

https://doi.org/10.26637/MJM0804/0108

On decompositions of **H**-continuous functions in topological spaces

M. Raja Kalaivanan^{1*} and A. Jose Little Flower²

Abstract

In this article, we introduce \tilde{H} -continuous and study their relations with various continuous functions and discuss some properties of \tilde{H} -continuous functions, $\tilde{H}_{\mathscr{A}}$ -continuous functions , \tilde{H} -irresolute, strongly \tilde{H} -continuous, strongly $\tilde{H}_{\mathscr{A}}$ -continuous discuss their basic properties.

Keywords

H-continuous functions, strongly H-continuous, H-irresolute and $\text{H}_{\mathscr{A}}$ -continuous functions.

AMS Subject Classification

54C05, 54C08, 54C10.

¹ Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti-625532, Tamil Nadu, India.

²Research Scholar, Department of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.

*Corresponding author: 1 rajakalaivanan@yahoo.com; 2 joselittlef@gmail.com

Article History: Received 17 September 2020; Accepted 19 November 2020

Contents

1	Introduction 1960
2	Preliminaries 1960
3	On H-continuous functions 1961
	References 1963

1. Introduction

Maki [6], introduced Λ -set, Arenas introduced λ -closed and the introduced a notions of λ -continuous. In this article, we introduce \tilde{H} -continuous functions & study their relations among various continuous functions and discuss some properties of \tilde{H} -continuous functions, $\tilde{H}_{\mathscr{A}}$ -continuous functions , \tilde{H} -irresolute, strongly \tilde{H} -continuous, strongly $\tilde{H}_{\mathscr{A}}$ -continuous discuss their basic properties.

2. Preliminaries

Through out paper obtained in the Topological space (X, τ) (resp. (X, σ) and (X, η)) is denoted by TS X (resp. TS Y and TS Z).

For a subset C of a TS X, int(C), cl(C) denoted the interior, closure of C respectively. And λ symbol use this thesis \mathscr{A} . For so many author introduced sets and λ -closed [1], θ -closed [8], $\lambda T_{\frac{1}{2}}$ -space [3], \mathring{H} -set and \mathring{H} -closed [7], g-continuous [5], λ -continuous [1], faintly continuous [2], faintly λ -continuous [4], λ -irresolute [3]

Definition 2.1. [7] Consent to S be a subset of a TS $X \Longrightarrow$ we define a

©2020 MJM.

 $S\tilde{S} = \cap \{Q/Q \supset S, Q \in \mathscr{A}O(X,\tau)\}.$

Lemma 2.2. [4] A TS X is locally indiscrete \iff each \mathscr{A} -open is open.

Theorem 2.3. [7] If C_i is \tilde{H} -open for every $i \in I \Longrightarrow \bigcup_{i \in I} C_i$ is \tilde{H} -open.

Lemma 2.4. [7] In a TS X, \mathscr{A} -open set \Longrightarrow \HH -open set.

Theorem 2.5. [7] For a TS X, the next conditions are equivalent.

- 1. X is a $\mathscr{A}T_{\frac{1}{2}}$ -space.
- 2. each subset of X is *H*-closed.

Theorem 2.6. [7] In a TS X, every Λ_r -closed is H-closed.

Theorem 2.7. [7] For subsets C & of a TS X, the next properties hold:

- $1. \ C \subset \H{H}cl(C) \subset \mathscr{A}cl(C) \subset cl(C).$
- 2. If $C \subset B$ then $\text{Her}(C) \subset \text{Her}(M)$.
- 3. H cl(C) is H closed.

3. On H-continuous functions

Definition 3.1. A function $f : X \to Y$ is said to be a

- 1. \tilde{H} -continuous if $f^{-1}(L)$ is \tilde{H} -open in TS X, for any open set V in TS Y.
- 2. $\check{H}_{\mathscr{A}}$ -continuous if $f^{-1}(L)$ is \check{H} -open in TS X, for any \mathscr{A} -open set V in TS Y.
- *3. H*-irresolute if $f^{-1}(L)$ is *H*-open in TS X, for any *H*-open set V in TS Y.
- 4. Šopen if f(L) is Hopen in TSY, for any Hopen set V in TSX.

