

https://doi.org/10.26637/MJM0804/0108

On decompositions of H-continuous functions in ˝ topological spaces

M. Raja Kalaivanan^{1*} and A. Jose Little Flower²

Abstract

In this article, we introduce H-continuous and study their relations with various continuous functions and discuss some properties of H-continuous functions, $\hat{H}_{\mathscr{A}}$ -continuous functions, H-irresolute, strongly H-continuous, strongly $H_{\mathscr{A}}$ -continuous discuss their basic properties.

Keywords

 H -continuous functions, strongly H -continuous, H -irresolute and $H_{\mathscr{A}}$ -continuous functions.

AMS Subject Classification

54C05, 54C08, 54C10.

¹*Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti-625532, Tamil Nadu, India.* ²*Research Scholar, Department of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.* ***Corresponding author**: 1 rajakalaivanan@yahoo.com; ² joselittlef@gmail.com **Article History**: Received 17 September 2020; Accepted 19 November 2020 **CONVERGENT AREA** CO2020 MJM

Contents

1. Introduction

Maki [\[6\]](#page-3-1), introduced Λ-set, Arenas introduced λ-closed and the introduced a notions of λ -continuous. In this article, we introduce \hat{H} -continuous functions & study their relations among various continuous functions and discuss some properties of H-continuous functions, $H_{\mathscr{A}}$ -continuous functions, \tilde{H} -irresolute, strongly \tilde{H} -continuous, strongly $\tilde{H}_{\mathscr{A}}$ -continuous discuss their basic properties.

2. Preliminaries

Through out paper obtained in the Topological space (X, τ) (resp. (X, σ) and (X, η)) is denoted by TS X (resp. TS Y and TS Z).

For a subset C of a TS X , int(C), cl(C) denoted the interior, closure of C respectively. And λ symbol use this thesis $\mathscr A$. For so many author introduced sets and λ -closed [\[1\]](#page-3-2), θ -closed [\[8\]](#page-3-3), λT_1 -space [\[3\]](#page-3-4), H-set and H-closed [[7\]](#page-3-5), g-continuous [\[5\]](#page-3-6), λ -continuous [\[1\]](#page-3-2), faintly continuous [\[2\]](#page-3-7), faintly λ -continuous [\[4\]](#page-3-8), λ -irresolute [\[3\]](#page-3-4)

Definition 2.1. [\[7\]](#page-3-5) Consent to S be a subset of a TS $X \implies$ *we define a*

 $S\tilde{S} = \bigcap \{Q/Q \supset S, Q \in \mathscr{A}Q(X, \tau)\}.$

Lemma 2.2. *[\[4\]](#page-3-8) A TS X is locally indiscrete* \iff *each* A *-open is open.*

Theorem 2.3. [\[7\]](#page-3-5) If C_i is H-open for every $i \in I \Longrightarrow \bigcup_{i \in I} C_i$ is *H-open. ˝*

Lemma 2.4. [\[7\]](#page-3-5) In a TS X, $\mathscr A$ -open set \Longrightarrow H -open set.

Theorem 2.5. *[\[7\]](#page-3-5) For a TS X, the next conditions are equivalent.*

- *1. X* is a $\mathscr{A}T_1$ -space.
- 2. *each subset of X is* H *-closed.*

Theorem 2.6. [\[7\]](#page-3-5) In a TS X, every Λ_r -closed is \hat{H} -closed.

Theorem 2.7. *[\[7\]](#page-3-5) For subsets C* & *of a TS X, the next properties hold:*

- *1.* $C \subset \tilde{H}cl(C) \subset \mathscr{A}cl(C) \subset cl(C)$ *.*
- *2. If* $C ⊂ B$ *then* $HCl(C) ⊂ HCl(M)$.
- *3.* $Hcl(C)$ *is* $Hcllosed$.

