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Mathematical study of SEIR model with functional
rates of incidence and treatment
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Abstract
In this paper, with nonlinear inhibitory effect and saturated treatment rate, an SEIR epidemic model is proposed.
The basic reproduction number R0, is calculated when determining the threshold value for the disease and the
dynamics of the model. The criteria for the existence of all the points of equilibrium are established and we also
found that the conditions depend on them. The stability of equilibrium is discussed in terms of local and global.
All attempted were made to present the numerical simulations for the model we suggested. The theoretical
findings are clearly predicted to be supported and evaluated.
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1. Introduction
A number of infectious diseases have been mapped, an-

alyzed and applied to Different types of widespread models
out, examined and applied to a variety of infectious diseases.
All these have been carried out with qualitative and quantita-
tive parameters. However, in the study of the widespread use
and the control of infectious diseases, epidemic models are
significant. In addition, these models are significant in pol-
icy making including optimizing multiple detection control-
program evaluation. The bilinear incidence rate βSI is often

implemented in many disease models [3,5,8,9]. Describe the
fact that the over crowding of infected persons or susceptible
persons saturates the amount of active encounters between
infectious and susceptible persons.

A saturated incidence rate [1]

g(I)S =
β IS

1+ρI

where the positive constant ρ measures the inhibitory effect
which explains the saturation effects or psychological effects
[3,5,6] Further the treatment for a disease plays a key part
in controlling or minimizing the spread of multiple of infec-
tious disease forms. In general the treatment of a disease in
any group or nation is limited. Therefore, the consideration
of an effective treatment rate reflects a successful epidemic
model. Wang and Ruan [13] were taken a constant removal
rate into consideration in a classical SIR model. In this model
they performed stability analysis and proposed several bifur-
cations. Subsequently Zhang and Suo [14] adapted the rate of
treatment to Holling type II i.e.,

h(I) =
αI

1+δ I
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where α > 0,δ ≥ 0, where α is the cure rate and δ measures
the delay for treatment.

Although several literatures [1,2,4,5,6,7,8,10,13,14] have
studied the roles of different types of epidemic models with a
inhibitory and treatment rates, but less study has been done.
The bilinear occurrence rate and treatment rate were consid-
ered by B. Dubey et al. [5] as type II and type III of Holling.
The epidemic model under which both events occurred was
considered by Zhang et al. [7,14]. Here we considered an
epidemic model with Holling type II and III functional rates.
Also assumpted that the immunity acquired by a person after
recovery is permanent.

This paper is ordered in this manner: the mathematical
model is formulated in the next section; the model’s positivity
and limits are evaluated. Section 3 addressed equilibrium
and their existence. In addition, the very significant number
in the disease modelling, i.e., the basic reproduction number
is measured. In section 4 the local and global stability of
equilibrium points was analysed. Section 5 is dedicated to
promoting and complementing these numerical simulations.

2. The Mathematical model
The recovered individuals via treatment in the following

considered SEIR model is assumed that they gained perma-
nent immunity. As stated in the introduction the incidence
rate and the treatment rate was taken to be Holling type–II and
III respectively. To construct an SEIR model, we divide pop-
ulation into four subdivisions i.e. Susceptible (S), Exposed
(E), Infectious (I) and Recovered (R). As follows the model
to be analysed is:

dS
dt = b− β IS

1+ρI −µS
dE
dt = β IS

1+ρI − (σ +µ)E
dI
dt = σE− (µ + γ)I− αI2

1+δ I2

dR
dt = γI−µR+ αI2

1+δ I2

 (2.1)

Here b is the recruitment rate, ρ is inhibitory effect, β is the

Figure 1. The flow chart of SEIR model

force of infection at which a susceptible is exposed and 1
β

is the period of transmission. After an incubation period the
exposed individual become infective and move into infective
compartment. Let σ is the incubation period after which the
exposed individuals to become infective individuals and the

incubation period is 1
σ
. Let µ be the death rate and ρ be the

inhibitory effect. Let γ be the rate of recovery of infective
individuals and 1

γ
is the infectious period. Let h(I) = αI2

1+δ I2

be the functional treatment rate through which the infective
individuals can also be recovered. The parameters such as
b,β ,µ,σ ,γ,α are all positive and ρ and δ are nonnegative.

2.1 The boundedness of the model
Theorem 2.1. The region

Ω =

{
(S,E, I,R) ∈ R4

+ : N = S+E + I +R≤ b
µ

}
is positively invariant for system (2.1).