Theorem 3.2. A function f is \tilde{H} -continuous $\iff f^{-1}(K)$ is \tilde{H} -closed in TS X whenever F is closed in TS Y.

Proof. Let *F* be any closed subset of Y. Then Y - F is open in Y. Since *f* is \tilde{H} -continuous, by Definition 3.1 $f^{-1}(Y - F)$ is \tilde{H} -open in X. But $f^{-1}(Y - F) = X - f^{-1}(F)$. So, $X - f^{-1}(F)$ is \tilde{H} -open in X. That is $f^{-1}(F)$ is \tilde{H} -closed in X.

Conversely, let Y - Q is closed in Y. By our assumption, $f^{-1}(Y - Q)$ is \tilde{H} -closed in X. But $f^{-1}(Y - Q) = X - f^{-1}(Q)$. So, $X - f^{-1}(Q)$ is \tilde{H} -closed in X. That is, $f^{-1}(Q)$ is \tilde{H} -open in X. Hence f is \tilde{H} -continuous.

Theorem 3.3. A function f is $\check{H}_{\mathscr{A}}$ -continuous $\iff f^{-1}(K)$ is \check{H} -closed in TS X whenever K is \mathscr{A} -closed in TS Y.

Proof. Follows by replace \mathscr{A} -closed set instead of closed set in Theorem 3.2.

Definition 3.4. Let a TS X, $x \in X$ and $\{x_e, e \in E\}$ be a net of X. We say that the net $\{x_e, e \in E\}$ \tilde{H} -converges to x if for each \tilde{H} -open set U containing $x \exists$ an element $e_0 \in E : e \ge e_0 \Longrightarrow x_e \in U$.

Theorem 3.5. Let a TS X and $C \subseteq X$. A point $x \in Hcl(C)$ \iff if \exists a net $\{x_e, e \in E\}$ of C which H-converges to x.

Proof. The existence of such a net given every \tilde{H} -neighbourhood meets C and so $x \in \tilde{H}cl(C)$. Suppose that $x \in \tilde{H}cl(C)$ and let us denote by \mathscr{U} the all \tilde{H} -open subsets *T* of X such that $x \in T$ directed by the relation \subseteq that is, let us define that $T_1 \leq T_2$ if $T_2 \subseteq T_1$. The net $\{x_T, T \in \mathscr{U}\}$, where x_T is an arbitrary point of $C \cap T$, \tilde{H} -converges to *x*.

Corollary 3.6. A subset E of a TS X is \hat{H} -closed \iff limits of nets in E are in E.

Proof. This follows from the Theorem 3.5 & the information that a set E is $\text{H-closed} \iff \text{if } E = \text{H}cl(E)$.

Corollary 3.7. A subset E of a TS X is $\text{H-open} \iff$ no net in the complement E can converge to a point in E.

Proof. This follows by applying the Corollary 3.6 to complement of E. \Box

Theorem 3.8. For a function $f : (X, \tau) \to (Y, \sigma)$ the next statements are equivalent:

- 1. f is *Ĥ*-continuous.
- 2. For every $x \in X$ and for every open L of Y containing $f(x) \exists a \text{ } H$ -open set T of X containing x and $f(T) \subseteq L$.
- 3. For every $x \in X$ and every net $\{x_e, e \in E\}$ in X which \tilde{H} -converges to x, the net $\{f(x_e), e \in E\}$ of Y converges to f(x) in Y.
- 4. For any subset B of X, $f(Hcl(B)) \subset cl(f(B))$ holds.
- 5. For every subset B of Y, $Hcl(f^{-1}(B)) \subset f^{-1}(cl(B))$ holds.

