.com; ²seenujsc@yahoo.co.in
Article History: Received 17 June 2020; Accepted 27 September 2020

©2020 MJM.

Contents

1	Introduction
2	Preliminaries
3	Fuzzy soft β -dense and Fuzzy soft β -nowhere dense 1923
4	Fuzzy soft β -Baire space
5	Conclusion1925
	References

1. Introduction

Zadeh[8] introduced the concepts of fuzzy sets. Soft sets theory was introduced by Molodtsov [4].The notion of fuzzy soft set is investigated and discussed[5]. Chang[2] introduced and developed the concepts of fuzzy topology. In recent years, B. Tanay and M. B. Kandemir [6] much attention has been used to generalize the basic notions of fuzzy topology in soft setting. Further, the concept of fuzzy soft β -open set is introduced by A. M. Abd El-latif[1]. The notion of baires space in fuzzy topology introduced and discussed G.Thangaraj etal [7] In this paper we define new concepts called fuzzy soft β -dense sets, fuzzy soft nowhere β -dense sets. Also we define of fuzzy soft β -first category sets and fuzzy soft β -Baire space. We obtain a characterization and investigated some properties of fuzzy soft β -Baire space.

2. Preliminaries

Throughout the present paper, X, Y, P and Q denote the fuzzy soft topological spaces. Let f_A be a fuzzy soft set of X.

The closure (resp. the interior) of f_A is denoted by $(f_A)^-$ (resp. $(f_A)^\circ$). A fuzzy soft set f_A is defined to be fuzzy soft β -open [1] if $f_A \sqsubseteq (((f_A)^-)^\circ)^-$, The complement of a fuzzy soft β -open(fs β OS) set is called fuzzy soft β -closed(fs β CS). The intersection of all fuzzy soft β -closed sets containing f_A is called the fuzzy soft β -closure of A and is denoted by $fs(f_A)_{\beta}^-$. The fuzzy soft β -open sets contained in f_A and is denoted by $fs(f_A)_{\beta}^\circ$.

Definition 2.1. [3] A fuzzy soft set f_A in a fsts (X, E, τ) is called fuzzy soft dense if there exists no fuzzy soft closed sets g_B in (X, E, τ) such that $F_A \sqsubseteq G_B \sqsubseteq E$.

Definition 2.2. [3] A fuzzy soft set f_A in a fsts (X, E, τ) is called fuzzy soft nowhere dense if there exists no nonempty fuzzy soft open sets g_B in (X, E, τ) such that $G_B \sqsubseteq fscl(F_A)$. That is, $fsint(fscl(F_A) = \phi$.

Definition 2.3. [3] Let f_A be a fuzzy soft set of X. f_A is defined to be of fuzzy soft first category if it can be represented as a countable union of fuzzy soft nowhere dense sets.i.e) $(\prod_{i=1}^{\infty} f_{A_i}) = f_A$, where f_{A_i} 's are fs nowhere dense set X. Otherwise fuzzy soft open f_A in X is said to be fuzzy soft second category. If f_A is fuzzy soft first category in X then f_A^c is called fuzzy soft residual set in X.

Definition 2.4. [3] A fsts (X, E, τ) is called fuzzy soft Baire space if $fsint(\bigsqcup_{i=1}^{\square} f_{A_i}) = \phi$ where f_{A_i} 's are fs nowhere dense sets in (X, E, τ) .

3. Fuzzy soft β -dense and Fuzzy soft β -nowhere dense

In this section, we define fuzzy soft β -dense and fuzzy soft β -nowhere dense and we discuss with some properties.

Definition 3.1. A fuzzy soft set f_A in fuzzy soft topological space (X, E, τ) is called fuzzy soft β -dense($f_S\beta$ -dense) if there exists no fuzzy soft β -closed set f_B in (X, E, τ) such that $f_A \sqsubseteq f_B \sqsubseteq 1_E$. i.e) $f_S(f_A)_{\overline{\beta}} = 1_E$.

Remark 3.2. Every fuzzy soft dense is $fs\beta$ -dense set but the converse is not true in general.

