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Abstract
In this paper we identified a collection of unitary operators which maps Gabor frames in L2(R) to Gabor frames
in l2(Z). This is very important in construction of Gabor frames in l2(Z) from Gabor frames in L2(R) other than
which obtained from Gabor frames in L2(R) through sampling.
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1. Introduction
Hilbert spaces and the accompanying notion of bases con-

taining orthonormal vectors are of primary significance in
signal processing, communications and information theory.
Although, linear independency and orthonormality of the vec-
tors in the basis urge limitations that sometimes make it de-
manding to have the basis elements assure additional useful
properties. To overcome such limitations we use the theory
of signal decompositions that is smooth enough to assist de-
compositions into perhaps, nonorthogonal and unnecessary
signal sets. Here comes the concept of frames which gives
basis like, but generally non unique representations of vectors
in a Hilbert space.

Frame theory and related results for frames and bases
has flourished quickly over the last few decades, specifically
in the area of Gabor and wavelet systems. This period has
proved that, very often, it is favourable to deal with frames

in place of bases. In his paper Theory of Communication[8]
by D.Gabor in the year 1946, initiated and developed a funda-
mental viewpoint to signal decompositions in label of simple
signals. While studying nonharmonic Fourier series, Duffin
and Schaeffer [6] introduced the concept of frames in the early
fifties. In 1986, Grossmann [5] noticed and developed the
relationship of frames to wavelets. For numerical calculations,
it is easy to think of frames (or bases) with a simple layout.
This is the inspiration behind Gabor frames and wavelets.

Fundamental Fourier analysis techniques were used to
study more about Gabor and wavelet systems. However, in
modern years additional abstract utensils like Group represen-
tations, algebra of operators and abstract harmonic analysis
etc have been instituted. Various generalizations of frames
like, frame of sub-spaces [1],[2], pseudo-frames [10], oblique
frames [4] are there in literature. In which Gabor frames or
Weyl-Heisenberg frames bagged a key position.

Frame operator corresponding to a given frame is a prim-
itive instrument in frame theory (both in theoretical and ap-
plication point of view). To construct a frame corresponding
to a given positive and invertible operator have considerable
practical significance. That is, it would be highly profitable to
construct frames depending on the needs. Gabor frame opera-
tors have acquired remarkable recognition in the literature.

It is interesting to consider frames in the sequence space
l2(Z) with a Gabor like nature without mentioning to frames
in the function space L2(R). For these frames in the sequence
space results are very similar to the Gabor theory in L2(R).
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After a brief introduction, section 2 of this paper is just re-
calling of basics in general frame theory and basics of Gabor
frames in the spaces L2(R) and l2(Z). In Section 3 we define
a linear map from L2(R) to l2(Z) in a peculiar manner and its
properties are discussed.

Through out this manuscript, we will denote a separable
Hilbert space with H having inner product 〈·, ·〉. We invite
the readers to [3], [9] for more about frame theory and the
proofs of the statements in this article.

2. Preliminaries
Let {ωk}∞

k=1 be a countable set of vectors in a Hilbert
space H . If this family {ωk}∞

k=1 satisfies the inequality

L‖y‖2 ≤
∞

∑
k=1
|〈y,ωk〉|2 ≤M‖y‖2 (2.1)

for all y∈H with L, M ∈R and 0 < L≤M < ∞, then we say
that {ωk}∞

k=1 is a frame with lower bound L and upper bound
M. If the above said sequence satisfies at least upper bound
condition given in the inequality (2.1) then it is called a Bessel
sequence and moreover, it is said to be a frame sequence,
if it is a frame for span{ωk}∞

k=1. A frame is said to be a
tight frame if its frame bounds coincides; a tight frame with
L = M = 1 is called a normalized tight frame. A frame is
called an exact frame, if its frame sequence is minimal.

Following are some useful results which easily reflects
from the definition of a frame.

1. For a frame {ωk}∞
k=1 in H with upper frame bound

M, ‖ωk‖ ≤
√

M for all k. Especially, ‖ωk‖ ≤ 1 when
ωk}∞

k=1 is a normalized tight frame.

