

https://doi.org/10.26637/MJM0804/0098

β**-Baire space in fuzzy soft topological spaces**

K. Kamala^{1*} and V. Seenivasan ²

Abstract

In this paper a property which can be used to measure and category named fuzzy soft $β$ -Baire spaces in fuzzy soft Topological spaces is investigated. For this purpose fuzzy soft β -dense, nowhere fuzzy soft β -dense and fuzzy soft β-first category sets are defined and some results about these concepts are also obtained.

Keywords

Fuzzy soft β-dense set, fuzzy soft nowhere β-dense sets, fuzzy soft β-Baire space, fuzzy soft β- first category.

AMS Subject Classification

54A40,03E72.

1,2*Department of Mathematics, University College of Engineering Panruti, Panruti- 607106, Tamil Nadu, India.* ***Corresponding author**: ¹ krsaut@gmail.com; ²seenujsc@yahoo.co.in **Article History**: Received **17** June **2020**; Accepted **27** September **2020** c 2020 MJM.

Contents

1. Introduction

Zadeh[\[8\]](#page-3-2) introduced the concepts of fuzzy sets. Soft sets theory was introduced by Molodtsov [\[4\]](#page-3-3).The notion of fuzzy soft set is investigated and discussed[\[5\]](#page-3-4). Chang[\[2\]](#page-3-5) introduced and developed the concepts of fuzzy topology. In recent years, B. Tanay and M. B. Kandemir [\[6\]](#page-3-6) much attention has been used to generalize the basic notions of fuzzy topology in soft setting. Further, the concept of fuzzy soft β -open set is introduced by A. M. Abd El-latif[\[1\]](#page-3-7). The notion of baires space in fuzzy topology introduced and discussed G.Thangaraj etal [\[7\]](#page-3-8) In this paper we define new concepts called fuzzy soft β-dense sets, fuzzy soft nowhere β-dense sets. Also we define of fuzzy soft $β$ -first category sets and fuzzy soft $β$ -Baire space. We obtain a characterization and investigated some properties of fuzzy soft β -Baire space.

2. Preliminaries

Throughout the present paper, X , Y , P and Q denote the fuzzy soft topological spaces. Let *f^A* be a fuzzy soft set of X.

The closure (resp. the interior) of f_A is denoted by $(f_A)^{-}$ (resp. $(f_A)^\circ$). A fuzzy soft set *f_A* is defined to be fuzzy soft β -open $[1]$ if $f_A \equiv (((f_A)^{\frown})^{\circ})^{\frown}$, The complement of a fuzzy soft β -open(fs $β$ OS) set is called fuzzy soft $β$ -closed(fs $β$ CS). The intersection of all fuzzy soft β-closed sets containing *f^A* is called the fuzzy soft β -closure of A and is denoted by $fs(f_A)$ ⁻ $_B$ $\frac{1}{\beta}$. The fuzzy soft β-interior of *f^A* is defined by the union of all fuzzy soft β -open sets contained in f_A and is denoted by $\{f_A\}_{\beta}^{\circ}$.

Definition 2.1. [\[3\]](#page-3-9) A fuzzy soft set f_A in a fsts (X, E, τ) is *called fuzzy soft dense if there exists no fuzzy soft closed sets g_B in* (X, E, τ) *such that* $F_A \sqsubseteq G_B \sqsubseteq E$.

Definition 2.2. [\[3\]](#page-3-9) A fuzzy soft set f_A in a fsts (X, E, τ) is *called fuzzy soft nowhere dense if there exists no nonempty fuzzy soft open sets* g_B *in* (X, E, τ) *such that* $G_B \sqsubseteq f\text{ }sl(F_A)$. *That is, f sint*($f \, \text{scl}(F_A) = \phi$.

Definition 2.3. *[\[3\]](#page-3-9) Let f^A be a fuzzy soft set of X. f^A is defined to be of fuzzy soft first category if it can be represented as a countable union of fuzzy soft nowhere dense sets.i.e)* $\left(\bigcup_{i=1}^{\infty} f_{A_i}\right) = f_A$, where f_{A_i} 's are fs nowhere dense set X. Oth*erwise fuzzy soft open f^A in X is said to be fuzzy soft second category.* If f_A *is fuzzy soft first category in X then* f_A^c *is called fuzzy soft residual set in X.*

Definition 2.4. *[\[3\]](#page-3-9) A fsts* (*X*,*E*, τ) *is called fuzzy soft Baire* \sup *space if* f *sint*($\bigcup_{i=1}^{\infty} f_{A_i}$) = ϕ *where* f_{A_i} '*s* are *fs nowhere dense sets in* (X, E, τ) *.*

3. Fuzzy soft β**-dense and Fuzzy soft** β**-nowhere dense**

In this section, we define fuzzy soft β -dense and fuzzy soft β -nowhere dense and we discuss with some properties.