Example 3.3. Let $X = \{a,b\}$, $E = \{e_1,e_2,e_3\}$ and $A = \{e_1,e_2\} B = \{e_1,e_3\}$ and $C = \{e_2,e_3\}$ and let fuzzy soft sets $f_A = \{f(e_1) = \{a_{0.4},b_{0.8}\}, f(e_2) = \{a_{0.3},b_{0.5}\}, f(e_3) = \{a_{0.2},b_{0.6}\}\}$ $f_B = \{f(e_1) = \{a_{0.4},b_{0.4}\}, f(e_2) = \{a_{0.5},b_{0.6}\}, f(e_3) = \{a_{0.2},b_{0.6}\}\}$ Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup f_B, f_A \sqcap f_B\}$ defined over (X, τ, E) . Now let us consider $f_E = \{f(e_1) = \{a_{0.4}, b_{0.8}\}, f(e_2) = \{a_{0.3}, b_{0.5}\}, f(e_3) = \{a_{0.2}, b_{0.6}\}\}$ be a fuzzy β soft open sets. Then $f_S(f_E)_{\beta}^- = 1_E$. Therefore it is a fs β dense set in (X, E, τ) but it is not a fuzzy soft dense set.

Definition 3.4. A fuzzy soft set f_A in fuzzy soft topological space (X, E, τ) is called fuzzy soft β -nowhere dense($f_S\beta$ nowhere dense) if there exists no fuzzy soft β -open set f_B in (X, E, τ) such that $f_B \sqsubseteq f_S(f_A)_{\overline{\beta}}^-$ i.e) $(f_S(f_A)_{\overline{\beta}})_{\beta}^{\circ}) = 0_E$.

Remark 3.5. Every fs nowhere dense set is a $fs\beta$ -nowhere dense set. The converse is not true in general as shown in example.

Example 3.6. Let $X = \{a,b,c\}, E = \{e_1,e_2,e_3\}$ and $A = \{e_1,e_2\}$ $B = \{e_1,e_3\}$ and $C = \{e_2,e_3\}$ and let fuzzy soft sets $f_A = \{f(e_1) = \{a_{0.7},b_{0.8},c_{0.2}\}, f(e_2) = \{a_{0.6},b_{0.7},c_{0.4}\}, f(e_3) = \{a_{0.0},b_{0.0},c_0\}\}$ $f_B = \{f(e_1) = \{a_{0.5},b_{0.4},c_{0.6}\}, f(e_2) = \{a_{0.0},c_0\}, f(e_3) = \{a_{0.2},b_{0.3},c_{0.1}\}\}$, $f_C = \{f(e_1) = \{a_{0.0},b_{0.0},c_0\}, f(e_2) = \{a_{0.7},b_{0.8},c_{0.4}\}, f(e_3) = \{a_{0.9},b_{0.6},c_{0.5}\}\}$

Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup f_B, f_A \sqcap f_B, f_A \sqcap f_C, f_B \sqcup f_C, f_A \sqcap f_C, f_B \sqcap f_C\}$ defined over (X, τ, E) . Now let us consider $f_E = \{f(e_1) = \{a_{0.9}, b_{0.6}, c_{0.7}\}, f(e_2) = \{a_{0.7}, b_{0.8}, c_{0.4}\}, f(e_3) = \{a_{0.96}, b_{0.7}, c_{0.6}\}\}$ be a fuzzy β soft open sets. Then $fs(f_E^c)_{\beta}^- = (f_B \sqcup f_C)^c \Rightarrow fs((f_B \sqcup f_C)^c)^\circ = 0$. Therefore f_E^c is a $fs\beta$ nowhere dense set in (X, E, τ) but it is not a fuzzy soft nowhere dense set.

Lemma 3.7. A fuzzy soft set f_A in (X, E, τ) is $fs\beta$ -nowhere dense set if and only if $fs(f_A)_{\beta}^-$ has no interior points.

Proof: Let f_A be a fs β -nowhere dense set. Then there exists a fuzzy soft β -open set and fuzzy soft dense set f_B such that $f_B \sqsubseteq 1_E - f_A$. Since f_B is fs β -open set fs $(f_B)^{\circ}_{\beta} = f_B \sqsubseteq 1 - \text{fs}(f_A)^{\circ}_{\beta} = 1 - \text{fs}(f_A)^{-}_{\beta}$. Then $f_s(f_B)^- \sqsubseteq$ fs $(1_E - \text{fs}(f_A)^-_{\beta})^- = 1_E - \text{fs}(\text{fs}(f_A)^-_{\beta})^{\circ}$ Since f_B is a fuzzy soft dense set fs $(f_B)^- = 1$, hence fs $(\text{fs}\beta cl(f_A)^-_{\beta})^{\circ} = 0_E$.

