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Abstract
The binding number of a graph G is defined as bind(G) = min{ |N(X)|

|X | : X ⊆ V (G),X 6= /0 and N(X) 6= V (G)}. In
this paper we consider the effects of contraction, deletion and/or addition of an edge on the binding number
of a graph. Also, invariance of binding number is considered under these operations. A new parameter is
defined here, named the binding degree. The variations of binding degree under different edge operations is
also considered.

Keywords
Contraction of edge, Deletion of edge, Addition of edge, Binding Number, Binding degree.

AMS Subject Classification
05C10.

1,2Department of Mathematics, Bengaluru City University, Central College Campus, Bengaluru-560001, India.
*Corresponding author: 1 medha@bub.ernet.in
Article History: Received 16 August 2020; Accepted 29 October 2020 c©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1934

2 Basic definitions and results . . . . . . . . . . . . . . . . . . . . 1935

3 Changes in the binding number due to edge contrac-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1936

4 Changes in the binding number due to edge addition
and deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1937

5 Binding degree of a graph . . . . . . . . . . . . . . . . . . . . . . . 1938

6 Changes in the binding degree due to edge contrac-
tion and deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1940

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1940

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1940

1. Introduction
Throughout this paper, by a “graph” we mean a finite

simple graph without loops as treated in F. Harary [4].
In connection with any graph-theoretic parameter, it is

commonly observed that addition or deletion of an edge will
either alter the parameter value or not. If the value alters by
such an operation, we call the graph as maximal or minimal
or popularly known as critical with to the given parameter.

On the other hand, the contraction of edges was done,
mainly to check the planarity of a given graph. Harary [4]

defined a contractible graph as a graph which can be obtained
by a series of elementary edge contractions. A dual from
of the famous Kuratowski’s planarity theorem in the sense
of matriod theory, was found independently by Wagner [14],
F. Harary and Tutte [5]. This theorem characterizers planar
graphs with respect to subgraphs contractible, by elementary
edge contractions. Recently, the trend has changed and effect
of even one edge-contraction on a given parameter has been
studied by Walikar [12], [13]. For any particular property
the measure of change was defined as a new graph parameter
and studied by Walikar et al. [13] , Huilgol et al. [6] [7].
This parameter was called the edge-essential number and was
defined as the number of edges whose contraction changes a
property under consideration.
On the contrary, an edge is called non-essential if its con-
traction does not alter the property. Based on this general
set-up, the present paper deals with a comparative study of
contractions, deletions and addition with respect to the bind-
ing number of a graph.

The binding number of a graph gives a measure on the
distribution of edges over vertices. It also serves on a vulnera-
bility parameter, along with vertex/edge connectivity, average
lower connectivity etc. The lower the binding number of a
graph is, the more vulnerable graph is for connectedness. In
any real world network model, the vulnerability parameters
measure how robust a network is after a link failure. So the
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study of binding number has both theoretical as well as practi-
cal implications. Formally the binding number was defined
by Woodall [15] in his seminal paper way back in 1947. It
is considered to be one of the toughest graph parameters and
hence find considerably less number of research papers in
seven decades of study. Recently, it is extended for digraphs
by Xu et al. [16]. For further details one can refer to [1], [8],
[10], [11], [15]. Hence checking the variance of a vulnerabil-
ity parameter like the binding number under different edge
operations itself is an interesting at the same time challenging
work.

In this paper we undertake the same and present some
results. Also, we find conditions such that the binding num-
ber is kept invariant under different edge operations. Hence
the changes or invariance of binding number under different
edge operations gives a double measure on the reliability of a
network under consideration. Till 2019 the study of binding
number was considered as a single, major parameter for a
graph. But the treatment got a new direction by Aslan [2],
where it is considered and defined for each vertex of the graph
under consideration and then the average was defined over all
the vertices. This approach gives a local vulnerability test of
the given graph or network. And this motivated us to define
another new parameter namely the binding degree of a graph.
This works as a triple layered vulnerability parameter that
takes care of the degree of a vertex along with its correspond-
ing local binding number. In the last section of this paper, we
have not only defined the binding degree, but also considered
effects of different edge operations on the binding degree of a
graph.