Proof. (1) \Rightarrow (2) : Let $L \in \sigma$ and $f(x) \in L$ for each $x \in X$. As f is \tilde{H} -continuous, $f^{-1}(L) \in \tilde{H}O(X, \tau)$ & $x \in f^{-1}(L)$. Put $T = f^{-1}(L)$. At the time $x \in T$ and $f(T) \subset L$.

 $(2) \Rightarrow (1)$: Let L be an open set of Y; let *x* be a point of $f^{-1}(L)$. At the time $f(x) \in L$, so that by hypothesis, \exists a \Ha -open set T_x containing $x : f(T_x) \subseteq L$.

∴, we've $x \in T_x \subset f^{-1}(L)$ and thus $f^{-1}(L) = \bigcup \{T_x / x \in f^{-1}(L)\}$. By Theorem 2.3, $f^{-1}(L)$ is Ĥ-open. Thus, f is Ĥ-continuous.

 $(2) \Rightarrow (3)$: Let $x \in X$ and $\{x_e/e \in E\}$ be a net \tilde{H} converging to x. For every open set of TS Y containing f(x), by (2) there exist a \tilde{H} -open set T of X containing $x : f(T) \subset L$. Since $\{x_e/e \in E\}$ converges to x, $\exists e_0 \in E : e \ge e_0 \Longrightarrow x_e \in U$. $\therefore f(x_e) \in L$ for any $e \ge e_0$ and the net $\{f(x_e)/e \in E\}$ converges to f(x).

 $(3) \Rightarrow (2)$: Consent to us suppose that \exists point $x \in X$ and an open neighbourhood L of f(x): for every \Hat{H} -open set T of X containing x such that $f(T) \notin L$. Then for every \Hat{H} -open set T of X such that $x \in T$, we choose an element $x_T \in T$ such that $f(x_T) \notin L$. Consent to \mathscr{T} be the set of all \Hat{H} -open set T of X containing x and is directed by the relation \subseteq . That is, let us define that $T_1 \leq T_2$ if $T_2 \subseteq T_1$. Easily, the net $\{x_T, T \in \mathscr{T}\}$: \Hat{H} -converges to x but the net $\{f(x_T) : T \in \mathscr{T}\}$ does not converges to f(x) which is a contradiction . Thus, \exists a \Hat{H} -open set T of $X : x \in T$ and $f(T) \subseteq L$.

 $(2) \Rightarrow (4)$: Suppose (2) holds and consent $y \in f(\text{H}cl(B))$ and consent to L be any open neighbourhood of y. Thus \exists a point $x \in X$ & a H-open set T : $f(x) = y, x \in T, x \in \text{H}cl(B)$ and $f(T) \subset L$. Since $x \in \text{H}cl(B), T \cap B \neq \phi$ holds and hence $f(B) \cap L \neq \phi$. \therefore we've $y = f(x) \in cl(f(B))$.

 $(4) \Rightarrow (2)$: If (4) holds and consent $x \in X$ and let L be any open set containing f(x). Let $B = f^{-1}(Y - L)$, then $x \notin B$. Since $f(\text{H}cl(B)) \subset cl(f(B)) \subset Y - L$, it is shown that Hcl(B) = B. At the moment, since $x \notin \text{H}cl(B)$, then there exists a H-open set T containing $x : T \cap B = \phi$ and thus $f(T) \subset f(X - B) \subset L$.

 $(4) \Rightarrow (5)$: Suppose that (4) holds and consent to B be every subset of Y. Replacing B by $f^{-1}(C)$ we get from (4), $f(\tilde{H}cl(f^{-1}(C))) \subset cl(f(f^{-1}(C))) \subset cl(C)$. Thus $\tilde{H}cl(f^{-1}(C)) \subset f^{-1}(cl(C))$.