Proposition 3.8. If f_A is fuzzy soft β -closed set in an fsts (X, E, τ) and $f_S(f_A)^{\circ}_{\beta} = 0_E$, then f_A is $f_S\beta$ -nowhere dense set in (X, E, τ) .

Proof: Let f_A be $f_s\beta CS$ in (X, E, τ) . Then $f_s(f_A)^-_\beta = f_A$. Now, $f_s(f_s(f_A)^-_\beta)^\circ_\beta = f_s(f_A)^\circ_\beta = 0_E$. Thus f_A is $f_s\beta$ -nowhere dense set.

Proposition 3.9. If $fs\beta$ -nowhere dense set f_A in (X, E, τ) is an fs closed set then f_A is fs nowhere dense set in (X, E, τ) .

Proof: Let f_A be an $f_{\beta}\beta$ -nowhere dense set in (X, E, τ) . Then $f_{\beta}(f_A)_{\beta}^{-})_{\beta}^{\circ} = 0_E$ But $f_{\beta}(f_A)^{\circ} \sqsubseteq f_{\beta}(f_A)_{\beta}^{\circ} \sqsubseteq f_{\beta}(f_A)_{\beta}^{-} = 0_E$. Thus $f_{\beta}(f_A)_{\beta}^{\circ} = 0_E$. Since f_A is fuzzy soft closed set, $f_{\beta}(f_A)^{-} = f_A$. So $f_{\beta}(f_A)^{\circ} = f_{\beta}(f_{\beta}(f_A)^{-})^{\circ} \sqsubseteq 0_E$. This gives $f_{\beta}(f_{\beta}(f_A)^{-})^{\circ} \sqsubseteq 0_E$. Hence f_A is fuzzy soft nowhere dense set.

Proposition 3.10. If f_A is f_S nowhere dense set in (X, E, τ) , then $f_S(f_A)^{\circ}_{\beta} = 0_E$.

Proof: Let f_A be an fs nowhere dense set in (X, E, τ) . Then $f_S(f_S(f_A)^-)^\circ = 0_E$. Also $f_S(f_A)^\circ_\beta \sqsubseteq f_A$. Since $f_S(f_A)^\circ_\beta$ is $f_S\beta OS$, $f_S(f_A)^\circ_\beta \sqsubseteq f_S(f_S(f_S(f_A)^\circ_\beta)^-)^\circ)^- \sqsubseteq f_S(f_S(f_S(f_A)^-)^\circ)^-$. Thus, $f_S(f_A)^\circ_\beta = f_A \sqcap f_S(f_A)^\circ_\beta \sqsubseteq f_A \sqcap f_S(f_S(f_A)^-)^\circ)^- = f_A \sqcap f_S(0_E)^- = 0_E$. Hence $f_S(f_A)^\circ_\beta = 0_E$.

Proposition 3.11. If f_A is $f_s\beta$ -dense and $f_s\beta OS$ in (X, E, τ) and if $f_B \sqsubseteq 1_E - f_A$ then f_B is $f_s\beta$ -nowhere dense set f_A in (X, E, τ) .

Proof: Let f_A is $fs\beta$ -dense and $fs\beta OS$ in (X, E, τ) . Then $fs(f_A)_{\beta}^- = 1_E$ and $fs(f_A)_{\beta}^- = f_A$. Now $f_B \sqsubseteq 1_E - f_A arrow fs(f_B)_{\beta}^- \sqsubseteq fs(1_E - f_A)_{\beta}^- = 1_E - fs(f_A)_{\beta}^\circ = 1 - f_A$ which implies $fs(fs(f_B)_{\beta}^-)_{\beta}^\circ \sqsubseteq fs(1_E - f_A)_{\beta}^\circ = 1_E - fs(f_A)_{\beta}^- = 0_E$. Thus $fs(fs(f_B)_{\beta}^-)_{\beta}^\circ = 0_E$. Hence f_B is $fs\beta$ -nowhere dense set.