First we give a list of some basic definitions and results
that are required to establish our results in further sections.

2. Basic definitions and results
Here are some of the basic definitions and results that help

in building the new ones.

Definition 2.1. [4] The join G+H of two graphs G and H is
the graph with V (G+H) = V (G)

⋃
V (H) and E(G+H) =

E(G)
⋃

E(H)
⋃
{uv : u ∈V (G) and v ∈ E(H)}.

Definition 2.2. [4] In a graph G, an edge e = uv, is said to
be deleted, if only the edge ‘e’ is removed from G, keeping all
other adjacencies intact. This is denoted as G− e.

Definition 2.3. [4] In a graph G, an e = uv, is said to be
added, if only the edge ‘e ∈ E(Ḡ)’ is added to G, keeping all
other adjacencies intact. This is denoted as G+ e.

Definition 2.4. [4] An edge e = uv, is said to be contracted,
if both the vertices u and v are removed along with their
adjacencies and a new vertex w is introduced in such a way
that w is adjacent to the vertices which were adjacent to either
u or v.

Definition 2.5. [15] The binding number of a graph G is de-
fined as bind(G)=min{ |N(X)|

|X | : X ⊆V (G),X 6= /0 and N(X) 6=

V (G)}, where N(X) = {y/xy ∈ E(G),∀x ∈ X}, is called the
neighbourhood set of X.

Definition 2.6. [2] For v ∈V (G), the local binding number
of v is bindv(G) = min

v∈Fv(G){
|N(S)|
|S| }, where Fv(G) = {S⊂V (G) :

v ∈ S,S 6= /0,N(S) 6=V (G)}.
Clearly bind(G) = min

v∈V (G){bindv(G)}.
A local binding set of v in G is S∈Fv(G), such that bindv(G)=
|N(S)|
|S| .

Definition 2.7. [2] The average binding number of G is de-
fined as

bindav(G) =
1
n ∑

v∈V (G)

bindv(G),

where n is the number of vertices in graph G.

Here we briefly list some results proved earlier that help
us build the next set.

Proposition 2.8. [15] If n≥ 2, then bind(Kn) = n−1.

Proposition 2.9. [15] If m ≥ 2, n ≥ 1 then bind(Km,n) =
min{m

n ,
n
m}.

Proposition 2.10. [15] If n≥ 2, then

bind(Pn) =

{
1, if n is even
n−1
n+1 , if n is odd.

Proposition 2.11. [15] If n≥ 3, then

bind(Cn) =

{
1, if n is even
n−1
n−2 , if n is odd.

Proposition 2.12. [3] If n≥ 4, then

bind(Wn) =

{ n−1
n−3 , if n is even
n+1
n−1 , if n is odd.

Proposition 2.13. [3] If n≥ 2, then for a fan Fn we have,

bind(Fn) =

{
1, if n is even
n−1
n−2 , if n is odd.

Proposition 2.14. [8] Let t ≥ 2, then bind(∪t
i=1Gi) =min{1,

bind(G1),bind(G2), ...,bind(Gt)}
Proposition 2.15. [10] If G is a bipartite graph, then β0 =

n
2

if and only if bind(G) = 1, where β0 is the vertex indepen-
dence number of G.

Proposition 2.16. [15] If G is a bipartite graph, then bind(G)≤
1.

Proposition 2.17. [15] For any graph G with minimum de-
gree δ (G), bind(G)≤ n−1

n−δ (G) .

Proposition 2.18. [8] If G has a 1-factor then bind(G)≥ 1.

Proposition 2.19. [8] For any graph G, bind(G) ≤ n
β0
− 1,

where β0 denotes the vertex independence number of G.

Proposition 2.20. [9] Let G be a graph with bind(G) = c. If
x ∈ E(G), then for any admissible set X in G− x such that
X ∩ x = /0 and |NG−x(G)|

|X | ≥ c.
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3. Changes in the binding number due to
edge contraction

In this section we try to measure the changes in the binding
number of a graph under edge contractions. We first introduce
some definitions in line with the ones given for diameter, ra-
dius, domination-essential and/or non-essential edges done
earlier [12], [13], [6], [7]. In case all these parameters an
edge contraction would either increase the parameter or de-
crease and hence noting the changes was unidirectional. But
in the case of binding number of a graph, the situation is
slightly not that straight forward. On an edge contraction, the
binding number of a graph tends to increase or decrease and
sometimes, remain unchanged depending on the edge chosen.
This variation makes it even more challenging to study, like a
true vulnerability parameter. Keeping all these considerations
in mind, we define the various types of edges under edge
contractions.