2. If {ωk}∞
k=1 is a frame and if A is bounded and invertible

operator on H , then {Aωk}∞
k=1 is a frame for H . If

{ωk}∞
k=1 is exact so is {Aωk}∞

k=1. If A is unitary, then
{Aωk}∞

k=1 has the same frame bounds as {ωk}∞
k=1.

3. If H is a Hilbert space and {ωk}∞
k=1 is a frame in H ,

then {ωk}∞
k=1 spans a subspace which is dense in H .

4. If H has a frame, then it is separable.

5. If {ωk}∞
k=1 is a frame for a Hilbert space H , then

{ωk}∞
k=1 is complete in H .

Now we give few simple examples of frames in a separa-
ble Hilbert space H . Let us consider an orthonormal basis
{vk}∞

k=1 in H .

• By repeating each element in {vk}∞
k=1 twice we obtain

{ωk}∞
k=1 = {v1,v1,v2,v2, ...}, which is a tight frame

with frame bound L = 2. If only v1 is repeated twice we
obtain {ωk}∞

k=1 = {v1,v1,v2,v3, ...}, which is a frame
with bounds L = 1, M = 2

• Let {ωk}∞
k=1 = {v1,

v2√
2
,

v2√
2
,

v3√
3
,

v3√
3
,

v3√
3
, ....}, that

is {ωk}∞
k=1 is the sequence where each vector

vk√
k

is

duplicated k times. Then for each y ∈H , we have
∞

∑
k=1
|〈y,ωk〉|2 =

∞

∑
k=1

k|〈y, vk√
k
〉|2 = ‖y‖2

So {ωk}∞
k=1 is a normalised tight frame for H .

Since a frame {ωk}∞
k=1 is a Bessel sequence, the op-

erator T : l2(N)→ H defined by T{ck}∞
k=1 =

∞

∑
k=1

ckωk is

bounded and T is known as the synthesis operator or pre-
frame operator. The adjoint operator of T is the operator
T ∗ : H → l2(N) given by, T ∗y = {〈y,ωk〉}∞

k=1 and is said to
be the analysis operator. By composing T and T ∗ we obtain
the frame operator

S : H →H , Sy = T T ∗y =
∞

∑
k=1
〈y,ωk〉ωk

The convergence of the series defining S is guaranteed for all
y ∈H from the fact that {ωk}∞

k=1 is a Bessel sequence in H .
It is interesting to note that, scalar multiple of the identity
operator will be the frame operator of a tight frame and iden-
tity operator is the frame operator for a normalized tight frame.

Let {ωk}∞
k=1 be a frame in a Hilbert space H with frame

operator S and frame bounds L, M. Then the following hold.

1. S is bounded, invertible, self-adjoint and positive. In
fact LI ≤ S≤MI.

2. {S−1ωk}∞
k=1 is a frame with frame bounds M−1, L−1;

if L and M are the optimal frame bounds for {ωk}∞
k=1,

then the bounds M−1,L−1 are the optimal frame bounds
for {S−1ωk}∞

k=1.

3. The frame operator for {S−1ωk}∞
k=1 is S−1, furthermore,

M−1I ≤ S−1 ≤ L−1I

4. {S−1/2ωk}∞
k=1 is a normalized tight frame.

The frame {S−1ωk}∞
k=1 is called the canonical dual frame

of {ωk}∞
k=1 because it plays the same role in the frame theory

as the dual of a basis.

Next we state a prime result in frame theory namely the
frame decomposition. It shows that if {ωk}∞

k=1 is a frame
for H , then every element in H has a representation as a
superposition of the frame elements. Further, theorem says
that the sequence {〈y,S−1ωk〉}∞

k=1 contains all information
about each y ∈H . The constants 〈y,S−1ωk〉 are called the
frame coefficients.

Theorem 2.1. Let {ωk}∞
k=1 be a frame in a Hilbert space H

with a frame operator S. Then for all y ∈H ,

y =
∞

∑
k=1
〈y,S−1

ωk〉ωk and y =
∞

∑
k=1
〈y,ωk〉S−1

ωk.

Convergence of both series ensured for all y ∈H .
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Among several classes of frames in frame theory and
related topics, Gabor frames or Weyl-Heisenberg frames have
attained remarkable consideration as they are generated by a
single element. We now come out with some basics of Gabor
frame analysis.