Proposition 3.12. If fs nowhere dense set f_A in (X, E, τ) is an fuzzy soft βCS then f_A is fs β -nowhere dense set in (X, E, τ) .

Proof: Let f_A be fuzzy soft nowhere dense set in (X, E, τ) . Then $fs(fs(f_A)^-)^\circ = 0_E$. By Proposition 3.11, $fs(f_A)^\circ_\beta = 0_E$. Since f_A is fuzzy soft β CSs, $fs(f_A)^-_\beta = f_A$. This implies $fs(fs(f_A)^-_\beta)^\circ_\beta = fs(f_A)^\circ_\beta = 0_E$. Hence f_A is $fs\beta$ -nowhere dense set.

Proposition 3.13. Let f_A , f_B be fuzzy soft set in (X, E, τ) . The following statements hold:

(i). If $f_A \sqsubseteq f_B$ and f_B is $f_S\beta$ -nowhere dense then f_A is $f_S\beta$ -nowhere dense.

(ii). If f_A is $f_s\beta$ -nowhere dense then $f_A - f_B$ is $f_s\beta$ -nowhere dense.

(iii). If f_A or f_B is $f_s\beta$ -nowhere dense then $f_A \sqcap f_B$ is $f_s\beta$ -nowhere dense.

Proof: (i). Now $f_A \sqsubseteq f_B$ which implies $fs(f_A)_{\beta}^- \sqsubseteq fs(f_B)_{\beta}^- a$ then $fs(fs(f_A)_{\beta}^-)_{\beta}^{\circ} \sqsubseteq fs(fs(f_B)_{\beta}^-)_{\beta}^{\circ}$. Since f_B is $fs\beta$ -nowhere dense in (X, E, τ) , then $fs(fs(f_A)_{\beta}^-)_{\beta}^{\circ} \sqsubseteq 0$. Hence f_A is $fs\beta$ nowhere dense set in (X, E, τ) . (ii) and (iii) proof is similar to that of (i)

Definition 3.14. Let f_A be a fuzzy soft set of X. f_A is defined to be of fuzzy soft β -first category($f_S\beta$ -first category) if it can be represented as a countable union of $f_S\beta$ -nowhere dense sets.i.e) $f_S(\underset{i=1}{\overset{\circ}{\square}} f_{A_i})_{\beta}^{\circ} = f_A$ where f_{A_i} 's are $f_S\beta$ -nowhere dense set X. Otherwise fuzzy soft β -open f_A in X is said to be fuzzy soft β -second category. If f_A is fuzzy soft β -first category in X then f_A^c is called fuzzy soft β -residual set in X.

Remark 3.15. Every fuzzy soft first category set is of $fs\beta$ -first category. But the converse is not true in general as seen in example

Example 3.16. Let $X = \{a,b,c\}$, $E = \{e_1,e_2,e_3\}$ and $A = \{e_1,e_2\}$ $B = \{e_1,e_3\}$, $C = \{e_2\}$ and $D = \{e_2,e_3\}$ and let fuzzy soft sets $f_A = \{f(e_1) = \{a_{0.8},b_{0.5},c_{0.1}\},f(e_2) = \{a_{0.9},b_{0.6},c_{0.3}\},f(e_3) = \{a_{0,b},b_{0,c}\}\}$

 $\begin{cases} f_B = \{f(e_1) = \{a_{0.9}, b_{0.5}, c_{0.6}\}, f(e_2) = \{a_0, b_0, c_0\}, f(e_3) = \{a_{0.7}, b_{0.6}, c_{0.8}\}\} \\ f_C = \{f(e_1) = \{a_0, b_0, c_0\}, f(e_2) = \{a_{0.7}, b_{0.8}, c_{0.6}\}, f(e_3) = \{a_0, b_0, c_0\}\}. \end{cases}$

Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup f_B, f_A \sqcap f_E, f_A \sqcup f_C, f_B \sqcup f_C, f_A \sqcap f_C, f_B \sqcup (f_A \sqcap f_C), f_C \sqcup (f_A \sqcap f_B), f_A \sqcup f_B \sqcup f_C\}$ defined over (X, τ, E) . Now let us consider $f_E = \{f(e_1) = \{a_{0.7}, b_{0.5}, c_{0.1}\}, f(e_2) = \{a_{0.9}, b_{0.6}, c_{0.2}\}, f(e_3) = \{a_{0.2}, b_{0.5}, c_{0.1}\}\}$ be a fuzzy β soft open sets. Then $f_S(f_E^c) = (f_A \sqcup f_B)^c \sqcup (f_B \sqcup f_C)^c \sqcup f_E^c$. $(f_A \sqcup f_B)^c$, $(f_B \sqcup f_C)^c$, f_E^c are $f_S\beta$ -nowhere dense sets. Therefore f_E^c is a $f_S\beta$ -first category set in (X, E, τ) and F_E is $f_S\beta$ -residual set in (X, E, τ) but it is not a fuzzy soft category set.

4. Fuzzy soft β -Baire space

In this section, we define fuzzy soft β -Baires space and we discuss with some characterization of this space.

Definition 4.1. A fuzzy soft topological space (X, E, τ) is called fuzzy soft β -Baire space($fs\beta$ -Baire space) if $fs(\underset{i=1}{\overset{\circ}{\sqcup}} f_{A_i})_{\beta}^{\circ} = 0_E$ where f_{A_i} 's are $fs\beta$ -nowhere dense sets in (X, E, τ) .

Example 4.2. Let $X = \{a, b, c\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$ $B = \{e_1, e_3\}$, $C = \{e_2\}$ and $D = \{e_2, e_3\}$ and let fuzzy soft sets $f_A = \{f(e_1) = \{a_{0.8}, b_{0.5}, c_{0.1}\}$, $f(e_2) = \{a_{0.9}, b_{0.6}, c_{0.3}\}$, $f(e_3) = \{a_{0.0}, b_{0.0}, c_0\}$, $f_B = \{f(e_1) = \{a_{0.9}, b_{0.5}, c_{0.6}\}, f(e_2) = \{a_{0.0}, b_{0.0}, c_0\}$, $f(e_3) = \{a_{0.7}, b_{0.6}, c_{0.8}\}$, $f_C = \{f(e_1) = \{a_{0.0}, b_{0.0}, c_0\}, f(e_2) = \{a_{0.7}, b_{0.6}, c_{0.6}\}, f(e_3) = \{a_{0.0}, b_{0.0}, c_0\}$. Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup f_B, f_A \sqcap f_B, f_A \sqcap f_C, f_B \sqcup f_C, f_B \sqcap f_C\}$ defined over (X, τ, E) . Now let us consider $f_E = \{f(e_1)\}, f(e_2), f(e_3)$, where $f(e_1) = \{a_{0.7}, b_{0.5}, c_{0.1}\}, f(e_2) = \{a_{0.9}, b_{0.6}, c_{0.2}\}$,

 $f(e_3) = \{a_{0.2}, b_{0.5}, c_{0.1}\}$ be a fs β -open sets.

Then $f_E^c = (f_A \sqcup f_B)^c \sqcup (f_B \sqcup f_C)^c \sqcup f_E^c, (f_A \sqcup f_B)^c, (f_B \sqcup f_C)^c, f_E^c \text{ are } fs\beta\text{-nowhere dense sets Now } fs(f_E^c)_\beta^\circ \text{ is a } fs\beta\text{-Baires space } (X, E, \tau)$

Proposition 4.3. If $fs(\bigsqcup_{i=1}^{\infty} f_{A_i})_{\beta}^{\circ} = 0_E$ where $fs(f_{A_i})_{\beta}^{\circ} = 0_E$ and f_{A_i} 's are $fs\beta$ -closed sets in fsts (X, E, τ) then (X, E, τ) is $fs\beta$ -Baire space.

Proof: Let f_{A_i} 's be $f_{S\beta}$ -closed sets in (X, E, τ) . Since $f_{S}(f_{A_i})^{\circ}_{\beta} = 0_E$, by Proposition 3.8, f_{A_i} 's are $f_{S\beta}$ -nowhere dense sets in X. Thus $f_{S}(\sqcup_{i=1}^{\infty} f_{A_i})^{\circ}_{\beta} = 0_E$ where f_{A_i} 's are $f_{S\beta}$ -nowhere dense sets in (X, E, τ) . Hence (X, E, τ) is $f_{S\beta}$ -Baire space.