 $(5) \Rightarrow (4)$ Suppose that (5) holds, consent to B = f(C)where C is a subset of X. After that $\text{H}cl(C) \subset \text{H}cl(f^{-1}(B)) \subset f^{-1}(cl(f(C)))$. Therefore $f(\text{H}cl(C)) \subset cl(f(C))$.

Theorem 3.9. In support of a $f : (X, \tau) \to (Y, \sigma)$ the next statements are equivalent:

- 1. f is $H_{\mathscr{A}}$ continuous.
- 2. For any $x \in X$ and for any \mathscr{A} -open set L of Y containing $f(x) \exists a \text{ } H$ -open T of X containing x and $f(T) \subseteq L$.
- 3. For any subset B of X, $f(Hcl(B)) \subset \mathscr{A}cl(f(B))$ holds.
- 4. For any subset C of Y, $Hcl(f^{-1}(C)) \subset f^{-1}(Acl(C))$ holds.

Proof. Follows by replacing \mathscr{A} -open sets in its place of open sets in Theorem 3.8.

Theorem 3.10. f is \Hat{H} -irresolute \iff if $f^{-1}(F)$ is \Hat{H} -closed in TS X whenever F is \Hat{H} -closed in TS Y.

Proof. Consent to K be any H-closed subset of Y. Thus Y - K is H-open in Y. Since f is H-irresolute, by Definition 3.1, $f^{-1}(Y - K)$ is H-open in X. But $f^{-1}(Y - K) = X - f^{-1}(K)$. So, $X - f^{-1}(K)$ is H-open. i.e., is $f^{-1}(K)$ is H-closed.

Conversely, consent to Y - D is \tilde{H} -closed. By our assumption, $f^{-1}(Y - D)$ is \tilde{H} -closed. But $f^{-1}(Y - D) = X - f^{-1}(D)$. So, $X - f^{-1}(D)$ is \tilde{H} -closed. That is, $f^{-1}(D)$ is \tilde{H} -open. Hence f is \tilde{H} -irresolute.

Theorem 3.11. For a $f : (X, \tau) \to (Y, \sigma)$ the next statements are equivalent:

- 1. f is H-irresolute;
- 2. For any $x \in X$ and for each \Hat{H} -open set L of Y containing $f(x) \exists a \Hat{H}$ -open set T of X containing x and $f(T) \subseteq L$;
- *3.* $f(Hcl(B)) \subset Hcl(f(B))$ for any subset B of X;
- 4. $\text{H}cl(f^{-1}(C)) \subset f^{-1}(\text{H}cl(C))$ for any subset C of Y.

Proof. (1) \Rightarrow (2) : Let V be $\text{\Hassurement{H}}$ -open in TS Y & $f(x) \in L$ for any $x \in X$. Since f is $\text{\Hassurement{H}}$ -irresolute, $f^{-1}(L) \in \text{\Hassurement{H}}O(X, \tau)$ & $x \in f^{-1}(L)$. Put $U = f^{-1}(L)$. Thus $x \in T$ & $f(T) \subset L$.

 $(2) \Rightarrow (1)$: Let L be \tilde{H} -open set of Y; let x be a point of $f^{-1}(L)$. After that $f(x) \in L$, so that by hypothesis, \exists a \tilde{H} -open set T_x containing $x : f(T_x) \subseteq L$. Therefore, we've $x \in$ $T_x \subset f^{-1}(L)$ and thus $f^{-1}(L) = \bigcup \{T_x/x \in f^{-1}(L)\}$. By Theorem 2.3, $f^{-1}(L)$ is \tilde{H} -open in TS X. Thus, f is \tilde{H} -continuous.