2.1 Gabor frames in L2(R)
Here we consider those frames in L2(R) which are generated
from a single vector from L2(R) through translations and mod-
ulations. Such type of frames are called Weyl–Heisenberg
frames (or Gabor frames). For positive real numbers a,b,
and for an element g ∈ L2(R), Emb and Tna are, respectively,
the modulation operators and translation operators given by
Emb f (x) = e2πimbx f (x), x ∈ R and Tna f (x) = f (x−na), x ∈
R. It is clear that both these maps are unitary maps acting on
L2(R). The main concern of Gabor Analysis is the represen-
tation of signals (vectors) as an infinite series whose terms
are the translated and modulated version of a single vector in
the space. It is interesting to note that, if {EmbTnag}m,n∈Z is a
Gabor frame in L2(R), then
f = ∑

m,n∈Z
〈 f ,EmbTnah〉EmbTnag, ∀ f ∈ L2(R).

for some h ∈ L2(R). The elegant choice of h is S−1g, where
S is the frame operator. The function h = S−1g is called the
canonical dual generator.

The Gabor system {EmbTnag}m,n∈Z is actually involves
only the time frequency shifts of a single vector g along the
lattice {(na,mb)}m,n∈Z. This type of frames are called regu-
lar Gabor frames. Given a Gabor frame {EmbTnag}m,n∈Z, the
number (ab)−1 is called the redundancy. One of the funda-
mental result says that the product ab decides whether it is
possible for {EmbTnag}m,n∈Z to be a frame for L2(R) for some
choice of g ∈ L2(R). Note that ,if (g,a,b) is a Gabor frame
with frame operator S, then ab = ‖S−1/2g‖2

2.
We can observe that not all frame operators on L2(R) can

be Gabor frame operators [9]. As we are aware, every positive
and invertible bounded linear operators on a separable Hilbert
space H is a frame operator of some frame in H . However,
this characterization is inadequate for Gabor frame operators.
That is a frame operator on L2(R) need not be a Gabor frame
operator. Following proposition guarantees the existence of a
normalized tight frame and then we record a characterization
of Gabor frame operators given in [7].

Proposition 2.2. Consider two positive constants a,b, the
translation and modulation parameters, satisfying the con-
dition 0≤ ab≤ 1, we can find an element g ∈ L2(R) such a
way that (g,a,b) is a normalized tight Gabor frame which,
therefore has the identity operator as its frame operator.

Theorem 2.3. A bounded linear operator on L2(R) is the
frame operator of some Gabor frame if and only if it is positive,
invertible and commutes with a translation operator Ta and
a modulation operator Eb, where a and b are positive real
numbers with ab≤ 1.

We now record some basics of Gabor frame analysis in
the sequence space l2(Z).

All computational calculation with elements in L2(R) will
require a discrete structure, where all estimations are carried
out with (finite) sequences in l2(Z). Hence it is necessary to
know that special set-up on a Gabor frame {EmbTnag : m,n ∈
Z} in L2(R) in fact imply that we can create a frame for l2(Z)
with Gabor like nature.

For each b ∈ R, the modulation operator Êb : l2(Z) −→
l2(Z) is defined by, Êbg( j) = e2πib jg( j),
for all g = (....,g(−1),g(0),g(1), .....) ∈ l2(Z), where the jth

coordinate of g is denoted by g( j). Similarly for each n ∈ Z
the translation operator T̂n : l2(Z) −→ l2(Z) is defined by
T̂ng( j) = g( j−n)
for all g = (....,g(−1),g(0),g(1), .....) ∈ l2(Z).

The definition of Êb is valid for all b ∈ R, still we are
interested in modulations of the form Êm/M , where M ∈ N
is firmed and m ∈ Z. The scalar 1/M represents the mod-
ulation parameter for Gabor systems in L2(R). But these
two settings are entirely different. In L2(R), modulation
operator with distinct parameters are automatically distinct,
but this will not be true in sequence space. Actually, with
the above definition Ê m

M
= Ê m

M +k, for all k ∈ Z. There-
fore {Êm/Mg :}m∈Z can’t be a Bessel sequence in l2(Z) un-
less g = 0. Because of this we will consider modulations
of the form Êm/M with m = 0,1,2, ....M − 1. Gabor sys-
tem in the sequence space l2(Z), generated by an element
g ∈ l2(Z) with the modulation parameter 1

M and translation
parameter N,(M,N ∈ N) is now defined as the family of se-
quences {Êm/MT̂nNg : m = 0,1, ....M− 1,n ∈ Z}. Precisely,
Êm/MT̂nNg is the sequence in l2(Z) whose jth coordinate is
Êm/MT̂nNg( j) = e2πi m

M ( j−nN)g( j−nN). For more detailed re-
sults about frame theory in the spaces L2(R) and l2(Z) one
can go through [3].