Definition 3.1. *A fuzzy soft set f^A in fuzzy soft topological space* (*X*,*E*, τ) *is called fuzzy soft* β*-dense(fs*β*-dense) if there exists no fuzzy soft* $β$ -*closed setf_B in* $(X, E, τ)$ *such that* $f_A \nsubseteq$ $f_B \sqsubseteq 1_E$ *. i.e*)*fs*(f_A) $\frac{\ }{\beta} = 1_E$ *.*

Remark 3.2. *Every fuzzy soft dense is fs*β*-dense set but the converse is not true in general.*

Example 3.3. Let $X = \{a,b\}$, $E = \{e_1, e_2, e_3\}$ and *A* = { e_1, e_2 } *B* = { e_1, e_3 } *and C* = { e_2, e_3 } *and let fuzzy soft sets* $f_A = \{ f(e_1) = \{a_{0.4}, b_{0.8}\}, f(e_2) = \{a_{0.3}, b_{0.5}\}, f(e_3) =$ ${a_0,b_0}$ $f_B = {f(e_1) = {a_{0.4},b_{0.4}}, f(e_2) =$ ${a_0, b_0}, f(e_3) = {a_{0,2}, b_{0,6}}$ *Consider the fuzzy soft topology* $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup f_B, f_A \sqcap f_B\}$ *defined over* (X, τ, E) *. Now let us consider* $f_E = \{f(e_1) =$ ${a_{0.4}, b_{0.8}, f(e_2) = {a_{0.3}, b_{0.5}, f(e_3) = {a_{0.2}, b_{0.6}}\}$ *be a* f *uzzy* β *soft open sets. Then* f *s* (f_E) $\frac{1}{\beta}$ = 1_E *. Therefore it is a fs*β *dense set in* (*X*,*E*, τ) *but it is not a fuzzy soft dense set.*

Definition 3.4. *A fuzzy soft set f^A in fuzzy soft topological space* (*X*,*E*, τ) *is called fuzzy soft* β*-nowhere dense(fs*β*nowhere dense)* if there exists no fuzzy soft β -open set f_B in (X, E, τ) *such that* $f_B \sqsubseteq f_S(f_A)_{\beta}^ \frac{1}{\beta}$. *i.e*)(fs(fs(f_A) $\frac{1}{\beta}$ $(\overline{\beta})^{\circ}_{\beta}$) = 0_E.

Remark 3.5. *Every fs nowhere dense set is a fs*β*-nowhere dense set. The converse is not true in general as shown in example.*

Example 3.6. *Let* $X = \{a,b,c\}$, $E = \{e_1, e_2, e_3\}$ *and* $A =$ ${e_1, e_2}$ $B = {e_1, e_3}$ *and* $C = {e_2, e_3}$ *and let fuzzy soft sets* $f_A = \{f(e_1) = \{a_{0.7}, b_{0.8}, c_{0.2}\}, f(e_2) = \{a_{0.6}, b_{0.7},$ $c_{0.4}$ }, $f(e_3) = \{a_0, b_0, c_0\}$ } $f_B = \{f(e_1) = \{a_{0.5}, b_{0.4}, c_{0.6}\},\}$ $f(e_2) = \{a_0, b_0, c_0\}, f(e_3) = \{a_{0.2}, b_{0.3}, c_{0.1}\}\}\$, $f_C = \{f(e_1)\}$ $= \{a_0, b_0, c_0\}, f(e_2) = \{a_{0.7}, b_{0.8}, c_{0.4}\}, f(e_3) = \{a_{0.9}, b_{0.6},$ *c*0.5}}

Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup$ $f_B, f_A \sqcap f_B, f_A \sqcup f_C, f_B \sqcup f_C, f_A \sqcap f_C, f_B \sqcap f_C$ *defined over* (X, τ, E) . *Now let us consider* $f_E = \{f(e_1) = \{a_{0.9}, b_{0.6}, c_{0.7}\},\}$ $f(e_2) = \{a_{0.7}, b_{0.8}, c_{0.4}\}, f(e_3) = \{a_{0.96}, b_{0.7}, c_{0.6}\}\}$ *be a* $fuzzy \beta$ *soft open sets.* Then $fs(f_E^c)_{\beta}^- = (f_B \sqcup f_C)^c \Rightarrow$ f s $((f_B \sqcup f_C)^c)$ ^o = 0. *Therefore* f_E^c *is a fs* β *nowhere dense set in* (*X*,*E*, τ) *but it is not a fuzzy soft nowhere dense set.*

