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Abstract. In this paper, we compare two discrete statistical models for the evaluation of a road safety measure. We give a
much simpler proof of the expression of the maximum likelihood estimator for the more complex model and we demonstrate
theoretical results on the measure of divergence between the two models. The results obtained on real data suggest that both
models are very competitive.

AMS Subject Classifications: 62F10, 62F30, 62H10, 62P99.

Keywords: Statistical model, maximum likelihood, parameter estimation, road safety, Kullback-Leibler divergence.

Contents

1 Introduction 323

2 Models and estimation of their parameters 324
2.1 Presentation of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
2.2 Maximum likelihood estimation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
2.3 Computation of the standard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

3 Main theoretical results 327
3.1 A much simpler proof of the expression of the MLE in Model 1 . . . . . . . . . . . . . . . . . 327
3.2 Measure of divergence between the two models . . . . . . . . . . . . . . . . . . . . . . . . . . 328

4 Empirical comparison on real data 331
4.1 Evaluation of an unspecified road safety measure . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.2 Evaluation of the modification of ground markings . . . . . . . . . . . . . . . . . . . . . . . . 332
4.3 Evaluation of the presence of display panels on roadsides . . . . . . . . . . . . . . . . . . . . . 332
4.4 Evaluation of the increase in speed limit on Arizona’s rural interstate . . . . . . . . . . . . . . . 333

5 Conclusion 334

∗Corresponding author. Email address: cherifgera@gmail.com (I.C. GERALDO), kpanzout@gmail.com (T.A. KPANZOU)

https://www.malayajournal.org/index.php/mjm/index ©2022 by the authors.



Theoretical and empirical comparison of two discrete statistical models of crash frequencies

1. Introduction

Road accidents are very unfortunate events that often cause damage of all kinds, the heaviest of which is
the loss of lives. According to a report published in 2018 by the World Health Organization (WHO), it can
be estimated that more than 1.35 million people are killed annually by road accidents (about 2.5% of deaths
worldwide) and more than 50 million people are injured annually because of road accidents [17].

As the science of data collection, analysis and interpretation, statistics play an important role in the study
of road accidents. Over the years, a plethora of statistical models have been proposed for accident data and
several states of the art of these models have been made. Among them are the papers [7] and [8] in which the
authors present the different existing methodological approaches as well as the strengths and weaknesses of each
approach. It should be noted that statistical models very often depend on the context (available data and objective
of the study).

One of the important contributions of statistics in the field of road safety concerns the statistical evaluation of
the effect of a road safety measure (reduction or increase of the maximum speed allowed on a road, installation
of speed bumps, installation of signs, transformation of intersections into roundabouts, modification of road
markings, etc.). After a certain period of application of a certain measure, it is necessary and logical to seek to
assess its effect in order to ascertain whether or not that measure has made it possible to reduce the number of
accidents.

In this paper, we consider the case where accidents are classified by level of severity. Among the most widely
used statistical models in this context, before-after models with control site are in a good position since they
allow cause and effect interpretation [5]. These models simultaneously consider accidents by level of severity
before and after the road safety measure not only at the site that underwent the measure (often referred to as
the experimental site or treated site or treatment site) but also at another site (often called the control site or
comparison site) with the same characteristics as the treatment site but where the measure was not applied. This
avoids attributing erroneously to the measure any underlying trend due to factors other than the measure [15].

Let n be the total number of accidents at the experimental site, r ∈ N∗ be the number of accident severity
levels and X = (X11, . . . , X1r, X21, . . . , X2r) ∈ R2r be a discrete random vector where, for all j = 1, . . . , r,
Xij is the discrete random variable representing the number of accidents of severity level j on the experimental
site during the period i (i = 1 represents the period before the measure and i = 2 represents the period after).
Modelling also requires the non-random vector z = (z1, . . . , zr), where for all j = 1, . . . , r,

zj =
number of crashes of severity level j on the control site in the ”after” period

number of crashes of severity level j on the control site in the ”before” period
. (1.1)

The objective of this paper is to theoretically and empirically compare two very relevant statistical models
proposed respectively in [10] (referred to as Model 1 in the following) and [11] (referred to as Model 2 in the
following). These two models represent the probability distribution of the vector X by a multinomial distribution

X ⇝M(n,π(θ|z)), (1.2)

where
π(θ|z) = (π11(θ|z), . . . , π1r(θ|z), π21(θ|z), . . . , π2r(θ|z)) (1.3)

is a vector function of an unknown parameter vector (to be estimated) θ ∈ Rr+1 and z is such that, for all
i = 1, 2 and j = 1, . . . , r, 0 < πij(θ|z) < 1 and

∑2
i=1

∑r
j=1 πij(θ|z) = 1. The notation (1.2) means that for

any realization x = (x11, . . . , x1r, x21, . . . , x2r) of X such that
∑2

i=1

∑r
j=1 xij = n, the probability function

evaluated to the vector x is

P (x) =
n!∏2

i=1

∏r
j=1 xij !