 $(1) \Rightarrow (3)$: Consent to B be a subset of X. Since f(B) in Y, by Theorem 2.7, Hcl(f(B)) is H-closed in Y. By our assumption and by Theorem 3.10, $f^{-1}(\text{H}cl(f(B)))$ is H-closed in TS X. Since $B \subset f^{-1}(\text{H}cl(f(B)))$, by Theorem 2.7, we have, $\text{H}cl(B) \subset \text{H}cl(f(B)) = f^{-1}(\text{H}cl(f(B)))$ & hence $f(\text{H}cl(B)) \subset$ Hcl(f(B)). $(3) \Rightarrow (4)$: Consent to C be any subset of Y. By (4), we've f($\text{H}cl(f^1(C))$) $\subset \text{H}cl(f(f^{-1}(C))) = \text{H}cl(C)$ & hence $\text{H}cl(f^{-1}(C)) \subset f^{-1}(\text{H}cl(C))$.

 $(4) \Rightarrow (1)$: Consent to Q be every \tilde{H} -closed set in TS Y. By Theorem 2.7(3), $Q = \tilde{H}cl(Q)$. Then $\tilde{H}cl(f^{-1}(Q)) \subset f^{-1}(\tilde{H}cl(Q)) = f^{-1}(Q)$ & $\tilde{H}cl(f^{-1}(Q)) \subset f^{-1}(Q)$. Therefore we taken $\tilde{H}cl(f^{-1}(Q)) = f^{-1}(Q)$. This shows that $f^{-1}(Q)$ is \tilde{H} -closed in TS X.

Proposition 3.12. *If the function* $f : (X, \tau) \to (Y, \sigma)$ *is* \mathscr{A} *-continuous, then the function f is* \check{H} *-continuous.*

Proof. Consent to L be an open set in TS Y. Since f is \mathscr{A} -continuous, $f^{-1}(L)$ is \mathscr{A} -open in TS X. By Lemma 2.4, $f^{-1}(L)$ is \widetilde{H} -open in TS X. Thus f is \widetilde{H} -continuous.

Example 3.13. Let $X = \{1, 2, 3, 4\} = Y$, $\tau = \{\phi, \{1, 2\}, \{1, 2, 3, X\}\}$ and $\sigma = \{\phi, \{4\}, \{1, 2\}, \{1, 2, 4, Y\}\}$.

Define a $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = d and f(d) = c. Thus f is \tilde{H} -continuous but f is not \mathscr{A} -continuous because of $f^{-1}(\{d\}) = \{c\}$ is not \mathscr{A} -open.

Theorem 3.14. If the function $f : (X, \tau) \to (Y, \sigma)$ is \mathscr{A} -irresolute \implies the function f is $\check{H}_{\mathscr{A}}$ -continuous.

Proof. Consent to L be a \mathscr{A} -open set in TS Y. Because f is \mathscr{A} -irresolute, $f^{-1}(L)$ is \mathscr{A} -open in TS X. By Lemma 2.4, $f^{-1}(L)$ is \widetilde{H} -open in TS X. Thus f is $\widetilde{H}_{\mathscr{A}}$ -continuous.

Example 3.15. Consent to $X = \{1, 2, 3, 4\} = Y$, $\tau = \{\phi, \{1\}, \{1, 3\}, \{1, 3, 4\}, X\}$ and $\sigma = \{\phi, \{4\}, \{3, 4\}, \{1, 3, 4\}, Y\}$.

Define a $f: (X, \tau) \to (Y, \sigma)$ by f(1) = 4, f(2) = 1, f(3) = 2 and f(4) = 3. Thus f is $\tilde{H}_{\mathscr{A}}$ -continuous but not \mathscr{A} -irresolute, since $f^{-1}(\{b\}) = \{c\}$ is not \mathscr{A} -open.

Proposition 3.16. If $f: (X, \tau) \to (Y, \sigma)$ is Λ_r -continuous \Longrightarrow *f is \tilde{H}-continuous.*

Proof. Consent to L be an open set in TS Y. Since f is Λ_r continuous, $f^{-1}(L)$ is Λ_r -open in TS X. By Proposition 2.6, $f^{-1}(L)$ is \tilde{H} -open in TS X. Hence f is \tilde{H} -continuous.

