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On star coloring of tensor product of graphs
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Abstract
The star chromatic number of tensor products of path and complete graphs have been investigated in this article.
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1. Introduction
A star coloring of a graph G [1–3]is a proper vertex col-

oring in which every path on four vertices is colored such
that it is not bicolored. More concisely, in a star coloring, the
induced subgraphs formed by the vertices of any two colors
have connected components that are star graphs. The star
chromatic number χs (G) of G is the minimum number of
colors needed to star color G. Star coloring of graphs was
introduced by Branko Grünbaum in 1973 who linked star col-
oring to acyclic coloring by showing that any planar graph
has an acyclic chromatic number less than or equal to 9 and
suggested that this implies that any particular graph has star
chromatic number less than or equal to 9.28 = 2304.

There exist number of results for star colorings of graphs
formed by certain graph operations. Guillaume Fertin et al.[3]
gave the exact value of the star chromatic number of different
families of graphs such as trees, cycles, complete bipartite
graphs, outerplanar graphs, and 2-dimensional grids. They
also investigated and gave bounds for the star chromatic num-
ber of other families of graphs, such as planar graphs, hy-
percubes, d-dimensional grids (d ≥ 3), d-dimensional tori
(d ≥ 2), graphs with bounded treewidth, and cubic graphs. In
2015, K. Venkatesan et al.[4] investigated star chromatic num-

ber of corona product of graphs and provided some bounds
on chromatic number on corona product of graphs.

Albertson et al.[1] given that it is NP-complete to investi-
gate whether χs (G)≤ 3. The problem of finding star colorings
is NP-hard and remain so even for bipartite graphs [5, 6].

2. Preliminaries
The tensor product of graphs was introduced by Bertrand

[7] in 1912. In 1998, Imrich has given a polynomial time
algorithm for recognizing tensor product graphs and finding a
factorization of any such graph. If either G or H is bipartite,
then so is their product. G⊗H is connected if and only if both
factors are connected and at least one factor is nonbipartite.

The tensor product of two graphs G and H has the vertex
set V (G⊗H) =V (G)V (H), edge set
E(G⊗H) = {(a,b)(c,d)|ac ∈ E(G) and bd ∈ E(H)}.

3. Main Results
Theorem 3.1. For any positive integers m,n ≥ 3, χs(Km⊗
Kn) = mn−max{m,n}.

Proof. Let V (Km) = {ui : 1≤ i≤ m} and
V (Kn) =

{
v j : 1≤ j ≤ n

}
. By the definition of tensor product

the vertex set and edge set of the graph Km⊗Kn is given by,

V (Km⊗Kn) =
{

uiv j : 1≤ i≤ m,1≤ j ≤ n
}

and

E(Km⊗Kn) =
m−1⋃
i,k=1

{
uiv j,ukvl : 1≤ j, l ≤ n, i 6= k, j 6= l

}
Let e(i)( j),(k)(l) be the edge of Km⊗Kn connecting the vertices
uiv j and ukvl of Km⊗Kn. Therefore, e(i)( j),(k)(l) ∈ E(Km⊗Kn)
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if and only if |k− i|=m−1 and |l− j|= n−1, Km⊗Kn being
isomorphic to Kn⊗Km.

Let G = Km⊗Kn and f be a funtion defined by f : S→C,
where S =V (G) and C is the set of colors. Now use the color
partition of Km⊗Kn as follows:

Case 1 When n≥ m
The function f takes the values,
f (uiv j) = n(i−1)+ j,1≤ i≤ m−1,1≤ j ≤ n and
f (umv j) = j,1≤ j ≤ n.

Case 2 When n < m
f (uiv j) = m( j−1)+ i,1≤ j ≤ n−1,1≤ i≤ m and
f (uivn) = i,1≤ i≤ m.

Clearly, in the above cases, the partition gives no bi-
colored path P4 or cycle C4. Assume that χs(Km ⊗Kn) =
mn−max{m,n}−1, then there exists any one bicolored path
P4 or cycle C4. A contradiction to proper star coloring. Thus,
no coloring that uses mn−max(m,n)−1 colors can be a star
coloring.

Hence, χs(Km⊗Kn) = mn−max{m,n}.

Theorem 3.2. For any positive integers m≥ 2, n≥ 3, the star
chromatic number of Pm⊗Kn is,

χs(Pm⊗Kn) =

{
n if m = 2,3
n+1 if m≥ 4

.

Proof. Let V (Pm) = {ui : 1≤ i≤ m} and
V (Kn) =

{
v j : 1≤ j ≤ n

}
. By the definition of tensor product

the vertex set and edge set of the graph Pm⊗Kn is given by,

V (Pm⊗Kn) =
{

uiv j : 1≤ i≤ m,1≤ j ≤ n
}

and

E(Pm⊗Kn) =
m−1⋃
i,k=1

{
uiv j,uk+1vl : 1≤ j, l ≤ n, j 6= l

}
∪

m−1⋃
i,k=1

{
uiv j,uk+1vl−1 : 1≤ j, l ≤ n, i 6= k

}
Let e(i)( j),(k)(l) be the edge of Pm⊗Kn connecting the vertices
uiv j and uivl of Pm⊗Kn. Therefore, e(i)( j),(k)(l) ∈ E(Pm⊗Kn)
if and only if |k− i| = 1 and |l− j| = n− 1, Pm⊗Kn being
isomorphic to Kn⊗Pm.