3. Construction of Gabor frames in l2(Z)
from Gabor frames in L2(R)

From Proposition 2.2 we can find a vector g ∈ L2(R) such
that the collection {E m

M
TnNg : m,n ∈ Z} is a Gabor frame in

L2(R) for any two natural numbers M, N with N
M ≤ 1. In

this section we focused on the construction of a Gabor frame
{Ê m

M
T̂nNg : m = 0,1,2...M−1,n ∈ Z} in l2(Z) from a Gabor

frame {E m
M

TnNg : m,n ∈ Z} in L2(R) for any two positive
integers M, N with N

M ≤ 1.
The following lemma and theorem which is available in

[3] is very useful in our discussion and it guarantees the ex-
istence of pseudo inverse of a bounded linear operator on a
Hilbert space with closed range.

Lemma 3.1. Let U be a bounded linear operator from a
Hilbert space H to a Hilbert space K with its range set RU
is closed. Then there exists a bounded operator U† from K
to H such that UU† f = f for all f ∈ RU . Moreover UU† is
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the orthogonal projection of H onto RU .

Theorem 3.2. Let {ωk}∞
k=1 be a frame in K with bounds L

and M and let U : K −→H a bounded linear map with non
trivial closed range. Then {Uωk}∞

k=1 is a frame sequence with
bounds L ‖U† ‖−2 and M ‖U ‖2.

Here we state a remark, which directly follows from the
theorem.

Remark 3.3. Let {ωk}∞
k=1 be a frame in K with bounds

L and M and U : K −→ H a bounded linear surjective
operator . Then {Uωk}∞

k=1 is a frame in H with frame bounds
L ‖U† ‖−2 and M ‖U ‖2.

Theorem 3.4. Let M, N are natural numbers with N
M ≤ 1.

Suppose that the collection {E m
M

TnNg : m, n ∈ Z} is a Gabor
frame in L2(R) for some g ∈ L2(R). Then for any surjective
bounded linear operator U : L2(R)→ l2(Z) with the prop-
erty that UE m

M
TnN = Ê m

M
T̂nNU for m, n ∈ Z, the sequence

{Ê m
M

T̂nNUg : m = 0,1,2.....,M−1,n ∈ Z} is a Gabor frame
in l2(Z).

Proof. Let g ∈ L2(R) and M, N are two natural numbers such
that N

M ≤ 1, assume that the collection {E m
M

TnNg : m,n ∈ Z}
is a Gabor frame in L2(R) and U be a surjective bounded
linear operator from L2(R) to l2(Z) with the property that
UE m

M
TnN = Ê m

M
T̂nNU for m, n ∈ Z. Then by Remark 3.3

{U(E m
M

TnNg) : m,n ∈ Z} is a frame in l2(Z). Since U sat-
isfies UE m

M
TnN = Ê m

M
T̂nNU for m,n ∈ Z, and Ê m

M +kT̂nNg =

Ê m
M

T̂nNg for any k ∈ Z, we see that {UE m
M

TnNg : m, n ∈ Z}=
{Ê m

M
T̂nNUg : m, n∈Z}= {Ê m

M
T̂nNUg : m= 0, 1, 2, . . . , M−

1, n∈Z} and hence the frame {Ê m
M

T̂nNUg : m= 0, 1, 2, . . . , M−
1,n ∈ Z} is a Gabor frame in l2(Z).