Lemma 3.7. *A fuzzy soft setf_A in* $(X, E, τ)$ *is fsβ-nowhere dense set if and only if* $f_s(f_A)$ ^{$-$} $_8$ β *has no interior points.*

Proof : Let f_A be a fs β -nowhere dense set. Then there exists a fuzzy soft β -open set and fuzzy soft dense set *f*_{*B*} such that $f_B \subseteq 1_E - f_A$. Since f_B is fs β -open set f **s** $(f_B)_{\beta}^{\circ} = f_B \sqsubseteq 1 - f$ **s** $(f_A)_{\beta}^{\circ} = 1 - f$ **s** $(f_A)_{\beta}^{\circ}$ $\frac{1}{\beta}$. Then $f_s(f_B)^{-} \sqsubseteq$ $f_S(1_E - f_S(f_A))^2_B$ $(\frac{\overline{B}}{\beta})^{-1} = 1_E - f s (f s (f_A))^T$ $(\frac{1}{\beta})^{\circ}$ Since *f_B* is a fuzzy soft dense set $fs(f_B)^{-} = 1$, hence $fs(fs\beta c l(f_A)^{-})$ $(\frac{\overline{1}}{\beta})^{\circ} = 0_E.$

Proposition 3.8. *If f^A is fuzzy soft* β*-closed set in an fsts* (X, E, τ) *and* $f_S(f_A)_{\beta}^{\circ} = 0_E$, then f_A is $f_S\beta$ -nowhere dense set *in* (X, E, τ) *.*

Proof : Let f_A be fs β CS in (X, E, τ) . Then $f_S(f_A)_{\beta}^- = f_A$. Now, $fs(fs(f_A)_B^-)$ $\int_{\beta}^{\infty} \rho_{\beta}^{S} = \int_{\beta}^{\infty} f_{A} \int_{\beta}^{\infty} = 0_E$. Thus f_A is fs β -nowhere dense set.

Proposition 3.9. *If fs* β *-nowhere dense set* f_A *in* (X, E, τ) *is an fs closed set then* f_A *is fs nowhere dense set in* (X, E, τ) *.*

Proof : Let f_A be an fs β -nowhere dense set in (X, E, τ) . Then $fs(fs(f_A)_{\beta}^-)$ $\int_{\beta}^{\infty} \rho_{\beta}^{\circ} \rho = 0_E$ But fs(*f*A)[°] \subseteq fs(*fA*)[°] \int_{β}^{∞} \subseteq fs(*fA*)^{$\frac{1}{\beta}$ =} 0_E . Thus $\text{fs}(\hat{f}_A)_{\beta}^{\circ} = 0_E$. Since f_A is fuzzy soft closed set, $\text{fs}(f_A)^{-} = f_A$. So $\text{fs}(f_A)^{\circ} = \text{fs}(\text{fs}(f_A)^{-})^{\circ} \sqsubseteq 0_E$. This gives $f_s(f_s(f_A)^-)^{\circ} \subseteq 0_E$. Hence f_A is fuzzy soft nowhere dense set.

Proposition 3.10. *If* f_A *is fs nowhere dense set in* (X, E, τ) *, then* $f_S(f_A)^\circ_\beta = 0_E$.

Proof : Let f_A be an fs nowhere dense set in (X, E, τ) . Then $f(s(f_A)^{-})^{\circ} = 0_E$. Also $f(s(f_A)^{\circ} = f_A$. Since $\text{fs}(f_A)^\circ_\beta$ is $\text{fs}\beta$ OS, $\text{fs}(f_A)^\circ_\beta \sqsubseteq \text{fs}(\text{fs}(\text{fs}(f_A)^\circ_\beta)^{-})^\circ$ ⁻ \sqsubseteq $f_S(f_S(f_A)^{-})^{\circ})^{\dagger}$. Thus, $f_S(f_A)_{\beta}^{\circ} = f_A \sqcap f_S(f_A)_{\beta}^{\circ} \sqsubseteq f_A \sqcap$ $f_s(f_s(f_A)^{-})^{\circ})^{-} = f_A \sqcap f_s(0_E)^{-} = 0_E$. Hence $f_s(f_A)_{\beta}^{\circ} = 0_E$.

Proposition 3.11. *If f^A is fs*β*-dense and fs*β*OS in* (*X*,*E*, τ) \int *and if* $f_B \subseteq 1_E - f_A$ *then* f_B *is fs* β *-nowhere dense set* f_A *in* (X, E, τ) .