2∏
i=1

r∏
j=1

(πij(θ|z))xij . (1.4)
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The difference between the two models considered in this paper lies in the definition of the function π(θ|z) and
the theoretical and empirical comparison that we propose is an innovation because until now, in the literature, the
two models have been treated separately.

In addition to the introductory section, this paper has other sections organized as follows. Section 2 presents
the two models and the estimation of the parameter vector θ for each of them. Section 3 presents the main
theoretical results of this paper. In this section, we give a much simpler proof of the expression of the maximum
likelihood estimator for Model 1 and we demonstrate theoretical results on the measure of divergence between
the two models. Section 4 presents the results of the comparison on real data. Some concluding remarks are
given in Section 5.

2. Models and estimation of their parameters

2.1. Presentation of the models

The details of the construction of both models can be found in [10, 11] and are not presented here. The main
question behind these models is: how to calculate the average effect of the measure on the number of accidents?
This average effect, denoted α in the rest of this paper, is a strictly positive real number defined as the ratio of the
number of accidents observed at the experimental site in the ”after” period to the number of accidents that one
would have expected to observe if the measure had no effect [11]. Consideration of the different types of accident
severity introduces r positive secondary parameters β1, . . . , βr such as

∑r
i=1 βi = 1. In each of the models, the

vector parameter θ takes the form θ = (α, β1, . . . , βr).
In Model 1 [10], the components of the vector function π(θ|z) are defined by:

π
(1)
1j (θ|z) =

βj

1 + α
∑r

k=1 zkβk
, π

(1)
2j (θ|z) =

αβjzj

1 + α
∑r

k=1 zkβk
, j = 1, . . . , r, (2.1)

whereas in Model 2 [11], they are defined by:

π
(2)
1j (θ|z) =

βj

1 + α
∑r

k=1 zkβk
, π

(2)
2j (θ|z) =

αβj

∑r
k=1 zkβk

1 + α
∑r

k=1 zkβk
, j = 1, . . . , r. (2.2)

The value of the mean effect α can be interpreted by comparing it to 1 (for example, if α = 0.8 < 1, then
1 − α = 0.2 = 20% and we can estimate the reduction in the number of accidents due to the measure at 20%).
The parameters β1, . . . , βr are the respective probabilities associated with the severity levels.

2.2. Maximum likelihood estimation of parameters

Let x = (x11, . . . , x1r, x21, . . . , x2r) be an observation of X such that
∑2

i=1

∑r
j=1 xij = n. Applying the

logarithm to Formula (1.4) and taking into account the definition of π(θ|z) for each of the two models, one can
verify that the log-likelihoods associated with the two models are respectively defined by

L1(θ) = C +

r∑
j=1

{
x•j log(βj) + x2j log(α)− x•j log

(
1 + α

r∑
k=1

zkβk

)
+ x2j log zj

}
(2.3)

and

L2(θ) = C +

r∑
j=1

{
x•j log(βj) + x2j log(α)− x•j log

(
1 + α

r∑
k=1

zkβk

)
+ x2j log

( r∑
k=1

zkβk

)}
, (2.4)

where

C = log

(
n!∏2

i=1

∏r
j=1 xij !

)
.
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Remark 2.1. Let Sr−1 = {(β1, . . . , βr) ∈ (R∗
+)

r,
∑r

i=1 βi = 1}. For all θ ∈ R∗
+ × Sr−1, the difference

between the two log-likelihoods

L2(θ)− L1(θ) =

r∑
j=1

x2j

{
log
( r∑

k=1

zkβk

)
− log zj

}

does not have a constant sign (see Figure 1). In the special case z1 = · · · = zr, we have L2(θ)− L1(θ) = 0.

3
2.5

L 2
(θ

)-
L 1

(θ
)

2-60
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Figure 1: Example of representation of L2(θ)− L1(θ) for r =2.