Definition 3.1. An edge ‘e’ in a graph G is said to be a
binding-variant edge with respect to contraction, if bind(G/e)
6= bind(G).

Definition 3.2. An edge ‘e’ in a graph G is said to be a
binding-invariant edge with respect to contraction, if bind(G/e)
= bind(G).
The set of such edges in a graph G is denoted by Eic(G) and
the number of such edges is denoted by σic(G) = |Eic(G)|.

As discussed earlier, in case of radius/diameter/domination
number on contraction of an edge always decreases or remains
unchanged. But in case of binding number, an edge contrac-
tion sometimes increases and other-times decreases. Hence,
the binding-variant edges are divided into two classes.

(i) An edge is said to be an essential positive-binding edge,
if its contraction increases the binding number of the
graph.

That is, an edge e is an essential positive binding edge
(EPBE), if bind(G/e)> bind(G). The set of such edges
in a graph G is denoted by E+

bc(G).
Thus, E+

bc(G) = {e ∈ E(G)/bind(G/e)> bind(G)}.

(ii) An edge is said to be an essential negative-binding edge,
if its contraction decreases the binding number of the
graph.

That is, an edge e is an essential negative binding
edge(ENBE), if bind(G/e)< bind(G). The set of such
edges in a graph G is denoted by E−bc(G).
Thus, E−bc(G) = {e ∈ E(G)/bind(G/e)< bind(G)}.
And the number such edges is denoted as σ

+
bc(G) =

|E+
bc|, σ

−
bc(G) = |E−bc|.

Hence for the size m of G, we have

m = σ
+
bc(G)+σ

−
bc(G)+σic(G). (3.1)

Example(1): In a complete graph Kn, for n≥ 3 every edge
on contraction reduces the binding number, since bind(Kn) =

n−1 and bind(Kn/e) = bind(Kn−1) = n−2. Therefore every
edge is essential negative binding edge (ENBE), with respect
to contraction.

Example (2): In a star K1,n, for n≥ 3 every edge on con-
traction increases the binding number, since bind(K1,n) =

1
n−1

and bind(K1,n−1) =
1

n−2 . Therefore every edge is essential
positive binding edge (EPBE), with respect to contraction.

Remark 3.3. For any connected graph G,

0≤ σ
−
bc ≤ m.

Both the bounds are attainable. The result below shows
class of graphs realizing the upper bound. The lower bound is
attainable by even cycles, C2n.

Lemma 3.4. For G≈Kn, ∀n≥ 3 or P2n,∀n≥ 2 or C2n+1,∀n≥
1, then σ

−
bc(G) = m.

Proof. For G ≈ Kn, ∀n ≥ 3 or P2n,∀n ≥ 2 or C2n+1,∀n ≥ 1,
contraction of any edge e in G decreases binding number, as
G/e≈ Kn−1 or P2n−1 or C2n, respectively. Therefore all edges
are essential negative binding edges. Hence σ

−
bc(G) = m.

Remark 3.5. For any connected graph G,

0≤ σ
+
bc ≤ m.

Both the bounds are attainable.The result below shows
class of graphs realizing the upper bound. The lower bound is
attainable by complete graphs, Kn.

Lemma 3.6. For G≈C2n,∀n≥ 2 or P2n+1,∀n≥ 1 or K1,n,∀n≥
1, then σ

+
bc(G) = m.

Proof. In G ≈ C2n,∀n ≥ 2 or P2n+1,∀n ≥ 1 or K1,n,∀n ≥ 2,
contraction of any edge e in G binding number in G/e is
increasing, because G/e ≈ C2n−1 or P2n or K1,n−1, respec-
tively. Therefore all edges are essential positive binding edges.
Hence σ

+
bc(G) = m.

In the next results we consider the graphs wherein no edge
is binding invariant with respect to contraction.