Proof : Let f_A is fs β -dense and fs β OS in (X, E, τ) . Then $fs(f_A)_{\beta}^- = 1_E$ and $fs(f_A)_{\beta}^- = f_A$. Now $f_B \sqsubseteq 1_E$ – f_A *arrow*fs $(f_B)_{\beta} \subseteq$ fs $(1_E - f_A)_{\beta} = 1_E - f_S(f_A)_{\beta}^{\circ} = 1 - f_A$ which implies $fs(fs(f_B)_{\beta}^-)$ $\int_{\beta}^{\infty} \int_{\beta}^{\infty} \mathbf{f} s (1_E - f_A)_{\beta}^{\circ} = 1_E - \mathbf{f} s (f_A)_{\beta}^{\infty} =$ 0_E . Thus $fs(fs(f_B)^ \int_{\beta}^{\infty}$ \int_{β}^{∞} = 0_{*E*}. Hence *f_B* is fs*β*-nowhere dense set.

Proposition 3.12. *If fs nowhere dense set* f_A *in* (X, E, τ) *is an fuzzy soft* $β$ *CS then* f_A *is fs* $β$ *-nowhere dense set in* $(X, E, τ)$ *.*

Proof : Let f_A be fuzzy soft nowhere dense set in (X, E, τ) . Then $fs(fs(f_A)^{-})^{\circ} = 0_E$. By Propositio[n3.11,](#page-1-0) $fs(f_A)^{\circ} = 0_E$. Since f_A is fuzzy soft β CSs, $f_S(f_A)_{\beta}^- = f_A$. This implies $fs(fs(f_A)_B^-)$ $\int_{\beta}^{\infty} \rho_{\beta}^{S} = \int_{\beta}^{\infty} f(x) \rho_{\beta}^{S} = 0_E$. Hence f_A is fs β -nowhere dense set.

Proposition 3.13. *Let* f_A *,* f_B *be fuzzy soft set in* (X, E, τ) *. The following statements hold:*

(i). If $f_A \subseteq f_B$ *and* f_B *is fs* β *-nowhere dense then* f_A *is* $f_S \beta$ *nowhere dense.*

*(ii). If f^A is fs*β*-nowhere dense then f^A* − *f^B is fs*β*-nowhere dense.*

(iii). If f_A *or* f_B *is fs* β *-nowhere dense then* $f_A \sqcap f_B$ *is* $f_s \beta$ *nowhere dense.*

Proof : (i). Now $f_A \sqsubseteq f_B$ which implies $fs(f_A)_{\beta}^{-} \sqsubseteq fs(f_B)_{\beta}^{-}$ $\frac{1}{\beta}$ a then $fs(fs(f_A)_{\beta}^-)$ $(\frac{\overline{a}}{\beta})^{\circ}_{\beta} \sqsubseteq$ fs $(f_{\mathcal{S}}(f_{\mathcal{B}})^{-}_{\beta})$ $\frac{1}{\beta}$) $\frac{\circ}{\beta}$. Since f_B is fs β -nowhere dense in (X, E, τ) , then $fs(f_s(f_A))$ $(\frac{\pi}{\beta})^{\circ}_{\beta} \sqsubseteq 0$. Hence f_A is fs β nowhere dense set in (X, E, τ) . (ii) and (iii) proof is similar to that of (i)

Definition 3.14. *Let f^A be a fuzzy soft set of X. f^A is defined to be of fuzzy soft* β*-first category(fs*β*-first category) if it can be represented as a countable union of fs*β*-nowhere dense* $sets.i.e$) f s $(\bigcup_{i=1}^{\infty} f_{A_i})^{\circ}_{\beta} = f_A$ where f_{A_i} 's are f s β -nowhere dense *set X. Otherwise fuzzy soft* β*-open f^A in X is said to be fuzzy soft* β*-second category. If f^A is fuzzy soft* β*-first category in X then f^A c is called fuzzy soft* β*-residual set in X.*

Remark 3.15. *Every fuzzy soft first category set is of fs*β*-first category. But the converse is not true in general as seen in example*

Example 3.16. *Let* $X = \{a,b,c\}$, $E = \{e_1,e_2,e_3\}$ *and* $A = \{e_1, e_2\}$ $B = \{e_1, e_3\}$, $C = \{e_2\}$ *and* $D = \{e_2, e_3\}$ *and let fuzzy soft sets* $f_A = \{f(e_1) = \{a_{0.8}, b_{0.5}, c_{0.1}\}, f(e_2) =$ ${a_{0.9}, b_{0.6}, c_{0.3}, f(e_3) = {a_0, b_0, c_0} }$