It is worthwhile to know that, what kind of restrictions
on a Gabor frame {E m

M
TnNg : m,n ∈ Z} really imply that we

have a frame for l2(Z) having a Gabor like nature. The ap-
propriate conditions were discovered by Janssen [11]. He
proved that there is a canonical way to get discrete Gabor
frames via Gabor frames for function space L2(R) through
sampling. A detailed discussion of these theories are avail-
able in [3]. We consider a Gabor system for L2(R) of the
form {E m

M
TnNg : m,n ∈ Z}, where g ∈ L2(R) is the window

function or generating function and M, N ∈ N. In searching
a Gabor like system in l2(Z) the natural question arising is,
“which type of linear transformations maps a Gabor frame in
L2(R) to a Gabor like frame in l2(Z)”.

Let us consider the characteristic function on the interval
[0,1],that is, h = χ[0,1]. Then the collection {EkTjh : k, j ∈ Z}
is an orthonormal basis for L2(R) [3].
For g ∈ L2(R) we can express, g = ∑

k, j∈Z
αk jEkTjh, where

αk j = 〈g,EkTjh〉.

To find an example of U : L2(R)→ l2(Z) satisfying the
condition in the theorem 3.4, consider the orthonormal basis
{EkTjh : k, j ∈ Z} for L2(R)

For each g∈L2(R), we can write, g= ∑
l,k∈Z
〈g,ElTkh〉ElTkh

Take the coefficients as αlk = 〈g,ElTkh〉, so that g =

∑
l,k∈Z

αlkElTkh

Let us define U : L2(R)→ l2(Z) by, U(ElTkχ[0,1]) = Êl T̂ke1

where {et}t∈Z is the standard orthonormal basis for l2(Z). It
is clear that, {Êl T̂ke1 : l,k ∈ Z} is a frame in l2(Z). We now
extend U linearly to L2(R) by
U( ∑

r,s∈Z
βrsErTsχ[0,1]) = ∑

r,s∈Z
βrsÊrT̂se1,

for any element f = ∑
r,s∈Z

βrsErTsχ[0,1] in L2(R).

Therefore, U(g) = ∑
j,k∈Z

α jkÊ jT̂ke1

hence, Ê m
M

T̂nNU(g) = Ê m
M

T̂nN( ∑
j,k∈Z

α jkÊ jT̂ke1)

note that U(g) = 0 implies, ∑
j∈Z

α jkÊ jek = 0 for all k

⇒ ∑
j∈Z

α jke2πi jk = 0 for all k

⇒ ∑
j∈Z

α jk = 0 for all k

Let x ∈ [0,1], then g(x) = ∑
l,k∈Z

αlkElTkχ[0,1](x)

when x = 0 or x = 1, g(x) = ∑
l,0∈Z

αl0e2πi jx

= ∑
l,0∈Z

αl0 = 0

Hence g(0) = g(1) = 0
Thus g = 0, on all integers and hence g is not injective.
Let f ∈ l2(Z), then f = ∑

r,s∈Z
βrsÊrT̂se1

Then define h = ∑
r,s∈Z

βrsÊrT̂sχ[0,1]

so that h ∈ L2(R) and U(h) = f .
Thus if we define a linear operator U : L2(R)→ l2(Z) by,
U(ElTkχ[0,1]) = Êl T̂ke1 for all k, l ∈ Z , U maps Gabor frame
in L2(R) to Gabor frame in l2(Z).

Note that U(E m
M

TnNg) = Ê m
M

U(TnNg)

= Ê m
M ∑

j,k∈Z
α jkÊ jT̂nN+ke1

= Ê m
M

T̂nN( ∑
j,k∈Z

α jkÊ jT̂ke1)

= Ê m
M

T̂nNU(g), and this is
generated by U(g).

Definition 3.5. Let g ∈ L2(R), then for each m,n ∈ Z and for
each pair of positive integers M and N, there is a sequence of
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complex numbers {ηr,s} such that E m
M

TnNg = ∑
r,s∈Z

ηr,sErTsh.

This sequence is called window coefficient sequence of g with
respect to the quadruple (m,n,M,N) and each term of this
sequence are called window coefficients.

Proposition 3.6. Let {ηr,s} be the window coefficient se-
quence of g∈ L2(R) with respect to the quadruple (m,n,M,N)
where m,n ∈ Z and M,N are positive integers, then

ηr,s = ∑
k∈Z

αk, j−nNe2πi m
M s

βr−k,0

where αk j = 〈g,EkTjχ[0,1]〉 and βrs = 〈E m
M

χ[0,1],ErTsχ[0,1]〉

Proof. Let g ∈ L2(R). Then g is of the form,
g= ∑

j,k∈Z
〈g,EkTjχ[0,1]〉EkTjχ[0,1] and βrs = 〈E m

M
χ[0,1],ErTsχ[0,1]〉.