Proof. Let N(t) = S(t)+E(t)+ I(t)+R(t), then

dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dR
dt

.

From (2.1), dN
dt ≤ b−µN. This implies that, N(t)≤ b

µ
, when

N(0)≤ b
µ

. Thus Ω is positively invariant of the system (2.1).

Further N(0)> b
µ
, then either of the solutions enters in to Ω

in finite time or approaches to b
µ

as t→ ∞. Hence the closed
set Ω is captivating i.e., all solutions in R4

+ eventually enters
the region Ω and remains in Ω thereafter.

3. Finding the equilibrium points and the
basic reproduction number

This section discusses the conditions for existence of equi-
librium points E0 and E∗ respectively. Furthermore, R0 is
calculated with the next generation matrix [4] method. The
equilibrium points are obtained by solving the following sys-
tem.

b− β IS
1+ρI

−µS =0 (3.1)

β IS
1+ρI

− (σ +µ)E =0 (3.2)

σE− (µ + γ)I− αI2

1+δ I2 =0 (3.3)

γI−µR+
αI2

1+δ I2 =0 (3.4)

By solving (3.1), (3.2), (3.3) and (3.4), the disease-free equi-
librium (DFE), E0 =

(
b
µ
,0,0,0

)
. With some algebra calcula-

tions E∗ = (S∗,E∗, I∗,R∗) becomes

S∗ =
b(1+ρI∗)

µ +(β +µρ)I∗
(3.5)

E∗ =
β I∗b(1+ρI∗)

(µ +(β +µρ)I∗)(1+ρI∗)(µ +σ)
(3.6)

R∗ =
I∗

µ

(
γ +

αI∗

1+δ I∗2

)
(3.7)

1954
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where I∗ is the positive solution of

AI∗3 +BI∗2 +CI∗+D = 0, (3.8)

here

A =kδ (β +µρ)

B =kδ µ +α(β +µρ)(µ +σ)−σβbδ

C =k(β +µρ)+µα(µ +σ)

D =kµ−σβb

The solutions to (3.5) need to be real and positive. In order
for the endemic equilibrium to exist. Here we first establish
the basic reproduction number R0, before going to find the ex-
istence of endemic equilibrium. Perhaps the most significant
number in disease modeling is the basic reproduction number
and it is described as the ’average number of cases directly
arising from a typical primary case in an entirely susceptible
population’.
The benefit of the method mentioned above to find R0 is it
involves DFE, which is simple to calculate. The DEF of the
model (2.1) is E0 =

(
b
µ
,0,0,0

)
. In (2.1) E and I are the dis-

eased compartments. Therefore, the sub model of the model
(2.1) contains the equations E and I, is

d~x
dt

=F(~x)−V (~x), ~x =
[

E
I

]
F(~x) =

[
β IS
1+I
0

]
, V (~x) =

[
(σ +µ)E(

αI
1+δ I2 + γ +µ

)
I−σE

]
Now

J (F (E0)) =

[
0 βB

µ

0 0

]
, J (V (E0)) =

[
σ +µ 0
−σ γ +µ

]

V−1 =

[
1

σ+µ
0

σ

(σ+µ)(γ+µ)
1

γ+µ

]

FV−1 =

[
βbσ

µ(σ+µ)(γ+µ)
βb

µ(γ+µ)

0 0

]

The largest Eigen value of FV−1 is

βbσ

µ(σ +µ)(γ +µ)
,

which is the spectral radius and it is equal to model’s basic
reproduction number. Consequently

R0 =
βbσ

µ(σ +µ)(γ +µ)
.

4. Existence and stability analysis of
equilibrium

Existence conditions of equilibrium points are discussed
in this section by using R0. It has also further discussed the

global stability of this equilibrium.
The model (2.1) has unique DFE E0 =

(
b
µ
,0,0,0

)
which al-

ways exists. The solutions of (3.8) should be real and positive
for E∗ = (S∗,E∗, I∗,R∗) to exist. We can determine the num-
ber of positive real roots of the cubic equation (3.8) according
to Descartes rule of sign. We therefore have the findings that
follow.

Theorem 4.1. System (2.1) has endemic equilibrium points if
the following results hold.

1. Unique endemic equilibrium when ever

1 < R0 <
α(β +µρ)

µδ (µ + γ)
.

2. Two endemic equilibria whenever

α(β +µρ)+µ(µ +σ)

µδ (µ + γ)
< R0 < 1.

3. Three endemic equilibria when ever

R0 >
kµδ +α(β +µρ)(µ +σ)

σβbδ
.