Let G = Pm⊗Kn and f be a funtion defined by f : S→C,
where S =V (G) and C is the set of colors. Now use the color
partition of Pm⊗Kn as follows:

Case 1 When m = 2,3
The function f takes the values,
f (uiv j) = j,1≤ i≤ 3,1≤ j ≤ n. Clearly, above color
partition gives a proper star coloring without bicolored
paths. Suppose χs(Pm⊗Kn) = n−1, then there exists
any one bicolored path P4 or cycle C4. Thus, no coloring
that uses n−1 colors can be a star coloring and χs(Pm⊗
Kn)≥ n. Hence, χs(Pm⊗Kn) = n.

Case 2 When m≥ 4
For 1≤ j ≤ n assign the values for f as,

• f (ui−3v j) = j,1≤ i≤ m−3
4

• f (u4i−3v j) = j,1≤ i≤ m−2
4

• f (u4i−1v j) = j,1≤ i≤ m−1
4

• f (u4iv j) = n+1,1≤ i≤ m
4

Clearly, above color partition gives a proper star coloring
without bicolored paths. Suppose χs(Pm⊗Kn) = n, then there
exists any one bicolored path P4 or cycle C4. Thus, no coloring
that uses n colors can be a star coloring and χs(Pm⊗Kn) ≥
n+1. Hence, χs(Pm⊗Kn) = n+1.

Theorem 3.3. For any positive integers m and n, the star
chromatic number of the tensor product Pm⊗Pn is given by

χs(Pm⊗Pn) =


3 if m≤ 3
4 if 4≤ m≤ 7
5 if m≥ 8

.

Proof. Let V (Pm) = {ui : 1≤ i≤ m} and
V (Pn) =

{
v j : 1≤ j ≤ n

}
. By the definition of tensor product

the vertex set and edge set of the graph Pm⊗Pn is given by,

V (Pm⊗Pn) =
{

uiv j : 1≤ i≤ m,1≤ j ≤ n
}

and

E(Pm⊗Pn) =
m−1⋃
i=1

{
uiv j,ui+1v j+1 : 1≤ j ≤ n−1

}
∪

m−1⋃
i=1

{
uiv j,ui+1v j−1 : 2≤ j ≤ n

}
.

Let e(i)( j),(k)(l) be the edge of Pm⊗Pn connecting the vertices
uiv j and ukvl of Pm⊗Pn. Therefore, e(i)( j),(k)(l) ∈ E(Pm⊗Pn)
if and only if |k− i|= |l− j|= 1, Pm⊗Pn being isomorphic
to Pn⊗Pm.

Let G = Pm⊗Pn and f be a funtion defined by f : S→C,
where S =V (G) and C is the set of colors. Now use the color
partition of Pm⊗Pn as follows:

Case 1 When m≤ 3
For 1≤ j≤ n, the function f takes the values, f (uiv j)={

j mod 3 if j 6≡ 0 mod 3
3 if j ≡ 0 mod 3

, where 1 ≤ i ≤ 3. The

function f is a proper star coloring with no bicolored
path P4. It is clear that χs(Pn)= 3, thus, χs(Pm⊗Pn)≥ 3.
Hence, χs(Pm⊗Pn) = 3.

Case 2 When 4≤ m≤ 7
For 1≤ j ≤ n, the function f takes the values,

• f (u4i−3v j)=

{
j mod 3 if j 6≡ 0 mod 3
3 if j ≡ 0 mod 3

, where

1≤ i≤ m+3
4

• f (u4i−2v j) = 4, 1≤ i≤ m+2
4
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• f (u4i−1v j)=

{
j+2 mod 3 if j+2 6≡ 0 mod 3
3 if j+2≡ 0 mod 3

,

where 1≤ i≤ m−1
4

• f (u4iv j)=

{
j+2 mod 3 if j+2 6≡ 0 mod 3
3 if j+2≡ 0 mod 3

,

where 1≤ i≤ m
4

Clearly, f is a proper star coloring. Suppose, that
χs(Pm⊗Pn) = 3, then there exists bicolored path P4
or cycle C4. Thus, no coloring can be used with 3
colors. Hence, χs(Pm⊗Pn) = 4.

Case 3 When m≥ 8
The function f takes the values,

• f (u4i−3v j)=

{
j mod 3 if j 6≡ 0 mod 3
3 if j ≡ 0 mod 3

, where

1≤ i≤ m+3
4 and 1≤ j ≤ n

• f (u4i−2v4 j−3) = 4, where1≤ i≤ m+2
4 and

1≤ j ≤ n+3
4

• f (u4i−2v4 j−2) = 4, 1≤ i≤ m+2
4 and 1≤ j ≤ n+2

4

• f (u4i−2v4 j−1) = 5, 1≤ i≤ m+2
4 and 1≤ j ≤ n+1

4

• f (u4i−2v4 j) = 5, 1≤ i≤ m+2
4 and 1≤ j ≤ n

4

• f (u4i−1v j)=

{
j+2 mod 3 if j+2 6≡ 0 mod 3
3 if j+2≡ 0 mod 3

,

1≤ i≤ m−1
4 and 1≤ j ≤ n.

• f (u4iv j)=

{
j+2 mod 3 if j+2 6≡ 0 mod 3
3 if j+2≡ 0 mod 3

,

1≤ i≤ m
4 and 1≤ j ≤ n.

Clearly, f is a proper star coloring. Suppose, that
χs(Pm⊗Pn) = 4, then there exists bicolored path P4 or
cycle C4. Thus, no coloring can be used with 4 colors.
Hence, χs(Pm⊗Pn) = 5.

4. Conclusion
In this paper, some results regarding star chromatic num-

ber of tensor product of complete graphs and paths have been
discussed. In future this can be extended to tensor product of
some more special graphs.

References
[1] Albertson, Michael O, Chappell, Glenn G, Kierstead, Hal
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