Remark 3.17. *The reverse of above Proposition 3.16 is need not be a true.*

Example 3.18. Let $X = \{1, 2, 3\} = Y$, $\tau = \{\phi, \{1\}, \{2\}, \{1, 2\}, X\}$ and $\sigma = \{\phi, Y, \{1\}\}.$

Define $f : (X, \tau) \to (Y, \sigma)$ by f(1)=2, f(2)=3 and f(3) = 1. Here f is \mathscr{A} -continuous and hence \tilde{H} -continuous but not Λ_r -continuous, since of $f^{-1}(\{1\}) = \{3\}$ is not Λ_r -open in X.

Theorem 3.19. If $a f : (X, \tau) \to (Y, \sigma)$ is faintly \mathscr{A} -continuous $\implies f : (X, \tau \tilde{S}) \to (Y, \sigma)$ is faintly continuous.

Proof. Consent to L be θ -open in TS Y. Since f is faintly \mathscr{A} -continuous, $f^{-1}(L)$ is \mathscr{A} -open in TS X. Because every \mathscr{A} -open is \tilde{S} -set, $f^{-1}(L)$ is open in $(X, \tau \tilde{S})$. Hence f is faintly continuous.

Theorem 3.20. If $f : (X, \tau) \to (Y, \sigma)$ is faintly \mathscr{A} -continuous and if $g : (Y, \sigma) \to (Z, \eta)$ is quasi- θ -continuous then $g \circ f : (X, \tau) \to (Z, \eta)$ is faintly \mathscr{A} -continuous.

Proof. Consent to T be θ -open in TS Z. Because g is quasi- θ -continuous, $g^{-1}(T)$ is θ -open in TS Y. Since f is faintly \mathscr{A} -continuous, $f^{-1}(g^{-1}(T))$ is \mathscr{A} -open in TS X. Thus $(g \circ f)^{-1}(T)$ is \mathscr{A} -open in TS X, for each θ -open set T in TS Z. Hence $g \circ f : (X, \tau) \to (Z, \eta)$ is faintly \mathscr{A} -continuous. \Box

Theorem 3.21. If $f : (X, \tau) \to (Y, \sigma)$ is faintly continuous and $g : (Y, \sigma) \to (Z, \eta)$ is quasi- θ -continuous then $g \circ f : (X, \tau) \to (Z, \eta)$ is faintly continuous.

Proof. Consent to T be θ -open in TS Z. Since g is quasi- θ continuous, $g^{-1}(T)$ is θ -open in TS Y. Because f is faintly
continuous, $f^{-1}(g^{-1}(T))$ is open in TS X. Thus $(g \circ f)^{-1}(T)$ is open, for every θ -open set T in TS Z. Hence $g \circ f : (X, \tau) \rightarrow$ (Z, η) is faintly continuous.

Theorem 3.22. If $f : (X, \tau) \to (Y, \sigma)$ is a faintly \mathscr{A} -continuous function & X is locally indiscrete \Longrightarrow f is a faintly continuous.

Proof. Consent to f be faintly \mathscr{A} -continuous. Let L be θ open in Y. Because f is faintly \mathscr{A} -continuous, $f^{-1}(L)$ is \mathscr{A} -open. By Lemma 2.2, $f^{-1}(L)$ is open in X. Hence f is faintly continuous.

Theorem 3.23. If $f : (X, \tau) \to (Y, \sigma)$ is any function & TS X is a $\mathscr{A}T_{\frac{1}{2}}$ -space \Longrightarrow f is \H{H} -continuous.

Proof. Consent to L be each closed set in TS Y. By Lemma 2.5, each subset of X in \tilde{H} -closed. Hence $f^{-1}(L)$ should be \tilde{H} -closed, for any closed set in TS Y.

Theorem 3.24. Let a TS X, Y and Z. Then the composition $g \circ f: (X, \tau) \to (Z, \eta)$ is \tilde{H} -continuous, where $g: (Y, \sigma) \to (Z, \eta)$ is a contra \mathscr{A} -continuous function and $f: (X, \tau) \to (Y, \sigma)$ is \tilde{H} -irresolute.