Theorem 4.4. Let (X, E, τ) be fsts. Then the following properties are equivalent:

(i) (X, E, τ) is a $fs\beta$ -Baire space. (ii) $fs(f_A)^{\circ}_{\beta} = 0_E$ for every $fs\beta$ -first category set in (X, E, τ) (iii) $fs(f_A)^{-}_{\beta} = 1_E$ for every $fs\beta$ -residual in (X, E, τ) .

Proof: $(i) \Rightarrow (ii)$: Let (X, E, τ) be a fs β -Baire space and let f_A , fs β -first category set in (X, E, τ) . Then $f_A = \text{fs}(\bigsqcup_{i=1}^{\infty} f_{A_i})$, where f_{A_i} 's are fs β -nowhere dense set (X, E, τ) . Then fs $(\bigsqcup_{i=1}^{\infty} f_{A_i})_{\beta}^{\circ} = 0_E$, since (X, E, τ) is a fs β -Baire space. Therefore fs $(f_A)_{\beta}^{\circ} = 0_E$.

 $(ii) \Rightarrow (iii)$: Let f_B be an fs β -residual in (X, E, τ) . Then $(f_B)^c$ is an fs β -first category set in (X, E, τ) . By hypothesis, fs $(f_B^c)^{\circ}_{\beta} = 0_E$ which implies that $(\text{fs}(f_B)^{-}_{\beta})^c = 0_E$. Hence fs $(f_B)^{-}_{\beta} = 1_E$.

(*iii*) \Rightarrow (*i*): Let f_{A_i} be an fs β -first category set in (X, E, τ) . $f_A = \text{fs}(\bigsqcup_{i=1}^{\infty} f_{A_i})$ where f_{A_i} 's are fs β -nowhere dense sets in (X, E, τ) . Since f_A is an fs β -first category set in X, f_A^c is an fs β -residual in X. By hypothesis, $\text{fs}(f_A^c)_{\beta}^{-} = 1_E$. Then $(\text{fs}(f_A)_{\beta}^{\circ})^c = 1_E$ which implies $\text{fs}(f_A)_{\beta}^{\circ} = 0_E$. Thus $\text{fs}(\bigsqcup_{i=1}^{\infty} f_{A_i})_{\beta}^{\circ} = 0_E$. Hence (X, E, τ) is an fs β -Baire space.

Definition 4.5. Let f_A be a fuzzy soft set of (X, E, τ) . f_A is defined to be of fuzzy soft β -first category space if $f_S(\underset{i=1}{\overset{\circ}{\sqcup}} f_{A_i})_{\beta}^{\circ} = 1_E$ where f_{A_i} 's are $f_s\beta$ -nowhere dense set X. Otherwise fuzzy soft β -open set f_A in X is said to be fuzzy soft β -second category space.

Remark 4.6. The $fs\beta$ -first category space does not necessarily follow from the $fs\beta$ -Baire space which illustrates in the following example

Example 4.7. From example 3.16, the $fs\beta$ -nowhere dense sets $(f_A \sqcup f_C)^c \sqcup f_D^c \sqcup f_B^c = 1_E$. Now $fs(1_E)_{\beta}^{\circ} = 1_E$, which is a $fs\beta$ -first category space but it is not $fs\beta$ -Baire space. Now the $fs\beta$ -nowhere dense sets $(f_B \sqcup (f_A \sqcap f_C))^c = (f_B \sqcup f_C)^c \sqcup (f_A \sqcup (f_B \sqcup f_C))^c \sqcup (f_B \sqcup (f_A \sqcap f_C))^c \cap Now fs((f_B \sqcup (f_A \sqcap f_C))^c)_{\beta}^{\circ} = 0_E$ which is a $fs\beta$ -Baire space but it is not $fs\beta$ -first category space.

Remark 4.8. Every $fs\beta$ -Baire space is a $fs\beta$ -second category space but the converse not necessarily true. From example 3.16, the $fs\beta$ -nowhere dense sets $fs((f_A \sqcup f_B \sqcup f_C)^c \sqcup f_E^c \sqcup f_D^c)^\circ_\beta \neq 1_E$ which is a $fs\beta$ -second category space but it is not $fs\beta$ -Baire space.