 $f_B = \{ f(e_1) = \{ a_{0.9}, b_{0.5}, c_{0.6} \}, f(e_2) = \{ a_0, b_0, c_0 \}, f(e_3) =$ ${a_{0.7}, b_{0.6}, c_{0.8}}$ $}, \quad f_C = {f(e_1) = {a_0, b_0, c_0}, f(e_2) =$ ${a_{0.7}, b_{0.8}, c_{0.6}, f(e_3) = {a_0, b_0, c_0}.$

Consider the fuzzy soft topology $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup$ $f_B, f_A \sqcap f_B, f_A \sqcup f_C, f_B \sqcup f_C, f_A \sqcap f_C, f_B \sqcup (f_A \sqcap f_C), f_C \sqcup$ $(f_A \sqcap f_B), f_A \sqcup f_B \sqcup f_C$ *defined over* (X, τ, E) *. Now let us consider* $f_E = \{f(e_1) = \{a_{0.7}, b_{0.5}, c_{0.1}\}, f(e_2) =$ ${a_{0.9}, b_{0.6}, c_{0.2}, f(e_3) = {a_{0.2}, b_{0.5}, c_{0.1}}$ *be a fuzzy* β *soft open sets. Then* $fs(f_E^c) = (f_A \sqcup f_B)^c \sqcup (f_B \sqcup f_C)^c \sqcup f_E^c$. $(f_A \sqcup f_B)^c$, $(f_B \sqcup f_C)^c$, f_E^c are $f_S \beta$ -nowhere dense sets. There*fore* f_E^c *is a fs* β *-first category set in* (X, E, τ) *and* F_E *is fs* β *residual set in* (*X*,*E*, τ) *but it is not a fuzzy soft category set.*

4. Fuzzy soft β**-Baire space**

In this section, we define fuzzy soft $β$ -Baires space and we discuss with some characterization of this space.

Definition 4.1. *A fuzzy soft topological space* (X, E, τ) *is called fuzzy soft* β*-Baire space(fs*β*-Baire space) if* $f_S(\prod_{i=1}^{\infty} f_{A_i})_B^{\circ} = 0_E$ where f_{A_i} 's are $f_S\beta$ -nowhere dense sets in (X, E, τ) .

Example 4.2. Let $X = \{a,b,c\}$, $E = \{e_1,e_2,e_3\}$ and *A* = { e_1, e_2 } *B* = { e_1, e_3 }*, C* = { e_2 } *and D* = { e_2, e_3 } *and let fuzzy soft sets* $f_A = \{f(e_1) = \{a_{0.8}, b_{0.5}, c_{0.1}\},\}$ $f(e_2) = \{a_{0.9}, b_{0.6}, c_{0.3}\}, f(e_3) = \{a_0, b_0, c_0\}\}$ $f_B =$ ${f(e_1) = {a_{0.9}, b_{0.5}, c_{0.6}}, f(e_2) = {a_0, b_0, c_0}, f(e_3) =$ ${a_{0.7}, b_{0.6}, c_{0.8}}$, $f_c = {f(e_1) = {a_0, b_0, c_0}$, $f(e_2) =$ ${a_{0.7}, b_{0.8}, c_{0.6}, f(e_3) = {a_0, b_0, c_0}}$. *Consider the fuzzy soft topology* $\tau = \{0_E, 1_E, f_A, f_B, f_A \sqcup f_B, f_A \sqcap f_B, f_A \sqcap f_C,$ $f_B \sqcup f_C, f_A \sqcup f_C, f_B \sqcap f_C$ *defined over* (X, τ, E) *. Now let us consider* $f_E = \{f(e_1)\}, f(e_2), f(e_3),$ *where* $f(e_1) = \{a_{0.7}, b_{0.5}, c_{0.1}\}, f(e_2) = \{a_{0.9}, b_{0.6}, c_{0.2}\},$

 $f(e_3) = \{a_{0,2}, b_{0,5}, c_{0,1}\}$ *be a fs* β *-open sets.*

Then $f_E^c = (f_A \sqcup f_B)^c \sqcup (f_B \sqcup f_C)^c \sqcup f_E^c, (f_A \sqcup f_B)^c, (f_B \sqcup f_C)^c,$ *f c E are fs*β*-nowhere dense sets Now fs(f ^c E*) ◦ β *is a fs*β*-Baires space* (X, E, τ)