3. On H-continuous functions ˝

Definition 3.1. *A function* $f: X \to Y$ *is said to be a*

- *I*. *H*^{*-*} *f f*^{-1}(*L*) *is H*^{*-open in TS X, for any open*} *set V in TS Y.*
- 2. $H_{\mathscr{A}}$ -continuous if $f^{-1}(L)$ is H -open in TS X, for any A *-open set V in TS Y.*
- *3. H*-irresolute if $f^{-1}(L)$ is H -open in TS X, for any H *open set V in TS Y.*
- *4.* \tilde{S} -open if $f(L)$ is \tilde{H} -open in TS Y, for any \tilde{H} -open set V *in TS X.*

Theorem 3.2. *A function f is H-continuous* \iff $f^{-1}(K)$ *is H-closed in TS X whenever F is closed in TS Y. ˝*

Proof. Let *F* be any closed subset of Y. Then $Y - F$ is open in Y. Since *f* is H^{\tilde{H} -continuous, by Definition [3.1](#page-1-0) $f^{-1}(Y - F)$ is} H -open in X. But $f^{-1}(Y - F) = X - f^{-1}(F)$. So, $X - f^{-1}(F)$ is \tilde{H} -open in X. That is $f^{-1}(F)$ is \tilde{H} -closed in X.

Conversely, let $Y - Q$ is closed in Y. By our assumption, $f^{-1}(Y - Q)$ is H-closed in X. But $f^{-1}(Y - Q) = X - f^{-1}(Q)$. So, $X - f^{-1}(Q)$ is H-closed in X. That is, $f^{-1}(Q)$ is H-open in X. Hence f is H -continuous.

Theorem 3.3. A function f is
$$
\tilde{H}_{\mathscr{A}}
$$
-continuous \iff $f^{-1}(K)$

is H *-closed in TS X whenever K is* $\mathcal A$ *-closed in TS Y.*

Proof. Follows by replace $\mathscr A$ -closed set instead of closed set in Theorem [3.2.](#page-1-1)

Definition 3.4. *Let a TS X,* $x \in X$ *and* $\{x_e, e \in E\}$ *be a net of X.* We say that the net $\{x_e, e \in E\}$ *H*-converges to *x if for each H*-open set *U* containing *x* \exists *an element* $e_0 \in E : e \geq e_0$ \Longrightarrow $x_e \in U$.

Theorem 3.5. *Let a TS X and* $C \subseteq X$. A point $x \in \text{Hcl}(C)$ \iff *if* \exists *a* net $\{x_e, e \in E\}$ of C which H-converges to x.

Proof. The existence of such a net given every \tilde{H} -neighbourhood meets C and so $x \in \text{H}cl(C)$. Suppose that $x \in \text{H}cl(C)$ and let us denote by $\mathcal U$ the all H-open subsets T of X such that $x \in T$ directed by the relation \subseteq that is, let us define that $T_1 \leq T_2$ if *T*₂ \subseteq *T*₁. The net {*x*_{*T*}, *T* \in *U* }, where *x*_{*T*} is an arbitrary point of $C \cap T$, H-converges to *x*. \Box

Corollary 3.6. A subset E of a TS X is \hat{H} -closed \iff limits *of nets in E are in E.*

Proof. This follows from the Theorem [3.5](#page-1-2) & the information that a set E is H-closed \iff if $E = \text{Hcl}(E)$. \Box

Corollary 3.7. A subset E of a TS X is \hat{H} -open \iff no net *in the complement E can converge to a point in E.*

Proof. This follows by applying the Corollary [3.6](#page-1-3) to complement of E. \Box **Theorem 3.8.** *For a function* $f : (X, \tau) \rightarrow (Y, \sigma)$ *the next statements are equivalent:*

- *I.* f *is* H *-continuous.*
- *2. For every* $x \in X$ *and for every open* L *of* Y *containing* $f(x) \exists a \text{ }\nexists a \text{ } a \text{ } a$ *f f open set T of X containing x and* $f(T) \subseteq L$.
- *3. For every* $x \in X$ *and every net* $\{x_e, e \in E\}$ *in X* which *H*-converges to *x*, the net $\{f(x_e), e \in E\}$ of *Y* converges *to* $f(x)$ *in* Y .
- *4. For any subset B of X, f(Hcl(B))* $\subset cl(f(B))$ *holds.*
- *5. For every subset B of Y,* $\tilde{H}cl(f^{-1}(B)) \subset f^{-1}(cl(B))$ *holds.*

Proof. (1) \Rightarrow (2) : Let $L \in \sigma$ and $f(x) \in L$ for each $x \in X$. As *f* is \check{H} -continuous, $f^{-1}(L) \in \check{H}O(X, \tau)$ & $x \in f^{-1}(L)$. Put $T = f^{-1}(L)$. At the time $x \in T$ and $f(T) \subset L$.