The respective Maximum Likelihood Estimators (MLE) θ̂ = (α̂, β̂1, . . . , β̂r) and θ̃ = (α̃, β̃1, . . . , β̃r) of the
unknown parameter vector θ are obtained by maximizing L1(θ) and L2(θ).

For Model 1, it was proved that an explicit form could not be obtained for θ [9]. An estimation algorithm
called cyclic algorithm (CA) was therefore proposed in [12]. Let x1• =

∑r
j=1 x1j , x2• =

∑r
j=1 x2j and, for all

j = 1, . . . , r, x•j = x1j + x2j . The CA is written in iterative form

α(k+1) =
x2•

x1•

(∑r
j=1 zjβ

(k)
j

)
β
(k+1)
j =

1

1− 1

n

r∑
m=1

x•mα(k+1)zm
1 + α(k+1)zm

× x•j

n(1 + α(k+1)zj)
, j = 1, . . . , r,

(2.5)

where α(k+1) and β
(k+1)
j (j = 1, . . . , r) denote the respective estimates of α and βj after k + 1 iterations. This

algorithm begins with an initial vector θ(0) = (α(0), β
(0)
1 , . . . , β

(0)
r ) and stops when two successive values θ(k) =

(α(k), β(k)
1 , . . ., β(k)

r ) and θ(k+1) = (α(k+1), β(k+1)
1 , . . ., β(k+1)

r ) are such that |L1(θ
(k+1)) − L1(θ

(k))| < ϵ

for a sufficiently small precision ϵ > 0. The global convergence of the (2.5) algorithm to the MLE in the
algorithmic sense (i.e. the convergence of the sequence (θ(k)) to the MLE θ̂ regardless of the initial vector θ(0))
was demonstrated by [4] and the almost sure convergence (i.e. the strong convergence in the sense of random
variables) of the EMV θ̂ to the true unknown value θ of the parameter was obtained by [3].
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For Model 2, the exact analytical expression of MLE has been obtained and its almost sure convergence has
been demonstrated [2] (see Lemma 2.2 below).

Lemma 2.2 (MLE in Model 2 [2]). Let X = (X11, . . . , X1r, X21, . . . , X2r) be a random vector with
multinomial distribution defined by (2.2) and θ = (α, β1, . . . , βr). The MLE θ̃ = (α̃, β̃1, . . . , β̃r) of θ is defined
by

α̃ =
n
∑r

k=1 X2k(∑r
k=1 X1k

)(∑r
k=1 zk(X1k +X2k)

)
β̃j =

X1j +X2j

n
, j = 1, . . . , r.

(2.6)

2.3. Computation of the standard errors

Standard errors are very important in Statistics. Indeed, the MLE of α and βj (j = 1, . . . , r) are random
variables and therefore each has a standard deviation called standard error. These standard errors are given for
Model 1 and Model 2 respectively by the following lemmas.

Lemma 2.3 ([14]). Let z =
∑r

i=1 ziβi, γn = n/(1 + αz), τ = γ2
nz/(nα) and

Γ =



τ
γ2
nz1
n · · · · · · γ2

nzr
n 0

γ2
nz1
n

nγnω1−γ2
nα

2z2
1

n −γ2
nα

2z1z2
n · · · −γ2

nα
2z1zr
n 1

γ2
nz2
n −γ2

nα
2z2z1
n

nγnω2−γ2
nα

2z2
2

n

. . .
...

...

...
...

. . .
. . . −γ2

nα
2zr−1zr
n

...

γ2
nzr
n −γ2

nα
2zrz1
n · · · −γ2

nα
2zrzr−1

n
nγnωr−γ2

nα
2z2

r

n 1

0 1 · · · · · · 1 0



(2.7)

be a non singular matrix of order (r + 2) × (r + 2) where for all j = 1, . . . , r, ωj = (1 + αzj)/βj . Let
W = (Wi,j)1⩽i,j⩽r+1 be the matrix of order (r + 1) × (r + 1) composed of the first r + 1 rows and r + 1

columns of Γ−1. The approximate standard errors of α̂ and β̂j (j = 1, . . . , r) in Model 1 are the square roots of
the diagonal elements of W :

σ1(α̂) =
√

W1,1 (2.8)

σ1(β̂j) =
√
Wj+1,j+1, j = 1, . . . , r. (2.9)

Lemma 2.4 ([2]). Let z2 =
∑r

i=1 z
2
i βi and γ = 1/(1+αz). The approximate standard error of α̂ and the exact

standard error of β̂j (j = 1, . . . , r) in Model 2 are

σ2(α̃) =

√
α

nγ2z
+

α2z2

nz2
− α2

n
(2.10)

and

σ2(β̃j) =

√
βj(1− βj)

n
, (2.11)

respectively.