Proposition 4.3. If $fs(\sqcup_{i=1}^{\infty} f_{A_i})_{\beta}^{\circ} = 0_E$ where $fs(f_{A_i})_{\beta}^{\circ} = 0_E$ *and fAⁱ 's are fs*β*-closed sets in fsts* (*X*,*E*, τ) *then* (*X*,*E*, τ) *is fs*β*-Baire space.*

Proof : Let f_{A_i} 's be fs β -closed sets in (X, E, τ) . Since $\int \text{fs}(f_{A_i})^{\circ} = 0_E$, by Proposition [3.8,](#page-1-1) f_{A_i} ' s are fs β -nowhere dense sets in X. Thus $fs(\sqcup_{i=1}^{\infty} f_{A_i})_{\beta}^{\circ} = 0_E$ where f_{A_i} 's are $fs\beta$ nowhere dense sets in $(X, E, τ)$. Hence $(X, E, τ)$ is fs $β$ -Baire space.

Theorem 4.4. Let (X, E, τ) be fsts. Then the following prop*erties are equivalent:*

(i) (*X*,*E*, τ) *is a fs*β*-Baire space.* $f(i)$ $f_S(f_A)^\circ_\beta = 0_E$ *for every fs* β *-first category set in* (X, E, τ) $(iii) f s(f_A)_{\beta}^- = 1_E$ *for every fs* β -residual in (X, E, τ) *.*

Proof : (*i*) \Rightarrow (*ii*): Let (X, E, τ) be a fs β -Baire space and let *f_A*, fs β -first category set in (X, E, τ) . Then *f_A*=fs($\bigcup_{i=1}^{\infty}$ *f*_{*A*^{*i*}}. where *f*_{*A*^{*i*}}'s are fsβ-nowhere dense set(*X*,*E*, τ). Then $f_S(\bigcup_{i=1}^{\infty} f_{A_i})^{\circ}$ = 0*E*, since (X, E, τ) is a fs β -Baire space. Therefore $\text{fs}(f_A)_{\beta}^{\circ} = 0_E$.

 $(ii) \Rightarrow (iii)$: Let f_B be an fs β -residual in (X, E, τ) . Then $(f_B)^c$ is an fs β -first category set in (X, E, τ) . By hypothesis, fs(f_B^c) $^{\circ}_{\beta}$ = 0*E* which implies that (fs(f_B) $^{\circ}_{\beta}$) $\overrightarrow{\beta}^c = 0_E$. Hence $\text{fs}(f_B)_{\beta}^{-} = 1_E.$

 $(iii) \Rightarrow (i)$: Let f_{A_i} be an fs β -first category set in (X, E, τ) . $f_A = \text{fs}(\sqcup_{i=1}^{\infty} f_{A_i})$ where f_{A_i} 's are fsβ-nowhere dense sets in (X, E, τ) . Since f_A is an fs β -first category set in X, $f_A{}^c$ is an fs β -residual in X. By hypothesis, fs $(f_A^c)_\beta^- = 1_E$. Then $(f_A)_{\beta}^{\circ}$ ^c = 1_{*E*} which implies $f_S(f_A)_{\beta}^{\circ} = 0_E^{\prime}$. Thus $fS\left(\bigcup_{i=1}^{\infty} f_{A_i}\right)_{\beta}^{\circ} = 0_E$. Hence (X, E, τ) is an fs β -Baire space.

Definition 4.5. *Let* f_A *be a fuzzy soft set of* (X, E, τ) *.* f_A *is defined to be of fuzzy soft* β -*first category space if* f_s ($\prod_{i=1}^{\infty} f_{A_i}$) $\frac{\infty}{\beta}$ 1*^E where fAⁱ 's are fs*β*-nowhere dense set X. Otherwise fuzzy soft* β*-open set f^A in X is said to be fuzzy soft* β*-second category space.*

Remark 4.6. *The fs*β*-first category space does not necessarily follow from the fs*β*-Baire space which illustrates in the following example*

Example 4.7. *From example [3.16,](#page-2-1) the fs*β*-nowhere dense sets* $(f_A \sqcup f_C)^c \sqcup f_D^c \sqcup f_B^c = 1_E$. *Now* $f_S(1_E)_{\beta}^{\circ} =$ 1*E*, *which is a fs*β*-first category space but it is not fs*β*-Baire space. Now the fs*β*-nowhere dense sets* $(f_B \sqcup (f_A \sqcap f_C))^c = (f_B \sqcup f_C)^c \sqcup (f_A \sqcup (f_B \sqcup f_C))^c \sqcup$ $(f_B \sqcup (f_A \sqcap f_C))^c$ *Now fs* $((f_B \sqcup (f_A \sqcap f_C))^c)_{\beta}^{\circ} = 0_E$ *which is a fs* β*-Baire space but it is not fs*β*-first category space.*