 $(2) \Rightarrow (1)$: Let L be an open set of Y; let *x* be a point of $f^{-1}(L)$. At the time $f(x) \in L$, so that by hypothesis, $\exists a$ H -open set T_x containing $x : f(T_x) \subseteq L$.

∴, we've $x \in T_x \subset f^{-1}(L)$ and thus $f^{-1}(L) = \bigcup \{T_x / x \in$ $f^{-1}(L)$ }. By Theorem [2.3,](#page-0-4) $f^{-1}(L)$ is \tilde{H} -open. Thus, f is H -continuous.

 $(2) \Rightarrow (3)$: Let $x \in X$ and $\{x_e/e \in E\}$ be a net H converging to *x*. For every open set of TS Y containing $f(x)$, by (2) there exist a H-open set *T* of *X* containing $x : f(T) \subset L$. Since ${x_e/e \in E}$ converges to x , $\exists e_0 \in E : e \ge e_0 \Longrightarrow x_e \in U$. ∴ $f(x_e) \in L$ for any $e \ge e_0$ and the net $\{f(x_e)/e \in E\}$ converges to $f(x)$.

(3) ⇒ (2) : Consent to us suppose that ∃ point *x* ∈ *X* and an open neighbourhood *L* of $f(x)$: for every H-open set *T* of *X* containing *x* such that $f(T) \nsubseteq L$. Then for every H-open set *T* of *X* such that $x \in T$, we choose an element $x_T \in T$ such that $f(x_T) \notin L$. Consent to $\mathscr T$ be the set of all H-open set T of X containing x and is directed by the relation ⊂. That is, let us define that T_1 < T_2 if T_2 ⊂ T_1 . Easily, the net ${x_T, T \in \mathcal{T}}$: H^{\vdots} : H^{\vdots} converges to *x* but the net ${f(x_T): T \in \mathcal{T}}$ does not converges to $f(x)$ which is a contradiction. Thus, \exists a H-open set *T* of *X* : $x \in T$ and $f(T) \subseteq L$.

 $(2) \Rightarrow (4)$: Suppose (2) holds and consent $y \in f(\mathrm{H}cl(B))$ and consent to L be any open neighbourhood of *y*. Thus ∃ a point $x \in X$ & a H-open set $T : f(x) = y, x \in T, x \in \text{Hcl}(B)$ and $f(T) \subset L$. Since $x \in \text{H}cl(B)$, $T \cap B \neq \phi$ holds and hence $f(B) \cap L \neq \emptyset$. ∴ we've $y = f(x) \in cl(f(B)).$

 $(4) \Rightarrow (2)$: If (4) holds and consent $x \in X$ and let L be any open set containing $f(x)$. Let $B = f^{-1}(Y - L)$, then *x* ∉ *B*. Since f(H $cl(B)$) ⊂ $cl(f(B))$ ⊂ *Y* − *L*, it is shown that $\tilde{H}cl(B) = B$. At the moment, since $x \notin \tilde{H}cl(B)$, then there exists a H-open set T containing $x : T \cap B = \phi$ and thus *f*(*T*) ⊂ *f*(*X* − *B*) ⊂ *L*.

 $(4) \Rightarrow (5)$: Suppose that (4) holds and consent to B be every subset of Y. Replacing B by $f^{-1}(C)$ we get from (4), $f(\tilde{H}cl(f^{-1}(C))) \subset cl(f(f^{-1}(C))) \subset cl(C)$. Thus $\tilde{H}cl(f^{-1}(C)) \subset$ $f^{-1}(cl(C)).$

 \Box

 \Box

 $(5) \Rightarrow (4)$ Suppose that (5) holds, consent to $B = f(C)$ where C is a subset of X. After that $\text{H}cl(C) \subset \text{H}cl(f^{-1}(B)) \subset$ $f^{-1}(cl(f(C)))$. Therefore $f(\text{H}cl(C)) \subset cl(f(C))$. \Box