Remark 2.5. In practice, the true values α and βj (j = 1, . . . , r) are unknown and replaced by their respective
estimates.

326



Theoretical and empirical comparison of two discrete statistical models of crash frequencies

3. Main theoretical results

3.1. A much simpler proof of the expression of the MLE in Model 1

It is proven (see [10] or [13]) that the MLE of the parameter vector of Model 1 satisfies the following system
of non-linear equations: 

r∑
j=1

(
x2j −

x•jα̂
∑r

m=1 zmβ̂m

1 + α̂
∑r

m=1 zmβ̂m

)
= 0

x•j −
nβ̂j(1 + α̂zj)

1 + α̂
∑r

m=1 zmβ̂m

= 0, j = 1, . . . , r.

(3.1)

N’Guessan and Truffier [13] have transformed the second row of the system (3.1) into a system of r linear
equations of unknowns β1, . . . , βr whose matrix depends on the parameter α. They then proved that this matrix
is invertible and then inverted it analytically using the Schur complement. This enabled them to obtain the
following theorem:

Theorem 3.1 ([13]). The MLE θ̂ = (α̂, β̂1, . . . , β̂r) of θ in Model 1 is given by:

α̂ =
x2•

x1•

(∑r
j=1 zj β̂j

)
β̂j =

1

1− 1

n

r∑
m=1

x•mα̂zm
1 + α̂zm

× x•j

n(1 + α̂zj)
, j = 1, . . . , r.

(3.2)

In this paper, we give a simpler proof of the expression of the MLE in Model 1 that does not require the use
of Schur complement or any other technique for analytical inversion of block-defined matrices.

Proof. Since
∑r

j=1 x•j = n, the first line of the non-linear system (3.1) is equivalent to

x2• −
nα̂
∑r

m=1 zmβ̂m

1 + α̂
∑r

m=1 zmβ̂m

= 0

that can be rewritten as

x2• − n+
n

1 + α̂
∑r

m=1 zmβ̂m

= 0

and then
n

1 + α̂
∑r

m=1 zmβ̂m

= x1• (3.3)

The expression of α̂ as a function of β̂j is a simple consequence of Equation (3.3). Replacing Equation (3.3) in
the second row of the system (3.1), we get

x•j − β̂j(1 + α̂zj)x1• = 0, j = 1, . . . , r,

hence
β̂j =

x•j

(1 + α̂zj)x1•
, j = 1, . . . , r.

The condition
∑r

j=1 β̂j = 1 means that
∑r

j=1
x•j

(1+α̂zj)
= x1•, from where we have:

β̂j =
1

r∑
m=1

x•m

1 + α̂zm

× x•j

1 + α̂zj
. (3.4)
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The equivalence between Equation (3.4) and the second line of (3.2) is obtained by noting that

1− 1

n

r∑
m=1

x•mα̂zm
1 + α̂zm

= 1− 1

n

r∑
m=1

(
x•m − x•m

1 + α̂zm

)

= 1− 1

n

r∑
m=1

x•m +
1

n

r∑
m=1

x•m

1 + α̂zm

= 1− n

n
+

1

n

r∑
m=1

x•m

1 + α̂zm

=
1

n

r∑
m=1

x•m

1 + α̂zm
.

■

3.2. Measure of divergence between the two models

The notion of divergence makes it possible to quantify the ”distance” between two probability distributions
or to quantify the difficulty of discriminating between them. Among the most widely used divergences is the
Kullback-Leibler (KL) divergence [6].

Let m ∈ N∗, p = (p1, . . . , pm) ∈ Sm−1, q = (q1, . . . , qm) ∈ Sm−1 and

En =
{
y = (y1, . . . , ym) ∈ Nm, y1 + · · ·+ ym = n

}
.