4. No endemic equilibria when ever

R0 > 1+
α(β +µρ)

µδ (µ + γ)
and R0 < 1.

Where,

R0 =
βbσ

µ(σ +µ)(γ +µ)

and k = (µ +σ)(µ + γ).

Remark 4.2. Here, even though the system has more than
one endemic equilibrium, we concentrate on unique endemic
equilibrium. The variational matrix of the system (2.1) is

J =


− β I

1+ρI −µ 0 − βS
(1+ρI)2 0

β I
1+ρI −σ −µ

βS
(1+ρI)2 0

0 σ −µ− γ− 2αI

(1+δ I2)
2 0

0 0 γ + 2I

(1+δ I2)
2 −µ


(4.1)

Theorem 4.3. If R0 < 1,E0 =
(

b
µ
,0,0,0

)
is asymptotically

stable. Otherwise E0 is unstable.

Proof. The corresponding variational matrix at E0

J (E0) =


−µ 0 −βb

µ
0

0 −σ −µ
βb
µ

0
0 σ −µ− γ 0
0 0 γ −µ

 (4.2)
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The characteristic equation of (4.2) is given by

(λ +µ)2 (
λ

2 +K1λ +K2
)
= 0, (4.3)

where,

K1 = 2µ + γ +σ ,K2 = (µ + γ)(µ +σ)− βbσ

µ
.

The characteristic values of matrix J (E0) are λ1 = λ2 =−µ

and also the roots of quadratic equation By Descartes’ rule
of signs when, (µ + γ)(µ +σ)> βbσ

µ
the quadratic equation

has negative roots, This implies that,

R0 =
βbσ

µ(µ + γ)(µ +σ)
< 1.

Theorem 4.4. When R0 < 1,E0 =
(

b
µ
,0,0,0

)
is globally

asymptotically stable.

Proof. Consider the Lyapunov function on R3
+

V (S,E, I) = l
(

S−S∗−S∗ ln
S
S∗

)
+

1
(µ +σ)

E +
1
σ

I. (4.4)

Where l > 0 is to be determined and S∗ = b
µ

. Now

dV
dt

=l
(

1− S∗

S

)(
b− β IS

1+ρI
−µS

)
+

1
(µ +σ)

(
β IS

1+ρI
− (σ +µ)E

)
+

1
σ

(
σE− (µ + γ)I− αI2

1+δ I2

)
(4.5)

If l = 1
µ+σ

> 0, then (4.5) becomes,

dV
dt

=−lb
[

b
µS

+
µS
b
−2
]
− αI2

σ (1+δ I2)

+
µ + γ

σ

(
R0

1+ρI
−1
)

I (4.6)

dV
dt

< 0 for all t ≥ 0.

Therefore by Lyapunov stability theory, E0 is globally asymp-
totically stable if R0 < 1. Now,

J (E∗) =


− β I∗

1+ρI∗ −µ 0 − βS∗

(1+ρI∗)2 0
β I∗

1+ρI∗ −σ −µ
βS∗

(1+ρI∗)2 0

0 σ −µ− γ− 2αI∗

(1+δ I∗2)2 0

0 0 γ + 2I∗

(1+δ I∗2)2 −µ


(4.7)

(−µ−λ )
(
a1λ

3 +a2λ
2 +a3

)
= 0, (4.8)

which is the characteristic equation of (4.7). Where

a1 =3µ +σ + γ +
2I∗α

(1+δ I∗2)2 +
β I∗

1+ρI∗

a2 =(σ +µ)

(
µ + γ +

2αI∗

(1+δ I∗2)2

)

+

(
µ +

β I∗

1+ρI∗

)(
2µ +σ + γ +

2I∗α

(1+δ I∗2)2

)

− βS∗σ

(1+ρI∗)2

a3 =

(
µ +

β I∗

1+ρI∗

)
(σ +µ)

(
µ + γ +

2αI∗

(1+δ I∗2)2

)

+
β 2S∗I∗

(1+ρI∗)3

−
(

µ +
β I∗

1+ρI∗

)(
βS∗σ

(1+ρI∗)2

)

Clearly equation (4.8) has one eigenvalue i.e. −µ and if
a1 > 0,a3 > 0 and a1a2 > a3. The eigenvalues of a1λ 3 +
a2λ 2 + a3 = 0 have negative real parts by Routh-Hurwitz
criteria.