Theorem 3.9. *In support of a* $f : (X, \tau) \rightarrow (Y, \sigma)$ *the next statements are equivalent:*

- *1. f is* $H_{\mathscr{A}}$ *continuous.*
- *2. For any* $x \in X$ *and for any* $\mathcal A$ *-open set L of Y containing f*(*x*) \exists *a* \hat{H} -open T of X containing x and $f(T) \subseteq L$.
- *3. For any subset B of X, f(Hcl(B))* $\subset \mathcal{A}$ *cl(f(B)) holds.*
- *4. For any subset C of Y,* $\text{Hcl}(f^{-1}(C)) \subset f^{-1}(\mathcal{A}cl(C))$ *holds.*

Proof. Follows by replacing $\mathscr A$ -open sets in its place of open sets in Theorem [3.8.](#page-1-4)

Theorem 3.10. *f* is \tilde{H} -irresolute \iff if $f^{-1}(F)$ is \tilde{H} -closed *in TS X whenever F is H-closed in TS Y. ˝*

Proof. Consent to K be any H-closed subset of Y. Thus *Y* − *K* is H-open in Y. Since f is H-irresolute, by Definition [3.1,](#page-1-0) $f^{-1}(Y - K)$ is H-open in X. But $f^{-1}(Y - K) =$ *X* − *f*⁻¹(*K*). So, *X* − *f*⁻¹(*K*) is H^{*-*1}-open. i.e., is $f^{-1}(K)$ is H-closed.

Conversely, consent to $Y - D$ is H-closed. By our assump- $\text{tion}, f^{-1}(Y - D) \text{ is } \text{H}\text{-closed}. \text{ But } f^{-1}(Y - D) = X - f^{-1}(D).$ So, $X - f^{-1}(D)$ is H-closed. That is, $f^{-1}(D)$ is H-open. Hence f is \hat{H} -irresolute. \Box

Theorem 3.11. *For a* $f : (X, \tau) \to (Y, \sigma)$ *the next statements are equivalent:*

- *1. f is H-irresolute; ˝*
- *2. For any* $x \in X$ *and for each* H -*open set* L *of* Y *containing f*(*x*) ∃ *a* H -open set T of X containing x and $f(T) \subseteq L$;
- *3. f*($H\hat{H}cl(B)$) ⊂ $H\hat{H}cl(f(B))$ *for any subset B of X;*
- *4.* $H\left(f^{-1}(C) \right) \subset f^{-1}(H\left(C \right))$ *for any subset C of Y.*

Proof. (1) \Rightarrow (2) : Let V be H-open in TS Y & $f(x) \in L$ for any $x \in X$. Since *f* is H^{i}-irresolute, $f^{-1}(L) \in HO(X, \tau)$ & *x* ∈ *f*⁻¹(*L*). Put *U* = *f*⁻¹(*L*). Thus *x* ∈ *T* & *f*(*T*) ⊂ *L*.

 $(2) \Rightarrow (1)$: Let L be H-open set of Y; let x be a point of $f^{-1}(L)$. After that $f(x) \in L$, so that by hypothesis, \exists a H-open set T_x containing $x : f(T_x) \subseteq L$. Therefore, we've $x \in$ *T*_{*x*} ⊂ *f*⁻¹(*L*) and thus *f*⁻¹(*L*) = ∪{*T*_{*x*}/*x* ∈ *f*⁻¹(*L*)}. By Theo-rem [2.3,](#page-0-4) $f^{-1}(L)$ is H-open in TS X. Thus, f is H-continuous.