Let Pn and Qn be the probability functions associated with the multinomial distributions M(n,p) and M(n, q),
respectively. That is, for any vector y = (y1 . . . , ym) ∈ En, we have:

Pn(y) =
n!∏m

i=1 yi!

m∏
i=1

pyi

i and Qn(y) =
n!∏m

i=1 yi!

m∏
i=1

qyi

i . (3.5)

The Kullback-Leibler (KL) divergence between M(n,p) and M(n, q) is defined by

DKL (M(n,p)∥M(n, q)) =
∑
y∈En

Pn(y) log

(
Pn(y)

Qn(y)

)
(3.6)

and represents the mean information for discriminating for the distribution M(n,p) against M(n, q) when the
true distribution is supposed to be M(n,p). The KL divergence is non-negative (greater than or equal to 0) and
equals zero if and only if the two distributions are the same (p = q) but it is not symmetric [6].

We have the following result.

Theorem 3.2. Let m ∈ N∗, p = (p1, . . . , pm) ∈ Sm−1 and q = (q1, . . . , qm) ∈ Sm−1. The Kullback-Leibler
(KL) divergence between M(n,p) and M(n, q) is

DKL (M(n,p)∥M(n, q)) = n

m∑
i=1

pi log

(
pi
qi

)
. (3.7)

Proof. We make a proof by induction. To save space, DKL (M(n,p)∥M(n, q)) will simply be denoted
dn(p∥q).

• Let n = 1. The elements of the set

E1 =
{
y = (y1, . . . , ym) ∈ Nm, y1 + · · ·+ ym = 1

}
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are the m vectors e1,1 = (1, 0, 0, . . . , 0), e1,2 = (0, 1, 0, . . . , 0), . . ., e1,m = (0, 0, . . . , 0, 1) such that, for
all i = 1, . . . ,m, P1(e1,i) = pi and Q1(e1,i) = qi. Thus, according to the formula (3.6),

d1(p∥q) =
∑

e1,i∈E1

P1(e1,i) log

(
P1(e1,i)

Q1(e1,i)

)
=

m∑
i=1

pi log

(
pi
qi

)
(3.8)

and so, the formula (3.7) is true for n = 1.

• Let n ∈ N∗. Suppose Equation (3.7) is true for n and let us show that it is true for n + 1. From
the classical results of discrete mathematics, we know that the respective cardinals of En and En+1 are
cn = Cn

m+n−1 = (m+n−1)!
n! (m−1)! and cn+1 = Cn+1

m+n = (m+n)!
(n+1)! (m−1)! . Note by en,1, . . . , en,cn and en+1,1,

. . . , en+1,cn+1 the elements of En and En+1, respectively. It is known that the distribution M(n + 1,p)

is obtained as the probability distribution of the sum of two independent random variables of respective
distributions M(n,p) and M(1,p). On the other hand, KL divergence is additive for independent random
variables [6]. So, noting Pn,1 the joint probability function associated with the distributions M(n,p) and
M(1,p) and Qn,1 the joint probability function associated with the distributions M(n, q) and M(1, q),
we have:

dn+1(p∥q) =
cn∑
i=1

m∑
j=1

Pn,1(en,i, e1,j) log

(
Pn,1(en,i, e1,j)

Qn,1(en,i, e1,j)

)
and then, by independence,

dn+1(p∥q) =
cn∑
i=1

m∑
j=1

Pn(en,i)P1(e1,j) log

(
Pn(en,i)P1(e1,j)

Qn(en,i)Q1(e1,j)

)

=

cn∑
i=1

m∑
j=1

Pn(en,i) pj log

(
Pn(en,i) pj
Qn(en,i) qj

)
.

So, we can write

dn+1(p∥q) =
cn∑
i=1

m∑
j=1

Pn(en,i) pj log

(
Pn(en,i)

Qn(en,i)

)
+

cn∑
i=1

m∑
j=1

Pn(en,i) pj log

(
pj
qj

)

=

m∑
j=1

pj

{
cn∑
i=1

Pn(en,i) log

(
Pn(en,i)

Qn(en,i)

)}
+

cn∑
i=1

Pn(en,i)


m∑
j=1

pj log

(
pj
qj

)
=

m∑
j=1

pj dn(p∥q) +
cn∑
i=1

Pn(en,i) d1(p∥q)

= dn(p∥q) + d1(p∥q)

because
∑m

j=1 pj = 1 and
∑cn

i=1 Pn(en,i) = 1 (the total sum of a probability function is equal to 1).
Combining Equation (3.8) and the assumption that Equation (3.7) is true for n, we obtain:

dn+1(p∥q) = (n+ 1)

m∑
i=1

pi log

(
pi
qi

)
,

which completes the proof.