Theorem 3.7. If γ(G) = 1, then there exists no binding in-
variant edge in G.

Proof. If γ(G) = 1, then there exists a vertex of full degree
and hence contraction of any edge e in G alters the binding
number of G. Therefore no edge is binding invariant.

Theorem 3.8. In a regular graph no edge is binding invariant.

Proof. If G is regular graph then contraction of any edge in G
results in either a regular graph or a non-regular graph. These
two cases are considered below and shown that in both cases
no edge is binding invariant.
Case (i): G/e is regular.
In this case G/e must be either a complete graph or a cycle.
In both cases we get all edges to alter the binding number of
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G and hence no edge is binding invariant.
Case (ii): G/e is non-regular.
Let G be a regular with regularity k, say. On contraction
of any edge if G/e is not regular, then a vertex at which
the edge is contracted will have its degree more than that
before the edge contraction. Hence |V (G/e)| = |V (G)| − 1
and m(G/e)≤ nk

2 −1. Also we know that

bind(G)≤ n−1
n−δ (G)

=
n−1
n− k

. (3.2)

bind(G/e)<
n−2
n− k

. (3.3)

Therefore every edge is binding variant. Hence the result.

Theorem 3.9. Let G be a graph with bind(G) = c. If e ∈
E(G), then

|NG/e(X)|
|X | ≥ c, for any admissible set X in G/e such

that X ∩{u,v}= /0, and e = uv is an edge of G.

Proof. For a graph G with bind(G)= c, let X be an admissible
set of G/e for an edge e = uv in G such that X ∩{u,v} = /0.

Therefore |NG/e(X)| ≥ |NG(X)|. This implies that
|NG/e(X)|
|X | ≥

|NG(X)|
|X | = c. Hence

|NG/e(X)|
|X | ≥ c.

Theorem 3.10. If G is any graph, then β0(G) = 1 if and only
if bind(G) = n−1.

Proof. Let β0(G) = 1 where β0 is the vertex independence
number. This implies that G is (n−1) regular graph. There-
fore G is a complete graph. Hence bind(G) = n−1. Converse
is obvious.

4. Changes in the binding number due to
edge addition and deletion

We consider two more edge operations namely the edge
addition and edge deletion. Again for these operations we
check the binding number invariance. First a couple of defini-
tions and illustrations.

Definition 4.1. A graph G is said to be positive binding invari-
ant, if by adding an edge in G, it retains its binding number,
that is, bind(G+ e) = bind(G), for any edge e ∈ E(Ḡ).
This edge e is called a positive binding invariant edge of G.

Illustration:

In figure above, we know the bind(G) = 1, then bind(G+
e) = 1. Hence the graph is positive binding invariant.

Next we give the definition of negative binding invariant
edge.

Definition 4.2. A graph G is said to be negative binding
invariant, if by deleting any edge from G, it retains its binding
number, that is, bind(G− e) = bind(G), for any e ∈ E(G).
This edge e is called a negative binding invariant edge of G.

Illustration: In the figure above, we know the bind(G)=

1, then bind(G−e) = 1, for all edges e of G. Hence the graph
is negative binding invariant.

Now, we present some properties of binding invariant,
positive binding invariant, negative binding invariant graphs.

Theorem 4.3. A graph G is negative binding invariant graph
if and only if for every vertex v, each vertex u ∈ Nk(v) is
adjacent to at least two vertices in Nk−1(v), for 2≤ k ≤ e(v),
where Nk(v) denotes the kth neighbourhood of v in G and e(v)
is the eccentricity of vertex v.

Proof. For any arbitrary vertex v in G and u ∈ Nk(v), let v be
adjacent to at least two vertices in Nk−1(v), for 2≤ k ≤ e(v),
where Nk(v) denotes the kth neighbourhood of v in G and e(v)
is the eccentricity of vertex v, then by deleting any edge of
the graph, binding number remains unaltered as the realizing
set of G and G− e remain the same. Hence, G is a negative
binding invariant graph.

Conversely, if G is a negative binding invariant graph, then
bind(G− e) = bind(G), ∀e ∈ E(G). Assume that for some
vertex v and some integer k, a vertex u∈Nk(v) has at most one
neighbour in Nk−1(v), then removal of an edge incident with
the vertex u will alter the binding number of G, a contradiction
and hence the result.