Remark 4.8. *Every fs*β*-Baire space is a fs*β*-second category space but the converse not necessarily true.From example [3.16,](#page-2-1)* \int *fhe* f s β -nowhere dense sets f s $((f_A \sqcup f_B \sqcup f_C)^c \sqcup f_E^c \sqcup f_D^c)_\beta^{\circ}$ \neq 1*^E which is a fs*β*-second category space but it is not fs*β*-Baire space.*

Proposition 4.9. *If* $f_s(\bigcap_{i=1}^n f_{A_i})\overline{\beta} = 1_E$ where f_{A_i} 's are $f_s\beta$ *dense and fs*β*-open sets in fsts* (*X*,*E*, τ) *iff* (*X*,*E*, τ) *is fs*β*-Baire space.*

Proof : Let f_{A_i} 's are fs β -dense sets in (X, E, τ) . Then $f_S(\bigcap_{i=1}^n f_{A_i})_{\beta}^{-} = 1_E$ Which implies $(f_S(\bigcap_{i=1}^n f_{A_i})_{\beta}^{-})$ $\left(\frac{c}{\beta}\right)^c = 0_E$. That is $f_s((\bigcap_{i=1}^n f_{A_i})^c)_{\beta}^{\circ} = 0_E \Rightarrow f_s(\bigcup_{i=1}^{\infty} f_{A_i}^{\circ})_{\beta}^{\circ} = 0_E \text{ since } f_{A_i}^{\circ}$'s are fs β dense, $fs(f_{A_i})_{\beta}^{-} = 1_E$. Hence $fs(f_{A_i}^{c})_{\beta}^{\circ} = (fs(f_{A_i})_{\beta}^{-})$ $(\frac{1}{\beta})^c = 0_E$ Consequently $\text{fs}(\prod_{i=1}^{\infty} f_{A_i}^c)_{\beta}^{\circ} = 0_E$, where $\text{fs}(f_{A_i}^c)_{\beta}^{\circ} = 0_E$ and f_{A_i} 's are fs β -closed sets in (X, E, τ) . By Proposition [4.3,](#page-2-2) (X, E, τ) is fs β -Baire space.

Conversely, Let f_{A_i} 's are fs β -dense sets and fs β -open sets in (X, E, τ) . By proportion [3.11,](#page-1-0) $f_{A_i}^c$'s are fs β -nowhere dense sets in X. Then $f_A = \prod_{i=1}^{\infty} f_{A_i}^c$ is a fs β -first category set in (X, E, τ) . Now $\int \int_{\beta}^{\infty} f_A f_A^c \Big|_{\beta}^{\infty} = \int \int_{E}^{\infty} \left(\prod_{i=1}^{\infty} f_A f_i \right)^c \Big|_{\beta}^{\infty} = \int_{E}^{\infty}$ $(f_s(\prod_{i=1}^{\infty}f_{A_i})_{\beta}^{-})$ \int_{β}^{∞} . Since (X, E, τ) is fs β -Baire space, by Theo-rem [4.4,](#page-2-3) we get $\operatorname{fs}(f_A)_{\beta}^{\circ} = 0_E$. Then $(\operatorname{fs}(\prod_{i=1}^{\infty} f_{A_i})_{\beta}^{-1})$ $\left(\frac{\overline{c}}{\beta}\right)^c = 0_E$. This implies that $(f_s(\bigcap_{i=1}^{\infty} f_{A_i})_{\beta}^-)$ $(\frac{\overline{1}}{\beta}) = 1_E.$

Definition 4.10. *A surjective function* φ : $(X, E, \tau) \rightarrow$ (X, E, σ) *is defined to be*

(*i*). *fs*β-*slightly continuous if* $fs(φ⁻¹(f_A))[°]_β ≠ 0^E$ *whenever* f *s*(f_A) $^{\circ}_{\beta} \neq 0$ *E for a fs set* f_A *of* σ *.*

 (iii) . fs β -slightly open if $fs(\varphi(f_B))^\circ_\beta \neq 0_E$ whenever $fs(f_B)^\circ_\beta \neq 0$ 0*^E for a fs set f^B of* τ*.*

Theorem 4.11. *Let* φ : $(P, E_1, \tau) \rightarrow (Q, E_2, \sigma)$ *be a surjective function. The following statements hold:*

(i). If ϕ *is fs*β*-slightly continuous and f^A is fs*β*-dense in P, then* $\varphi(f_A)$ *fs* β *-dense in* Q *.*