■
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We have the following three corollaries.

Corollary 3.3. Let θ̂ = (α̂, β̂1, . . . , β̂r) and θ̃ = (α̃, β̃1, . . . , β̃r) be the MLE of θ in Model 1 and Model 2
respectively. The KL divergences between Model 1 and Model 2 are respectively given by:

DKL(1∥2) = n

r∑
j=1

{
π
(1)
1j (θ̂|z) log

(
π
(1)
1j (θ̂|z)

π
(2)
1j (θ̃|z)

)
+ π

(1)
2j (θ̂|z) log

(
π
(1)
2j (θ̂|z)

π
(2)
2j (θ̃|z)

)}

DKL(2∥1) = n

r∑
j=1

{
π
(2)
1j (θ̃|z) log

(
π
(2)
1j (θ̃|z)

π
(1)
1j (θ̂|z)

)
+ π

(2)
2j (θ̃|z) log

(
π
(2)
2j (θ̃|z)

π
(1)
2j (θ̂|z)

)}
.

Proof. This is a direct application of the formula (3.7). For example, to calculate DKL(1∥2), we apply the
formula (3.7) to p = (π

(1)
11 (θ̂|z), . . . , π(1)

1r (θ̂|z), π
(1)
21 (θ̂|z), . . . , π(1)

2r (θ̂|z)) and q = (π
(2)
11 (θ̃|z), . . . , π(2)

1r (θ̃|z),
π
(2)
21 (θ̃|z), . . . , π(2)

2r (θ̃|z)) where the π
(1)
ij ’s and π

(2)
ij ’s, i = 1, 2, j = 1, . . . , r, are defined by Equations (2.1) and

(2.2). ■

Corollary 3.4. DKL(1∥2) ⩾ 0, DKL(2∥1) ⩾ 0 with equality if and only if the zj’s are all equal i.e. z1 = · · · =
zr.

Proof. The non-negativity of DKL is given by Theorem 3.1 of the second chapter of [6]. According to the
same theorem, the KL divergence is zero if and only if the models are the same. In our context, this means that
DKL(1∥2) = 0 and DKL(2∥1) = 0 if and only if

π
(1)
1j (θ̂|z) = π

(2)
1j (θ̃|z) and π

(1)
2j (θ̂|z) = π

(2)
2j (θ̃|z), j = 1, . . . , r.

We have: 

β̂j

1 + α̂
∑r

k=1 zkβ̂k

=
β̃j

1 + α̃
∑r

k=1 zkβ̃k

, j = 1, . . . , r

α̂β̂jzj

1 + α̂
∑r

k=1 zkβ̂k

=
α̃β̃j

∑r
k=1 zkβ̃k

1 + α̃
∑r

k=1 zkβ̃k

, j = 1, . . . , r.

(3.9)

Dividing the second line by the first, we have:

α̂zj = α̃

r∑
k=1

zkβ̃k, j = 1, . . . , r.

In this last equality, the second member does not depend on the index j so we deduce that z1 = · · · = zr. ■

Although interesting, the divergences DKL(1∥2) and DKL(2∥1) do not really allow to choose the model
that fits better to the observed data. It is known that, for a vector x = (x11, . . . , x1r, x21, . . . , x2r) such that∑2

i=1

∑r
j=1 xij = n, the observed distribution is

π∗ =
(x11

n
, . . . ,

x1r

n
,
x21

n
, . . . ,

x2r

n

)
(3.10)

so we found it more interesting to compare the observed distribution and the distributions estimated by the two
models using the KL divergence. By applying Equation (3.7) to p = π∗ and q = π(1)(θ̂|z) and q = π(2)(θ̃|z)
respectively, we have the following result.
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Corollary 3.5. The KL divergences from the observed distribution to the distributions estimated by the two
models are respectively given by:

DKL(∗∥1) = n

r∑
j=1

{
x1j

n
log

(
x1j

n · π(1)
1j (θ̂|z)

)
+

x2j

n
log

(
x2j

n · π(1)
2j (θ̂|z)

)}
(3.11)

DKL(∗∥2) = n

r∑
j=1

{
x1j

n
log

(
x1j

n · π(2)
1j (θ̃|z)

)
+

x2j

n
log

(
x2j

n · π(2)
2j (θ̃|z)

)}
. (3.12)

The best model will then be the one with a smaller divergence.