Next result deals with the embedding a graph in a negative
binding invariant graph, there by ruling out the characteriza-
tion using forbidden class of subgraphs.

Proposition 4.4. Every graph can be embedded in a negative
binding invariant graph.

Proof. Let G be a graph. Partition the vertex set of G into
two sets, one set into an independent set, say S and another
V (G)− S. Then introduce some more vertices to make S
and V (G)−S to have the same cardinality. Then introduce a
vertex, say u and join u to all the vertices V (G)−S. Make the
two sets S and V (G)−S to have all edges in between them.
Clearly, this graph is negative binding invariant. Hence we can
embed any graph into a negative binding invariant graph.

1937



Changes in binding number and binding degree of a graph under different edge operations — 1938/1941

Proposition 4.5. For a negative binding invariant graph G,
there exists a realizing set X such that X ∩N(X) 6= /0.

Proof. Let G be a negative binding invariant graph and X
be its realizing set. Let |X ∩N(X)| = k. For e = uv ∈ E(G)

in G− e, consider X
′
= {X − (X ∩N(X))} ∪ {u}. Hence,

N(X
′
) = N(X)−{(X ∩N(X))−{u}}.

So, bind(G− e)≤ |N(X
′
)|

|X ′ |
= |N(X)|+k−1

|X |−k+1 .

Since bind(G− e) = bind(G), we set

bind(G)≤
bind(G)+ k−1

|X |

1− k−1
|X |

⇒ 1+bind(G)≤K(1+bind(G))

⇒ k > 1.

Hence the result.

Proposition 4.6. For a positive binding invariant graph G,
there exists a realizing set X with X∩N(X) 6= /0 then bind(G)>
1.

Proof. Let G be a positive binding invariant graph and X be its
realizing set such that X ∩N(X) 6= /0 then |X ∩N(X)|= k≥ 1.
Let X

′
= {X−(X∩N(X))}⇒N(X

′
) =N(X)−{(X∩N(X)).

Hence bind(G+ e)≤ |N(X
′
)|

|X ′ |
≤

bind(G)+ k
|X |

1− k
|X |

But, bind(G+ e) = bind(G)≤
bind(G)+ k

|X |
1− k
|X |

.

Hence, bind(G)> 1.

Proposition 4.7. Every graph can be embedded in a positive
binding invariant graph.

Proof. Let G be a graph of order n. Let M be the maximum
matching of G. Add n−2|M|+2 new vertices and add edges
to have a perfect matching. Clearly by adding any edge does
not alter the binding number, hence we get a positive binding
invariant graph.

5. Binding degree of a graph
The binding number and local binding number of a graph

give layered measures of the vulnerability of a graph. This
motivated us to define a new parameter called the binding
degree of a graph. This works as a triple layered parameter
combining the degree of a vertex and its local binding number,
so that the duality of local connectedness and local vulnera-
bility are addressed. We first define the parameter and then
determine it for different class of graphs and then check for
the changes occurring in the binding degree of a graph under
various edge operations.

Definition 5.1. The binding degree of G, denoted by bd(G),
is defined as bd(G) = ∑

n
i=1 deg(vi)bindvi(G).

Illustration:

In G, we have | V (G) |= 4 and | E(G) |= 4. Note that
bindv1

(G) = 1
1 , deg(v1) = 1, bindv2

(G) = 3
1 , deg(v2) = 3,

bindv3
(G) = 2

2 = 1, deg(v3) = 2, bindv4
(G) = 2

2 = 1 and
deg(v4) = 2. It follows that, bd(G) = deg(v1)bindv1

(G) +

deg(v2)bindv2
(G)+deg(v3)bindv3

(G)+deg(v4)bindv4
(G) =

1∗1+3∗3+2∗1+2∗1 = 14.

Proposition 5.2. The binding degree of cycles, paths, com-
plete graphs, complete bipartite graphs, wheels is given as
follows:

(1) For any path Pn with n≥ 2 vertices,

bd(Pn) =

{
2n−2, if n is even
2n3−5n2+4n−1
(n+1)(n−2) , if n is odd.