Proposition 4.9. If $fs(\bigcap_{i=1}^{n} f_{A_i})_{\beta}^{-} = 1_E$ where f_{A_i} 's are $fs\beta$ dense and $fs\beta$ -open sets in fsts (X, E, τ) iff (X, E, τ) is $fs\beta$ -Baire space.

Proof : Let f_{A_i} 's are $f_s\beta$ -dense sets in (X, E, τ) . Then $f_s(\prod_{i=1}^n f_{A_i})_{\beta}^- = 1_E$ Which implies $(f_s(\prod_{i=1}^n f_{A_i})_{\beta}^-)^c = 0_E$. That is $f_s((\prod_{i=1}^n f_{A_i})^c)_{\beta}^\circ = 0_E \Rightarrow f_s(\prod_{i=1}^{\omega} f_{A_i}^c)_{\beta}^\circ = 0_E$ since f_{A_i} 's are $f_s\beta$ dense, $f_s(f_{A_i})_{\beta}^- = 1_E$. Hence $f_s(f_{A_i}^c)_{\beta}^\circ = (f_s(f_{A_i})_{\beta}^-)^c = 0_E$ Consequently $f_s(\prod_{i=1}^{\omega} f_{A_i}^c)_{\beta}^\circ = 0_E$, where $f_s(f_{A_i}^c)_{\beta}^\circ = 0_E$ and f_{A_i} 's are $f_s\beta$ -closed sets in (X, E, τ) . By Proposition 4.3, (X, E, τ) is $f_s\beta$ -Baire space.

Conversely, Let f_{A_i} 's are $f_s\beta$ -dense sets and $f_s\beta$ -open sets in (X, E, τ) . By proportion 3.11, $f_{A_i}{}^c$'s are $f_s\beta$ -nowhere dense sets in X. Then $f_A = \bigcup_{i=1}^{\infty} f_{A_i}{}^c$ is a $f_s\beta$ -first category set in (X, E, τ) . Now $f_s(f_A)_{\beta}^{\circ} = f_s(\bigcup_{i=1}^{\infty} f_{A_i}{}^c)_{\beta}^{\circ} = f_s(\bigcap_{i=1}^{\infty} f_{A_i})_{\beta}^{-c})_{\beta}^{\circ} = (f_s(\bigcup_{i=1}^{\infty} f_{A_i})_{\beta}^{-c})_{\beta}^{\circ}$. Since (X, E, τ) is $f_s\beta$ -Baire space, by Theorem 4.4, we get $f_s(f_A)_{\beta}^{\circ} = 0_E$. Then $(f_s(\bigcap_{i=1}^{\infty} f_{A_i})_{\beta}^{-c})_{\beta}^{\circ} = 0_E$. This implies that $(f_s(\bigcap_{i=1}^{\infty} f_{A_i})_{\beta}^{-c}) = 1_E$.

Definition 4.10. A surjective function $\varphi : (X, E, \tau) \rightarrow (X, E, \sigma)$ is defined to be

(i). $fs\beta$ -slightly continuous if $fs(\varphi^{-1}(f_A))^{\circ}_{\beta} \neq 0_E$ whenever $fs(f_A)^{\circ}_{\beta} \neq 0_E$ for a fs set f_A of σ .

(ii). $fs\beta$ -slightly open if $fs(\varphi(f_B))_{\beta}^{\circ} \neq 0_E$ whenever $fs(f_B)_{\beta}^{\circ} \neq 0_E$ for a fs set f_B of τ .

Theorem 4.11. Let φ : $(P, E_1, \tau) \rightarrow (Q, E_2, \sigma)$ be a surjective function. The following statements hold:

(i). If φ is $fs\beta$ -slightly continuous and f_A is $fs\beta$ -dense in P, then $\varphi(f_A)fs\beta$ -dense in Q.

(ii)2. If φ is $fs\beta$ -slightly open and f_B is $fs\beta$ -dense in Q, then $\varphi^{-1}(f_B)$ is $fs\beta$ -dense in P.

