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rc-operator on topological spaces
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Abstract
In this paper a new operator called rc-operator on topological spaces is introduced. Conditions for the operator to
be an expansive,shrinking and invariant operator is determined. It is also shown that regular closed sets are fixed
points of this operator.
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1. Introduction
M.H. Stone introduced the concept of regular open set[4]

in 1937. R.C.Jain[1] in 1980, worked on regularly open sets in
Topology on his thesis. In this paper an attempt is done to find
an operator for which complement of regular open set called
regular closed set is a fixed point. In section 2 , preliminary
ideas are given. In section 3, rc-operator is defined. Section 4
, discusses about properties of rc-operator and finds its fixed
points.

2. Preliminary Ideas

Let (X , τ) be a topological space. (X , τ) is abbreviated as X
. For a set A, A denotes the closure of A and A◦ denotes its
interior.

2.1 Definition[4]

A subset A of X is

(i.) regular open, if A = A◦.

(ii.) regular closed, if A = A◦.

2.2 Properties of regular closed sets
(i.) Every regular closed set is closed.

(ii.) If A and B are regular closed sets, then A∪B is regular
closed.

(iii.) If A and B are regular closed sets, then A∩B need not
be regular closed.

3. rc-operator

Definition 3.1. Let (X , τ) be a topological space.The opera-
tor rc defined on P(X) by rc(A) = A◦ is known as rc-operator.

Example 3.2. Let X = {a,b,c},τ = {X ,φ ,{a},{b},{a,b}}.
Then rc({a}) = {a,c},rc({b}) = {b,c},rc({a,b}) = X,

rc({c}) = φ

rc({b,c}) = {b,c}

Example 3.3. Consider (R,τ), where R is the set of real num-
bers and τ is the usual topology. Then,

1. rc({(a,b)}) = [a,b] for any open interval (a,b) in R.

2. rc({[a,b]}) = [a,b] for any closed interval [a,b] in R.

3. rc({[a,b)}) = [a,b] = rc({(a,b]}) for any half open
intervals in R
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4. Properties of rc-operator
Theorem 4.1.

1. For any subset A of X, A◦ ⊂ rc(A).

2. If A is an open set, then rc is an expansive operator. That
is A⊂ rc(A) for any open set A.

3. For any subset A of X, rc(A)⊆ A.

4. If A is a closed set, then rc is a shrinking operator. That
is rc(A)⊆ A, for any closed set A.

5. The operator rc is Idempotent. That is rc(rc(A)) = rc(A)

Proof. 1. A◦ ⊂ A◦ by definition of Closure of a set.

=⇒ A◦ ⊂ rc(A)

2. A◦ ⊂ rc(A) ........................ (by (1)).

A open =⇒ A◦ = A.

Hence, A⊂ rc(A).

3. A◦ ⊆ A, by definition of Interior .

=⇒ A◦ ⊆ A.

=⇒ rc(A)⊆ A

4. rc(A)⊆ A ........................... (by (3)).

A closed =⇒ A = A

Hence, rc(A)⊆ A.

5. rc(rc(A)) = A◦◦

=⇒ rc(rc(A)) = A◦

=⇒ rc(rc(A)) = rc(A)

Theorem 4.2. 1. For any subset A of X, rc(A◦) = rc(A).

2. If A⊆ B , then rc(A)⊆ rc(B) , where A,B⊂ X.

3. rc(A∪B)⊇ rc(A)∪ rc(B),where A,B⊂ X

4. rc(A∩B)⊆ rc(A)∩ rc(B),where A,B⊂ X

Proof.

1. rc(A◦) = A◦◦

=⇒ rc(A◦) = A◦

=⇒ rc(A◦) = rc(A)

2. A⊆ B =⇒ A◦ ⊆ B◦

=⇒ A◦ ⊆ B◦

=⇒ rc(A)⊆ rc(B)

3. A⊆ A∪B =⇒ rc(A)⊆ rc(A∪B)

B⊆ A∪B =⇒ rc(B)⊆ rc(A∪B)

=⇒ rc(A∪B)⊇ rc(A)∪ rc(B)

4. A∩B⊆ A and A∩B⊆ B.

Then (2) =⇒ rc(A∩B)⊆ rc(A), rc(A∩B)⊆ rc(B)

=⇒ rc(A∩B)⊆ rc(A)∩ rc(B)

Theorem 4.3. 1. Regular closed sets are fixed points of
rc-operator. That is, rc(A) = A.

2. φ and X are fixed points rc-operator. That is, rc(φ) = φ ,
rc(X) = X.

Proof. 1. If A is a regular closed set A◦ = A.

=⇒ rc(A) = A.

2. Trivial.

Theorem 4.4. 1. If A and B are non empty regular closed
sets, then rc(A∪B) = A∪B.

2. If A and B are non empty regular closed sets, then rc(A∩
B) 6= A∩B.

Proof. 1. Union of regular closed sets is regular closed.
So rc(A∪B) = A∪B.

2. Intersection of regular closed sets need not be regular
closed.

Hence rc(A∩B) 6= A∩B.

Example 4.5. Let X = {a,b,c},τ = {X ,φ ,{a},{b},
{a,b}}.
A = {b,c} and B = {a,c} are regular closed sets.

A∩B = {c}
rc(A∩B) = rc({c}) = φ

rc(A) = rc({b,c}) = {b,c} rc(B) = rc({a,c}) = {a,c}
rc(A)∩ rcB) = {c}
Hence rc(A∩B) 6= rc(A)∩ rc(B).
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