Theorem 4.5. If a1 > 0,a3 > 0 and a1a2 > a3 equilibrium
point E∗ = (S∗,E∗, I∗,R∗) is locally asymptotically stable.

Theorem 4.6. When

E
I (1+ρI∗)

< l1 <
E
S∗

,

the stationary point E∗ is globally asymptotically stable.

Proof. Considering the Lyapunov function on R3
+

V (S,E, I) =S−S∗−S∗ ln
[

S
S∗

]
+ l1

{
E−E∗−E∗ ln

[
E
E∗

]}
+ l2

{
I− I∗− I∗ ln

[
I
I∗

]}
Where, l1, l2 > 0. Now

dV
dt

=

(
S−S∗

S

)
Ṡ+ l1

(
E−E∗

E

)
Ė + l2

(
I− I∗

I

)
İ. (4.9)

By choosing
E

I (1+ρI∗)
< l1 <

E
S∗

and

l2
l1

<
IB

σEE∗(1+ρI)(1+ρI∗)
[2(1+ρI)I∗S∗− IE∗ (1+ρI∗)−E∗S∗] .

Then equation (4.9) becomes,

1956
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Figure 2. The population individuals approached to endemic equilibrium point E∗ = (49.64806, 7.382819, 11.71451,
431.2546)

Figure 3. The phase portrait of Susceptible (S) vs. Invectives (I), Exposed (E) and Recovered (R) individuals

dV
dt

<−
[

b
SS∗
− B

2(1+ρI)(1+ρI∗)

+
l1B(IE∗+ρII∗E∗)

2EE∗(1+ρI)(1+ρI∗)

]
(S−S∗)2

−
[

l1B(IE∗+ρII∗E∗)
EE∗(1+ρI)(1+ρI∗)

− l1BE∗S∗

2EE∗(1+ρI)(1+ρI∗)

− l2σ

2I
+

l1B(I∗S∗+ρII∗S∗)
EE∗(1+ρI)(1+ρI∗)

]
(E−E∗)2

+

[
l2

(
σE∗

II∗
+

α (1+δ II∗)
(1+ρI2)(1+ρI∗2)

)
− l1BE∗S∗

2EE∗(1+ρI)(1+ρI∗)

+
B

2(1+ρI)(1+ρI∗)
− l2σ

2I

]
(I− I∗)2

< 0.

Hence E∗ is globally asymptotically stable.

5. Numerical Illustrations
To explain theoretical findings outlined in this paper we

will include some numerical simulations. The hypothetical set
of parameter values is considered as follows for this reason.

b = 10,β = 0.03,ρ = 0.08,µ = 0.02
σ = 1.2,γ = 0.004,α = 0.5,δ = 0.051
S(0) = 100,E(0) = 8, I(0) = 2,R(0) = 0.

 (5.1)

The above parameter values satisfies the first condition of
theorem 4.1 hence unique E∗ exists and it is

S∗= 49.64806,E∗= 7.382819, I∗= 11.71451,R∗= 431.2546.
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Figure 4. The phase portrait of Susceptible (S), Exposed (E), Invectives (I) individuals

Figure 5. The effect of epidemic curve by varying the transmission rate β and the infection period 1
γ

In addition, the above parameters values met the condi-
tions in theorem 4.5. This reflects the endemic equilibrium
point is locally asymptotically stable. The dynamics of the
model is shown in the above Fig. 2. This is obtained from
computer simulations using R programming [11] to do this.

6. Conclusion
The SEIR an epidemic model is considered in this paper,

with functional rates of incidence and treatment as Holling
type-II and III. The number R0 is calculated. The point E0
is asymptotiically locally and globally stable when R0 < 1
and unstable if R0 > 1. A unique E∗ exits when 1 < R0 <
α(β+µρ)
µδ (µ+γ) and it is stable locally globally from theorems 4.5
and 4.6. The complex behavior of interacting populations is
studied by using computer simulation. The transmission rate

has been observed to increases, with disease become more
endemic. The population should make an effort to reduce
the rate of transmission in order to prevent the spread of the
disease. It is noted in Fig 6 that the infectives are very high
when the treatment is very poor and infectives decrease when
the treatment is increasing. It is noticed that for increase
of the susceptible and recovered individuals, by increase of
saturation term for the infectives. This indicates that the idea
of saturation has a beneficial impact on disease eradication.
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Figure 6. Behavior of invectives without medical resources
(a) and with various levels of medical resources ((b),(c) and
(d)).

Figure 7. (a), (b), (c) and (d) show the inhibitory effect for
the susceptible and infective individuals.
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