 $(1) \Rightarrow (3)$: Consent to B be a subset of X. Since $f(B)$ in Y, by Theorem [2.7,](#page-0-5) $\text{H}cl(f(B))$ is $\text{H}-closed$ in Y. By our assump-tion and by Theorem [3.10,](#page-2-0) $f^{-1}(\tilde{H}cl(f(B)))$ is \tilde{H} -closed in TS X. Since $B \subset f^{-1}(\text{H}cl(f(B))),$ by Theorem [2.7,](#page-0-5) we have, $\text{Hcl}(B)$ ⊂ $\text{Hcl}(f(B)) = f^{-1}(\text{Hcl}(f(B)))$ & hence f($\text{Hcl}(B)$) ⊂ $\tilde{H}cl(f(B)).$

 $(3) \Rightarrow (4)$: Consent to C be any subset of Y. By (4), we've $f(\text{H}cl(f^1(C)))$ ⊂ $\text{H}cl(f(f^{-1}(C)))$ = $\text{H}cl(C)$ & hence $\tilde{H}cl(f^{-1}(C)) \subset f^{-1}(\tilde{H}cl(C)).$

 $(4) \Rightarrow (1)$: Consent to Q be every H-closed set in TS Y. By Theorem [2.7\(](#page-0-5)3), $Q = \text{H}cl(Q)$. Then $\text{H}cl(f^{-1}(Q))$ ⊂ *f*⁻¹(\tilde{H} *cl*(*Q*)) = *f*⁻¹(*Q*)) & \tilde{H} *cl*(*f*⁻¹(*Q*)) ⊂ *f*⁻¹(*Q*). Therefore we taken $\tilde{H}cl(f^{-1}(Q)) = f^{-1}(Q)$. This shows that $f^{-1}(Q)$ is H -closed in TS X. П

Proposition 3.12. *If the function* $f : (X, \tau) \to (Y, \sigma)$ *is* \mathcal{A} *continuous, then the function f is H-continuous. ˝*

Proof. Consent to L be an open set in TS Y. Since *f* is $\mathscr A$ -continuous, $f^{-1}(L)$ is $\mathscr A$ -open in TS X. By Lemma [2.4,](#page-0-6) $f^{-1}(L)$ is \tilde{H} -open in TS X. Thus f is \tilde{H} -continuous. \Box

Example 3.13. *Let* $X = \{1, 2, 3, 4\} = Y$, $\tau = \{\phi, \{1, 2\}, \{1, 4\}\}$ *2, 3, X*}} *and* σ *=*{φ*,* {*4*}*,* {*1, 2*}*,* {*1, 2, 4, Y*}}*.*

Define a $f:(X, \tau) \rightarrow (Y, \sigma)$ *by* $f(a) = b$, $f(b) = a$, $f(c) =$ *d* and $f(d) = c$. Thus *f* is *H*-continuous but *f* is not \mathcal{A} *continuous because of* $f^{-1}(\lbrace d \rbrace) = \lbrace c \rbrace$ *is not* $\mathscr A$ -open.

Theorem 3.14. *If the function* $f:(X, \tau) \rightarrow (Y, \sigma)$ *is* $\mathscr A$ *-irresolute* \Longrightarrow *the function f is H^{<i>⊿*} -continuous.</sup>

Proof. Consent to L be a \mathcal{A} -open set in TS Y. Because f is $\mathscr A$ -irresolute, $f^{-1}(L)$ is $\mathscr A$ -open in TS X. By Lemma [2.4,](#page-0-6) $f^{-1}(L)$ is \tilde{H} -open in TS X. Thus f is $\tilde{H}_{\mathscr{A}}$ -continuous.

Example 3.15. *Consent to* $X = \{1, 2, 3, 4\} = Y$, $\tau = \{\phi, \{1\}\}\$ {*1, 3*}*,* {*1, 3, 4*}*, X*} *and* σ *=* {φ*,* {*4*}*,* {*3, 4*}*,* {*1, 3, 4*}*, Y*}*.*

Define a $f : (X, \tau) \to (Y, \sigma)$ *by* $f(1) = 4$, $f(2) = 1$, $f(3) =$ 2 and $f(4) = 3$. Thus f is $H_{\mathscr{A}}$ -continuous but not \mathscr{A} -irresolute, *since* $f^{-1}(\{b\}) = \{c\}$ *is not* $\mathscr A$ -open.