4. Empirical comparison on real data

In this section, we compare the fit of the two models on real data. For each dataset, we estimate the
parameters of both models using Algorithm (2.5) and Formula (2.6) respectively. Afterwards, we calculate
the KL divergences DKL(∗∥1) and DKL(∗∥2) and other indicators among the most used for the comparison
of two models which are the Akaike Information Criterion (AIC), the Corrected AIC (AICc) and the Bayesian
Information Criterion (BIC) respectively defined by:

AIC = 2k − 2 logL, (4.1)

AICc = AIC +
2k(k + 1)

n− k − 1
(4.2)

and

BIC = −2 logL+ k log n, (4.3)

where k is the number of parameters of the model i.e. k = r + 1. The best model is the one with the smallest
values for all indicators.

4.1. Evaluation of an unspecified road safety measure

These data (see Table 1) are taken from [1]. Unspecified concrete measures were implemented in 2004 at
an experimental site in Accra (Ghana) to improve safety. There are three crash types: Fatal, Hospitalised and
Injured.

Table 1: Dataset 1: Before and after crashes data from an experimental site in Ghana

Before period (3 years) After period (3 years)
Fatal Hospitalised Injured Fatal Hospitalised Injured

Experimental site 8 23 23 3 6 16
Control site 33 58 69 27 36 62

Dividing for each type of accident, the number of accidents after by the number of accidents before in the
control area, one can obtain the control coefficients in Table 2.

Table 2: Control coefficients related to Dataset 1

z1 (Fatal) z2 (Hospitalised) z3 (Injured)
0.8182 0.6207 0.8986

The results of the comparison of the two models are given by Table 3.
According to the results in Table 3, Model 1 is the best because it has smaller values for AIC, AICc, BIC and

DKL. According to this model, we have α̂ = 0.5946 and we can estimate at (1 − 0.5946) = 0.4054 = 40.54%

the reduction in the number of accidents after application of the measure.
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Table 3: Models comparison results for Dataset 1 (Standard errors are in parentheses).

Model 1 Model 2
α̂ 0.5946 (0.1443) 0.5895 (0.1430)
β̂1 0.1370 (0.0386) 0.1392 (0.0390)
β̂2 0.3923 (0.0588) 0.3671 (0.0542)
β̂3 0.4707 (0.0560) 0.4937 (0.0562)
AIC 261.2306 263.1768
AICc 261.7712 263.7173
BIC 270.7084 272.6546
DKL DKL(∗∥1) = 0.7050 DKL(∗∥2) = 1.6781

4.2. Evaluation of the modification of ground markings

The data (see Table 4) come from [13]. A road modification was carried out in 1999 on national road 17
(RN17) in France. It consisted of the modification of ground markings of this three-lane two-way road so that it
is impossible to overtake simultaneously in both directions. Accidents are classified into three categories: Fatal,
Serious and Minor.

Table 4: Dataset 2

Before period (4 years) After period (4 years)
Fatal Serious Minor Fatal Serious Minor

Treated site 4 4 16 1 1 7
Control site 27 64 182 14 27 102

Table 5: Control coefficients related to Dataset 2.

z1 z2 z3
0.5190 0.4220 0.5600

The results of the comparison of the two models are given by Table 6.

Table 6: Models comparison results for Dataset 2 (Standard errors are in parentheses).

Model 1 Model 2
α̂ 0.7054 (0.2760) 0.7037 (0.2753)
β̂1 0.1525 (0.0632) 0.1515 (0.0624)
β̂2 0.1605 (0.0664) 0.1515 (0.0624)
β̂3 0.6870 (0.0854) 0.6970 (0.0800)
AIC 100.8238 101.0209
AICc 102.2524 102.4495
BIC 106.8098 107.0069
DKL DKL(∗∥1) = 0.1003 DKL(∗∥2) = 0.1988

According to the results of Table 6, Model 1 is the best because it has smaller values for the AIC, AICc, BIC
and DKL. According to this model, we have α̂ = 0.7054 and we can estimate at (1−0.7054) = 0.2946 = 29.46%

the reduction in the number of accidents after application of the measure.

4.3. Evaluation of the presence of display panels on roadsides

The data (see Table 7) come from [14]. The experimental site is the Turcot Interchange (Canada). The
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modification consisted of the installation of roadside billboards in July 1995. The control site consists of two
interchanges. There are three categories of accidents: Fatal or severe, Minor and Property damages only (PDO).