(ii) For any cycle Cn with n≥ 3 vertices,

bd(Cn) =

{
2n, if n is even
2n(n−1)

n−2 , if n is odd.

(iii) For any complete graph Kn with n≥ 3 vertices, bd(Kn)=
n(n−1)2.

(iv) For any complete bipartite graph Km,n, bd(Km,n)=m2+
n2.

(v) For n≥ 4, the binding degree of a wheel is,

bd(Wn) =

{
n(n−1)2

n−3 , if n is even
n2 +n+4, if n is odd.

Proof. (i)
Let Pn be a path with n ≥ 2 vertices. If the vertices of Pn
are labelled as v1,v2, · · · ,vn then we know that deg(v1) =
deg(vn) = 1 and deg(v2) = · · · = deg(vn−1) = 2. Here we
consider two cases.
Case (a): If n is even.
From [15] we know that bind(Pn) = 1, whenever n is even.
For vi ∈V (Pn), the local binding number of vi with 1≤ i≤ n
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is bindvi(Pn) = 1. Therefore bd(G) = 2+2(n−2) = 2n−2.
Case (b): If n is odd.
For vi ∈V (Pn), the local binding number of {v1,v3, · · · ,vn} is
bindvi(Pn) =

n−1
n+1 and the local binding number of {v2,v4,

· · · ,vn−1} is bindvi(Pn) =
n−1
n−2 . Therefore

bd(Pn) = 2
n−1
n+1

+2(
n−3

2
)(

n−1
n+1

)+2(
n−1

2
)(

n−1
n−2

)

= (n−1)2(
2n−1

(n+1)(n−2)
)

=
2n3−5n2 +4n−1
(n+1)(n−2)

.

Hence the result.
(ii)
Let Cn be a cycle with n≥ 3 vertices. We know that Cn is a
self-centered, regular graph of regularity 2. Here also we have
two cases.
Case (a): If n is even.
Form [15] we know that bind(Cn) = 1 if n is even. Therefore
bd(Cn) = 2n.
Case (b): If n is odd.
from [15] we know that bind(Cn) =

n−1
n−2 for n is odd. There-

fore bd(Cn) = 2n n−1
n−2 .

Hence the result.
(iii)
Since Kn for n ≥ 3 is a regular graph of regularity n− 1
and all vertices have local binding number is n− 1, we get
bd(Kn) = n(n−1)2.
(iv)
Let Km,n be a complete bipartite graph. Let vertices be la-
belled as v1,v2, ˙...,
vm,u1,u2, ˙...,un. For vi ∈V (Km,n), the local binding number
of vi for 1≤ i≤ m, is bindvi(Km,n) =

n
m and the local binding

number of u j for 1≤ j ≤ n, is bindu j(Km,n) =
m
n . Therefore

bd(G) = mn n
m +mn m

n = m2 +n2.
(v)
Let Wn be a wheel with n≥ 4, we know that Wn =Cn−1 +K1.
If Wn has {v1,v2, · · · ,vn} vertices, we know that deg(vn) =
n−1 and deg(v1) = deg(v2) = · · ·= deg(vn−1) = 3. Here we
have two cases.
Case (a): If n is even.
For vi ∈ V (Wn), from [2], the local binding number of vi
for 1 ≤ i ≤ n− 1 is bindvi(Wn) =

n−1
n−3 and the local binding

number of vn is bindvn(Wn) = n− 1. Therefore bd(Wn) =
3(n−1)( n−1

n−3 )+(n−1)2 = (n−1)2( n
n−3 ).

Case (b): If n is odd.
For vi ∈ V (Wn), from [2], the local binding number of vi
for 1 ≤ i ≤ n− 1 is bindvi(Wn) =

n+1
n−1 and the local binding

number of vn is bindvn(Wn) = n− 1. Therefore bd(Wn) =
3(n−1)( n+1

n−1 )+(n−1)2 = n2 +n+4.
Hence the result.

The next result deals with the binding degree of a fan
graph and a double star. For ready reference we first give the

definitions.

Definition 5.3. The fan graph Fn is defined as the graph join
K1 +Pn−1, where K1 is the trivial one vertex graph and Pn−1
is path graph on n−1 vertices.