Proposition 3.16. *If* $f : (X, \tau) \to (Y, \sigma)$ *is* Λ_r *-continuous* \Longrightarrow f *is* H *-continuous.*

Proof. Consent to L be an open set in TS Y. Since *f* is Λ*r*continuous, $f^{-1}(L)$ is Λ_r -open in TS X. By Proposition [2.6,](#page-0-7) $f^{-1}(L)$ is \tilde{H} -open in TS X. Hence f is \tilde{H} -continuous. П

Remark 3.17. *The reverse of above Proposition [3.16](#page-2-1) is need not be a true.*

Example 3.18. *Let* $X = \{1, 2, 3\} = Y$, $\tau = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$ *2*}*, X*} *and* σ *=*{φ*, Y,* {*1*}}*.*

Define $f : (X, \tau) \to (Y, \sigma)$ *by* $f(1)=2$, $f(2)=3$ *and* $f(3)$ = *1. Here f is* $\mathscr A$ *-continuous and hence H-continuous but not* Λ_r -continuous, since of $f^{-1}(\{1\}) = \{3\}$ is not Λ_r -open in X.

Λ_r -continuous		continuous
H-continuous	\leftarrow	$\mathscr A$ -continuous

Theorem 3.19. *If a* $f:(X, \tau) \rightarrow (Y, \sigma)$ *is faintly* $\mathscr A$ *-continuous* $\implies f : (X, \tau \tilde{S}) \to (Y, \sigma)$ *is faintly continuous.*

Proof. Consent to L be θ -open in TS Y. Since f is faintly $\mathscr A$ -continuous, $f^{-1}(L)$ is $\mathscr A$ -open in TS X. Because every $\mathscr A$ -open is $\widetilde{\mathsf S}$ -set, $f^{-1}(L)$ is open in $(X, \tau \widetilde{\mathsf S})$. Hence f is faintly continuous. \Box

Theorem 3.20. *If* $f : (X, \tau) \to (Y, \sigma)$ *is faintly* $\mathscr A$ *-continuous and if* $g: (Y, \sigma) \rightarrow (Z, \eta)$ *is quasi-*θ*-continuous then* $g \circ f$: $(X, \tau) \rightarrow (Z, \eta)$ *is faintly* $\mathscr A$ *-continuous.*

Proof. Consent to T be θ-open in TS Z. Because *g* is quasiθ-continuous, $g^{-1}(T)$ is θ-open in TS Y. Since *f* is faintly $\mathscr A$ -continuous, $f^{-1}(g^{-1}(T))$ is $\mathscr A$ -open in TS X. Thus $(g \circ$ $f)^{-1}(T)$ is $\mathscr A$ -open in TS X, for each θ -open set T in TS Z. Hence $g \circ f : (X, \tau) \to (Z, \eta)$ is faintly $\mathscr A$ -continuous. \Box

Theorem 3.21. *If* $f : (X, \tau) \to (Y, \sigma)$ *is faintly continuous and* $g: (Y, \sigma) \rightarrow (Z, \eta)$ *is quasi-*θ*-continuous then* $g \circ f$: $(X, \tau) \rightarrow (Z, \eta)$ *is faintly continuous.*

Proof. Consent to T be θ -open in TS Z. Since *g* is quasi- θ continuous, $g^{-1}(T)$ is θ -open in TS Y. Becausee f is faintly continuous, $f^{-1}(g^{-1}(T))$ is open in TS X. Thus $(g \circ f)^{-1}(T)$ is open, for every θ -open set T in TS Z. Hence $g \circ f : (X, \tau) \to$ (Z, η) is faintly continuous. \Box

Theorem 3.22. *If* $f : (X, \tau) \rightarrow (Y, \sigma)$ *is a faintly* $\mathscr A$ *-continuous function* & *X* is locally indiscrete \Longrightarrow *f* is a faintly continuous.

Proof. Consent to *f* be faintly $\mathscr A$ -continuous. Let L be θ open in Y. Because *f* is faintly $\mathscr A$ -continuous, $f^{-1}(L)$ is $\mathscr A$ -open. By Lemma [2.2,](#page-0-8) $f^{-1}(L)$ is open in X. Hence f is faintly continuous. \Box

Theorem 3.23. *If* $f : (X, \tau) \to (Y, \sigma)$ *is any function* & *TS X* $\frac{d}{2}$ *is a* $\mathscr{A}T_1$ -space \Longrightarrow *f is H*-continuous.