Proof:(i). Let φ be a fs β -fslightly continuous function and f_A be a fs β -dense set in P. Suppose that $\varphi(f_A)$ is not fs β -dense. Then $1_{E_1} \neq fs(\varphi(f_A))_{\overline{\beta}}$ and $0_{E_2} \neq 1_{E_2} - fs(\varphi(f_A))_{\overline{\beta}}$. Let $f_c = 1_{E_2} - fs(\varphi(f_A))_{\overline{\beta}}$. Then f_c is a nonzero fs β -open set. Since f is fs β -slightly continuous fs $(f^{-1}(f_c))_{\beta}^{\circ} \neq 0_{E_2}$. Also fs $(\varphi^{-1}(f_c))_{\beta}^{\circ} \sqcap f_A \sqsubseteq \varphi^{-1}(f_c) \sqcap \varphi^{-1}(\varphi(f_A)) = \varphi^{-1}(f_c \sqcap \varphi(f_A))_{\overline{\beta}}$ and $\varphi(f_A) = 0_{E_2}$. This is a contradiction since f_A is fs β -dense. Hence $\varphi(f_A)$ is fs β -dense.

(ii). Let f be fs β -slightly open and f_B be fs β -dense in Q. Suppose that $\varphi^{-1}(f_B)$ is not fs β -dense in P. Then there exists a nonempty fs β -open set f_D of P such that $f_D \sqcap \varphi^{-1}(f_B) = 0_{E_1}$.

Since φ is fs β -slightly open fs $(\varphi(f_D))^{\circ}_{\beta} \neq 0_{E_2}$. Moreover, we have fs $(\varphi(f_D))^{\circ}_{\beta} \sqcap f_B \sqsubseteq \varphi(f_D) \sqcap f_B = 0_{E_2}$. This is a contradiction since f_B is fs β -dense. Hence $\varphi^{-1}(f_B)$ is fs β -dense.

Theorem 4.12. Let $\varphi : P \to Q$ be a $fs\beta$ -slightly continuous and $fs\beta$ -slightly open surjection. If P is a $fs\beta$ -Baire space, then Q is a $fs\beta$ -Baire space.

Proof: Let P be a fs β -Baire space and $f_{B_i} \sqsubseteq Q$ be a fs β -dense set for each $i \in I$, where I is the set of natural numbers. Since φ is fs β -slightly open $\varphi^{-1}(f_{B_i})$ is fs β -dense in P. Since P is a fs β -Baire space, $\underset{i \in I}{\sqcap} \varphi^{-1}(f_{B_i})$ is fs β -dense in P. By theorem 4.11, φ is fs β -slightly continuity, $\varphi(\underset{i \in I}{\sqcap} \varphi^{-1}(f_{B_i})) = \underset{i \in I}{\sqcap} f_{B_i}$ is fs β -dense in Q. This shows that Q is a fs β -Baire space.

5. Conclusion

Thus in this paper the concepts of fuzzy soft β -dense and fuzzy soft β -nowhere dense were introduced. Also the concepts of fuzzy soft β -Baire space were being introduced and discussed. Some characterizations of these spaces and some basic interesting properties of such fuzzy baires space were obtained

References

- [1] A. M. Abd El-latif, Fuzzy soft separation axioms based on fuzzy β-open soft sets, *Annals of Fuzzy Mathematics* and Informatics, 11(2016), 223-239.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [3] S. M. Khalil, M. Ulrazaq, S A.Ghani, and A. F. Al-Musawi, Algebra and Baire in Fuzzy Soft Setting Advances in Fuzzy Systems, 2018, 5731682, 1-10,
- [4] D. Molodtsov, Soft set theory-first results, *Comput. Math. Appl.*, 37(1999),19-31.
- [5] P. K. Maji, A. R. Roy, R. Biswas, Fuzzy soft sets, *J. Fuzzy Math.*, 9(2001), 589-602.
- [6] B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, *Computers and Mathematics with Applications*, 61(2011), 2952–2957.
- [7] G. Thangaraj and S.Anjalmose, On fuzzy Baires spaces, *Journal of Fuzzy Mathematics*, 21(2013), 667–676.
- ^[8] L.A. Zadeh, Fuzzy sets, *Information and Control*, 8(1965), 338–353.

******* ISSN(P):2319 – 3786

Malaya Journal of Matematik ISSN(O):2321 – 5666 ******