(ii)2. If ϕ *is fs*β*-slightly open and f^B is fs*β*-dense in Q , then* ϕ −1 (*fB*) *is fs*β*-dense in P.*

Proof:(i). Let φ be a fs β -fslightly continuous function and f_A be a fs β -dense set in P. Suppose that $\varphi(f_A)$ is not fs β dense. Then $1_{E_1} \neq fs(\varphi(f_A))\frac{1}{\beta}$ and $0_{E_2} \neq 1_{E_2} - fs(\varphi(f_A))\frac{1}{\beta}$. Let $f_c = 1_{E_2} - fs(\varphi(f_A))_{\beta}$. Then f_c is a nonzero fs β -open set. Since f is fs β -slightly continuous fs($f^{-1}(f_c)$)[°] $\beta \neq 0_{E_2}$. Also $\operatorname{fs}(\varphi^{-1}(f_c))_\beta^\circ \sqcap f_A \sqsubseteq \varphi^{-1}(f_c) \sqcap \varphi^{-1}(\varphi(f_A)) = \varphi^{-1}(f_c \sqcap$ $\varphi(f_A)$) $\sqsubseteq \varphi^{-1}(f_C \sqcap \text{fs}(\varphi(f_A))_{\beta}^{-}) = 0_{E_2}$. This is a contradiction since *f_A* is fsβ-dense. Hence $\varphi(f_A)$ is fsβ-dense.

(ii). Let f be fs β -slightly open and f_B be fs β -dense in Q. Suppose that $\varphi^{-1}(f_B)$ is not fs*β*-dense in P. Then there exists a nonempty fs β -open set f_D of P such that $f_D \sqcap \varphi^{-1}(f_B) = 0_{E_1}$.

Since φ is fs β -slightly open fs $(\varphi(f_D))_\beta^\circ \neq 0_{E_2}$. Moreover, we have $fs(\varphi(f_D))_{\beta}^{\circ} \sqcap f_B \sqsubseteq \varphi(f_D) \sqcap f_B = 0_{E_2}$. This is a contradiction since f_B is fs β -dense. Hence $\varphi^{-1}(f_B)$ is fs β -dense.

Theorem 4.12. *Let* φ : $P \rightarrow Q$ *be a fs* β *-slightly continuous and fs*β*-slightly open surjection. If P is a fs*β*-Baire space , then Q is a fs*β*-Baire space.*

Proof : Let P be a fs β -Baire space and $f_{B_i} \sqsubseteq Q$ be a fs β -dense set for each $i \in I$, where I is the set of natural numbers. Since φ is fs β -slightly open $\varphi^{-1}(f_{B_i})$ is fs β -dense in P. Since P is a fs *β*-Baire space, $\prod_{i \in I} \varphi^{-1}(f_{B_i})$ is fs*β*-dense in P. By theorem [4.11,](#page-3-11) *ϕ* is fs*β*-slightly continuity, $φ(\bigcap_{i \in I} φ^{-1}(f_{B_i})) = \bigcap_{i \in I} f_{B_i}$ is fs β -dense in Q. This shows that Q is a fs β -Baire space.

5. Conclusion

Thus in this paper the concepts of fuzzy soft β -dense and fuzzy soft β -nowhere dense were introduced. Also the concepts of fuzzy soft β -Baire space were being introduced and discussed. Some characterizations of these spaces and some basic interesting properties of such fuzzy baires space were obtained

References

- [1] A. M. Abd El-latif, Fuzzy soft separation axioms based on fuzzy β-open soft sets, *Annals of Fuzzy Mathematics and Informatics,* 11(2016), 223-239.
- [2] C. L. Chang, Fuzzy topological spaces,*J. Math. Anal. Appl.,* 24(1968), 182-190.
- [3] S. M. Khalil , M. Ulrazaq, S A.Ghani, and A. F. Al-Musawi, Algebra and Baire in Fuzzy Soft Setting *Advances in Fuzzy Systems,* 2018, 5731682, 1-10,
- [4] D. Molodtsov, Soft set theory-first results,*Comput. Math. Appl.,* 37(1999),19-31.
- [5] P. K. Maji, A. R. Roy, R. Biswas, Fuzzy soft sets, *J. Fuzzy Math.,* 9(2001), 589-602.
- [6] B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, *Computers and Mathematics with Applications,* 61(2011), 2952–2957.
- [7] G. Thangaraj and S.Anjalmose, On fuzzy Baires spaces, *Journal of Fuzzy Mathematics,* 21(2013), 667–676.
- [8] L.A. Zadeh, Fuzzy sets, *Information and Control,* 8(1965), 338–353.

********* ISSN(P):2319−3786

[Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