Definition 5.4. The double star Sm,n is a tree with diameter 3
and central vertices of degree m and n respectively and m+n
number of pendant vertices.

Proposition 5.5. The binding degree of a double star and a
fan graph is given as follows:

(i) For any double star graph Sm,n with m,n≥ 2 vertices,

bd(Sm,n) =



2m2+6m−2
2m−1 ,

if m = n
m3+n3+m2n+mn2+6mn+2m2−9m−7n+4

(m+n−1)(m+n−2) ,

if m < n
m3+n3+m2n+mn2+6mn+2n2−7m−9n+4

(m+n−1)(m+n−2) ,

if m > n.

(ii) For any fan graph Fn with n≥ 4 vertices,

bd(Fn) =

{
n3−2n2−4n+6

n−3 , if n is even
n3−n2−3n+3

n−2 , if n is odd.

Proof. (i)
Let Sm,n be a double star with m,n ≥ 2, and hence Sm,n =

¯Km−1+K1+K1+ ¯Kn−1. If Sm,n has v1,v2, · · · ,vm,u1,u2, · · · ,un
vertices with deg(v1)= deg(v2)= · · ·= deg(vm−1)= deg(u1)=
deg(u2) = · · ·= deg(un−1) = 1, deg(vm) = m and deg(un) =
n, then we have three cases.
Case (a): If m = n.
For vi ∈ Sm,n, the local binding number of each vertex of
v1,v2, · · · ,vm−1 is bindvi(Sm,m) =

1
m−1 from [2], and that of

each of u1,u2, · · · ,um−1 as bindui(Sm,m)=
1

m−1 , bindvm(Sm,n)=
m+1

2m−1 for vm and is bindum(Sm,n) =
m+1
2m−1 for um. Therefore,

the binding degree of the double star is,
bd(Sm,m) = (2m−2)( 1

m−1 )+2m( m+1
2m−1 ) =

2m2+6m−2
2m−1 .

Case (b): If m < n.
For vi ∈ Sm,n, the local binding number of each vertex
v1,v2, · · · ,vm−1 is bindvi(Sm,n) = 2

m+n−2 , and that of
u1,u2, · · · ,un−1 is bindui(Sm,n) =

1
n−1 , bindvm(Sm,n) =

m+1
m+n−1

for vm and bindum(Sm,n)=
n+1

m+n−1 for um. Therefore bd(Sm,n)=

(n−1) 1
n−1 +(m−1) 2

m+n−2 +m( m+1
m+n−1 )

+n( n+1
m+n−1 ) =

m3+n3+m2n+mn2+6mn+2m2−9m−7n+4
(m+n−1)(m+n−2) . Case (c): If

m > n.
Similar to Case(b), we get,

bd(Sm,n) = (m−1) 1
m−1 +(n−1) 2

m+n−2 +m( m+1
m+n−1 )+

n( n+1
m+n−1 ) =

m3+n3+m2n+mn2+6mn+2n2−7m−9n+4
(m+n−1)(m+n−2) .

Hence the result.
(ii)
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If Fn is a fan graph with n≥ 4, labelled v1,v2, · · · ,vn vertices.
We know that deg(vn) = n−1, deg(v1) = deg(vn−1) = 2 and
deg(v2) = deg(v3) = · · ·= deg(vn−2) = 3. Here we have two
cases.
Case (a): If n is even.
For vi ∈V (Fn), i = 2,4, · · · ,n−1, the local binding number
is bindvi(Fn) = 1, the local binding number of v3,v5, · · · ,vn−2
is bindvi(Fn) =

n−1
n−3 and the local binding number of vn is

bindvn(Fn) = n−1.
Therefore bd(Fn)= 4+3( n−4

2 )+3( n−2
2 )( n−1

n−3 )+(n−1)(n−
1)
= n3−2n2−4n+6

n−3 .
Case (b): If n is odd.
For vi ∈ V (Fn), the local binding number of vi with 1 ≤ i ≤
n−1 is bindvi(Fn) =

n−1
n−2 and the local binding number of vn

is bindvn(Fn) = n−1.
Therefore bd(Fn) = 4( n−1

n−2 )+3(n−3)( n−1
n−2 )+(n−1)(n−

1) = n3−n2−3n+3
n−2 .