Proof. Consent to L be closed in TS Z. Because g is contra \mathscr{A} -continuous, $g^{-1}(L)$ is \mathscr{A} -open in TS Y and hence $g^{-1}(L)$ is \Hat{H} -closed in TS Y. Since f is \Hat{H} -irresolute, $f^{-1}(g^{-1}(L))$ is \Hat{H} -closed in TS X. That is $(g \circ f)^{-1}(L)$ is \Hat{H} -closed in TS X. Thus $g \circ f$ is \Hat{H} -continuous.

Theorem 3.25. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective \tilde{S} -open function & $g : (Y, \sigma) \to (Z, \eta) : g \circ f : (X, \tau) \to (Z, \eta)$ is \tilde{H} -continuous $\Longrightarrow g$ is \tilde{H} -continuous.

Proof. Consent to T be every open set in TS Z. Since $g \circ f$: $(X, \tau) \to (Z, \eta)$ is \tilde{H} -continuous, $(g \circ f)^{-1}(T) = f^{-1}(g^{-1}(T))$ is \tilde{H} -open in TS X. Since $f : (X, \tau) \to (Y, \sigma)$ is a surjective \tilde{S} -open function, $f(f^{-1}(g^{-1}(T)))$ is \tilde{H} -open in TS Y and hence $g^{-1}(T)$ is \tilde{H} -open in TS Y. Thus g is \tilde{H} -continuous. \Box **Theorem 3.26.** Consent to $f: (X, \tau) \to (Y, \sigma)$ be $\check{H}_{\mathscr{A}}$ -continuous & $g: (Y, \sigma) \to (Z, \eta)$ is \mathscr{A} -irresolute $\Longrightarrow g \circ f: (X, \tau) \to (Z, \eta)$ is $\check{H}_{\mathscr{A}}$ -continuous.

Proof. Consent to L be \mathscr{A} -open in TS Z. Since g is \mathscr{A} -irresolute, $g^{-1}(L)$ is \mathscr{A} -open in TS Y. Because f is $\tilde{\mathbb{H}}_{\mathscr{A}}$ -continuous, $(f^{-1} \circ g^{-1})(L) = f^{-1}(g^{-1}(L))$ is $\tilde{\mathbb{H}}$ -open in TS X. Thus $g \circ f$ is $\tilde{\mathbb{H}}_{\mathscr{A}}$ -continuous.

Acknowledgment

The work of the first author is supported by the "Ministry of Human Resource and Development, India under grant number:MHR-02-23-200-44".

References

- [1] F. G. Arenas, Julian Dontchev and Maximilian Ganster, On λ-sets and the dual of generalized continuity, *Questions Answers Gen. Topology*, 15(1997), 3–13.
- [2] M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, On (Λ,θ)-closed sets, Q and A in General Topology, 23(2005), 1–10.
- [3] M. Caldas, S. Jafari and G. Navalagi, More on λ-closed sets in topological spaces, *Revista Colombina de Mathematicas*, 41(2)(2007), 355-369.
- [4] E. Ekici, M. Caldas, S. Jafari and T. Noiri, Weakly λcontinuous functions, *Novi Sad J. MATH.*, 38(2)(2008), 47-56.
- [5] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, 19(2)(1970), 89-96.
- [6] H. Maki, Generalized Λ-sets and the associated closure operator, *The Special Issue in Commemoration Of Prof. Kazusada IKED'S Retirement*, 1 Oct (1986), 139–146.
- ^[7] M. Raja Kalaivanan and A. Jose Little Flower, *On H-closed sets in topological spaces*, communicated.
- [8] N. V. Velicko, H-closed topological spaces, *Mat. Sb.*, 70 (1966), 98–112; English trans(2) in *Amer. Math. Soc. Transl.*, 78(1968), 102–118.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********