Proof. Consent to L be each closed set in TS Y. By Lemma [2.5,](#page-0-9) each subset of X in H-closed. Hence $f^{-1}(L)$ should be H-closed, for any closed set in TS Y. \Box

Theorem 3.24. *Let a TS X, Y and Z. Then the composition g*◦ $f:(X,\tau) \to (Z,\eta)$ *is H-continuous, where* $g:(Y,\sigma) \to (Z,\eta)$ *is a contra* $\mathscr A$ *-continuous function and* $f : (X, \tau) \to (Y, \sigma)$ *is* \ddot{H} -*irresolute.*

Proof. Consent to L be closed in TS Z. Because *g* is contra $\mathscr A$ -continuous, $g^{-1}(L)$ is $\mathscr A$ -open in TS Y and hence $g^{-1}(L)$ is H^{$-1(g^{-1}(L))$} is \tilde{H} -irresolute, $f^{-1}(g^{-1}(L))$ is H -closed in TS X. That is $(g \circ f)^{-1}(L)$ is H -closed in TS X. Thus $g \circ f$ is H-continuous. \Box

Theorem 3.25. *If* $f : (X, \tau) \to (Y, \sigma)$ *is a surjective S-open function* & $g:(Y, \sigma) \rightarrow (Z, \eta): g \circ f:(X, \tau) \rightarrow (Z, \eta)$ *is* H -continuous $\Longrightarrow g$ is H -continuous.

Proof. Consent to T be every open set in TS Z. Since $g \circ f$: $(X, \tau) \to (Z, \eta)$ is H⁻continuous, $(g \circ f)^{-1}(T) = f^{-1}(g^{-1}(T))$ is H-open in TS X. Since $f : (X, \tau) \to (Y, \sigma)$ is a surjective Sopen function, $f(f^{-1}(g^{-1}(T)))$ is H-open in TS Y and hence $g^{-1}(T)$ is H-open in TS Y. Thus *g* is H-continuous. \Box

Theorem 3.26. *Consent to* f : $(X, \tau) \rightarrow (Y, \sigma)$ *be* $H_{\mathscr{A}}$ *-continuous* $\& g : (Y, \sigma) \rightarrow (Z, \eta)$ *is* $\mathscr A$ -*irresolute* $\Longrightarrow g \circ f : (X, \tau) \rightarrow$ (Z, η) *is* $\hat{H}_{\mathscr{A}}$ -continuous.

Proof. Consent to L be $\mathscr A$ -open in TS Z. Since *g* is $\mathscr A$ irresolute, $g^{-1}(L)$ is $\mathscr A$ -open in TS Y. Because f is $\tilde{H}_{\mathscr A}$ continuous, $(f^{-1} \circ g^{-1})(L) = f^{-1}(g^{-1}(L))$ is H-open in TS X. Thus $g \circ f$ is $\tilde{H}_{\mathscr{A}}$ -continuous.

 \Box

Acknowledgment

The work of the first author is supported by the "Ministry of Human Resource and Development, India under grant number:MHR-02-23-200-44".

References

- [1] F. G. Arenas, Julian Dontchev and Maximilian Ganster, On λ-sets and the dual of generalized continuity, *Questions Answers Gen. Topology*, 15(1997), 3–13.
- [2] M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, *On* (Λ,θ)*-closed sets, Q and A in General Topology*, 23(2005), 1–10.
- [3] M. Caldas, S. Jafari and G. Navalagi, More on λ -closed sets in topological spaces, *Revista Colombina de Mathematicas*, 41(2)(2007), 355-369.
- [4] E. Ekici, M. Caldas, S. Jafari and T. Noiri, Weakly λcontinuous functions, *Novi Sad J. MATH.*, 38(2)(2008), 47-56.
- [5] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, 19(2)(1970), 89-96.
- [6] H. Maki, Generalized Λ -sets and the associated closure operator, *The Special Issue in Commemoration Of Prof. Kazusada IKED'S Retirement*, 1 Oct (1986), 139–146.
- [7] M. Raja Kalaivanan and A. Jose Little Flower, *On Hclosed sets in topological spaces*, communicated.
- [8] N. V. Velicko, H-closed topological spaces, *Mat. Sb.*, 70 (1966), 98–112; English trans(2) in *Amer. Math. Soc. Transl.*, 78(1968), 102–118.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********