Hence the result.

Remark 5.6. Since we are concentrating on the changes due
to edge operations here, we are not going deep into finding
binding degree of other graphs. But we consider the varia-
tion in binding degree due to different edge operations in the
following section.

6. Changes in the binding degree due to
edge contraction and deletion

Adhering to the central theme of the paper, in this part we
prove results that deal with the variation in binding degree of
several graphs due to edge contraction.

Proposition 6.1. The change in binding degree on contrac-
tion of an edge is as follows:

(1) On contraction of any edge in complete graph, binding
degree defers by (n− 1)(3n− 4). That is, bd(Kn)−
bd(Kn/e) = (n−1)(3n−4).

(2) On contraction of any edge in an even cycle, binding
degree defers by −4

n−3 . That is, bd(Cn)− bd(Cn/e) =
−4
n−3 .

(3) On contraction of any edge in an odd cycle, binding
degree defers by 4 (n−1)

(n−2) . That is, bd(Cn)−bd(Cn/e) =

4 (n−1)
(n−2) .

(4) On contraction of any edge in an even ordered path,
binding degree defers by 3n2−14n+12

n(n−3) . That is, bd(Pn)−

bd(Pn/e) = 3n2−14n+12
n(n−3) .

(5) On contraction of any edge in an odd ordered path,
binding degree defers by n2+4n−9

(n+1)(n−2) . That is, bd(Pn)−

bd(Pn/e) = n2+4n−9
(n+1)(n−2) .

(6) On contraction of any edge in a complete bipartite
graph, binding degree defers by −(m+n−2)2. That is,
bd(Km,n)−bd(Km,n/e) =−(m+n−2)2.

(7) On contraction of any outer cycle edge in a wheel, bind-
ing degree defers by 2n2−6n+12

n−3 , whenever n is even.

That is, bd(Wn)−bd(Wn/e) = 2n2−6n+12
n−3 .

(8) On contraction of any outer cycle edge in a wheel, bind-
ing degree defers by 2n2−11n

n−4 , whenever n is odd. That

is, bd(Wn)−bd(Wn/e) = 2n2−11n
n−4 .

(9) On contraction of any outer path edge in fan graph,
binding degree defers by 2(n2−3n+1)

n−3 , whenever n is even.

That is, bd(Fn)−bd(Fn/e) = 2(n2−3n+1)
n−3 .

(10) On contraction of any outer path edge in fan graph,
binding degree defers by 2(n3−6n2+7n+1)

(n−2)(n−4) , whenever n is

odd. That is, bd(Fn)−bd(Fn/e) = 2(n3−6n2+7n+1)
(n−2)(n−4) .

Proof. The proof follows from Proposition 5.1 and Proposi-
tion 5.2.

We consider the changes occurring in binding degree on
an edge deletion in a graph.

Proposition 6.2. The change in binding degree on deletion
of an edge is as follows:

(1) On deletion of an edge in an even cycle, binding degree
defers by 2.

(2) On deletion of an edge in an odd cycle, binding degree
defers by (n−1)(5n−1)

(n+1)(n−2) .

(3) On deletion of an edge in a complete graph, binding
degree defers by n2−2.

Proof. Proof follows from the fact that, Cn− e≈ Pn, whether
n is odd or even and the difference between respective binding
degree can be obtained by applying Proposition 5.1. In case
of complete graphs, it is easy to verify that, the local binding
numbers are n−2

2 and (n− 1). Therefore bd(Kn)− bd(Kn−
e) = n2−2.

7. Conclusion
This paper is mainly divided into two parts, the first one

deals with the changes in binding number of a graphs under
different edge operations. In the second part we introduce
a new graph parameter called the binding degree of a graph
and determine its exact value for some class of graphs. This
study is being extended to many more graphs in general and
its practical applicability is looked into, as the binding degree
of a graph has beautiful duality associated with it, in terms of
local connectedness and local vulnerability for connectedness.
Not to deviate from the theme of the paper, we have checked
the changes occurring in binding degree of some graphs due
to different edge operations.
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