Table 7: Dataset 3

Before period (1 year) Period after (1 year)
Fatal or
Severe

Minor PDO Fatal or
Severe

Minor PDO

Experimental site 4 20 133 3 29 143
Control site 2 26 154 9 37 239

The control coefficients are given by Table 8.

Table 8: Control coefficients related to Dataset 3.

z1 z2 z3
4.5 1.423 1.552

The results of the comparison of the two models are given by Table 9.

Table 9: Models comparison results for Dataset 3 (Standard errors sont entre parenthèses).

Model 1 Model 2
α̂ 0.7130 (0.0786) 0.6988 (0.0775)
β̂1 0.0106 (0.0040) 0.0211 (0.0079)
β̂2 0.1549 (0.0207) 0.1476 (0.0195)
β̂3 0.8345 (0.0283) 0.8313 (0.0206)
AIC 814.7443 810.7806
AICc 814.8666 810.9029
BIC 829.9649 826.0011
DKL DKL(∗∥1) = 2.5778 DKL(∗∥2) = 0.5959

According to the results of Table 9, Model 2 is the best because it has smaller values for AIC, AICc, BIC and
DKL. According to this model, we have α̂ = 0.6988 and (1− 0.6988) = 0.3012 = 30.12% so we can estimate
that the measure led to a decrease of 30.12% in the number of accidents.

4.4. Evaluation of the increase in speed limit on Arizona’s rural interstate

Data are extracted from [16]. There are three severity levels for accidents: Fatal, Injury and property-damage-
only (PDO). The speed limit on Arizona’s rural interstate was raised to 65 mph in 1987. The treatment site (rural
interstate) represents the portions of the Arizona interstate system that had the speed limit raised to 65 mph and the
control site (urban interstate) represents the portions that have the speed limit maintained at 55 mph. In [16], the
period before covers about four years and the period after covers one year. In order to respect the basic principle
of model construction which requires the periods before and after to have approximately the same duration, we
have chosen just one year before the measure and one year after the measure. This gives the following table:

Table 10: Dataset 4 (Arizona)

Before period (1 year) After period (1 year)
PDO Injury Fatal PDO Injury Fatal

Treatment site 1669 1047 97 1969 1322 117
Control site 2105 803 13 2217 737 15
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Table 11: Control coefficients related to Dataset 4.

z1 (PDO) z2 (Injury) z3 (Fatal)
1.0532 0.9178 1.1538

The control coefficients related to Dataset 4 are given by Table 11.
The results of the comparison of the two models are given by Table 12.

Table 12: Models comparison results for Dataset 4 (Standard errors are in parentheses).

Model 1 Model 2
α̂ 1.2087 (0.0308) 1.2054 (0.0307)
β̂1 0.5690 (0.0069) 0.5848 (0.0062)
β̂2 0.3993 (0.0068) 0.3808 (0.0062)
β̂3 0.0318 (0.0021) 0.0344 (0.0023)
AIC 18509.8110 18495.2896
AICc 18509.8174 18495.2960
BIC 18536.7537 18522.2323
DKL DKL(∗∥1) = 8.0800 DKL(∗∥2) = 0.8193

According to the results of Table 12, Model 2 is the best because it has smaller values for the AIC, AICc,
BIC, and DKL. According to this model, we have α̂ = 1.2054 and (1− 1.2054) = −0.2054 = −20.54% so we
can estimate that the measure has led to an increase of 20.54% in the number of accidents.

5. Conclusion

In this paper, we compared two discrete statistical models for the evaluation of a road safety measure applied
on an experimental site (treatment site) where the accidents are classified by severity in r categories. In order
to take into account the effects external to the measure and which could influence the number of accidents,
the treatment site is associated with a control site where the measure was not applied. The two models are
multinomial models coming respectively from [10] (Model 1) and [11] (Model 2).

There certainly exist results on the maximum likelihood estimator (MLE) of the parameter vector for each of
the models. But for Model 1 (considered in this work as the most complex given the form of the MLE), previous
works have used the notion of Schur complement for the exact analytical inversion of a matrix involved in the
resolution of likelihood equations. In our work, we have given a much simpler proof of the expression of the
MLE for Model 1 without using neither Schur complement nor any other technique of exact analytical inversion
of block matrices. We then obtained theoretical results on the measure of divergence between the two models.
The results obtained on real data suggest that both models are competitive and that none of them is systematically
better than the other.
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