For each m,n ∈ Z, the elements E m
M

TnNg in the Gabor frame
{E m

M
TnNg : m, n ∈ Z} for L2(R) takes the form

E m
M

TnNg = E m
M

TnN( ∑
j,k∈Z

α jkEkTjh)

= ∑
j,k∈Z

α jkE m
M

TnN(EkTj)h

= ∑
j,k∈Z

α jke2πi m
M nNTnNEkE m

M
Tjh

= ∑
j,k∈Z

α jke2πi m
M nNTnNEke2πi m

M jTjE m
M

h

= ∑
j,k∈Z

α jke2πi m
M (nN+ j)e2πinNkEkTnN+ j(E m

M
h)

= ∑
j,k∈Z

α jke2πi m
M (nN+ j)EkTnN+ j(E m

M
h)

Now let , E m
M

h = ∑
k, j∈Z

βk jEkTjh

where, βk j = 〈E m
M

h,EkTjh〉

=
∫

E m
M

hEkTjhdx

=
∫

e2πi m
M x

χ[0,1](x)e
−2πik(x− j)

χ[0,1](x− j)dx

=

{ ∫
e2πi m

M xe−2πikxdx if j = 0

0 if j 6= 0

=

{ ∫
e2πi( m

M−k)xdx if j = 0

0 if j 6= 0

=



1
( m

M − k)2πi
if j = 0,m ∈MZ

M
(m− kM)2πi

[e2πi( m
M−k)−1] if m 6= 0, j = 0

0 if j 6= 0
1 if m = 0, k = 0

therefore,
E m

M
TnNg = ∑k, j∈Z αk, je2πi m

M (nN+ j)EkTnN+ j(∑p∈Z βp,0Eph)

= ∑
k, j∈Z

αk, je2πi m
M (nN+ j)(∑

p∈Z
βp,0Ek+pTnN+ jh)

= ∑
k, j∈Z

(∑
p∈Z

αk, je2πi m
M (nN+ j)

βp,0Ek+pTnN+ jh)

taking , r = k+ p, s = nN + j

= ∑
r,s∈Z

(∑
k∈Z

αk, j−nNe2πi m
M s

βr−k,0)ErTsh

= ∑
r,s∈Z

ηr,sErTsh

where, ηr,s = ∑
k∈Z

αk, j−nNe2πi m
M s

βr−k,0

The following theorem gives a sufficient condition for a
unitary operator U from L2(R) to l2(Z) which maps a Gabor
frame (g, 1

M , N) in L2(R) to a Gabor frame (Ug, 1
M , N) in

l2(Z).

Theorem 3.7. Let g ∈ L2(R) and N,M are positive integers
such that N

M ≤ 1, {E m
M

TnNg : m,n ∈ Z} is a Gabor frame in
L2(R). Assume that if the window coefficient sequence of
g with respect to the quadruple (m,n,M,N) given by {ηr,s}
satisfies ηr,s = αr,s−nNe2πi m

M s for all r,s ∈ Z where αk j =
〈g,EkTjh〉, h = χ[0,1], then there is a unitary operator U :
L2(R)→ l2(Z) so that {Ê m

M
T̂nNUg : m = 0,1,2...M− 1,n ∈

Z} is a Gabor frame in l2(Z).

Proof. Let us define U : L2(R)→ l2(Z) by, U(ElTkχ[0,1]) =

Êl T̂ke1 where {e j} j∈Z is the standard orthonormal basis for
l2(Z).
g = ∑

j,k∈Z
α jkEkTjh, where h = χ[0,1]

U(g) = ∑
k, j∈Z

αk, jÊkT̂je1

T̂nNU(g) = ∑
k, j∈Z

αk, jT̂nN+ je1

Ê m
M

T̂nNU(g) = ∑
k, j∈Z

αk, jÊ m
M

T̂nN+ je1

= ∑
k, j∈Z

αk, je2πi m
M (nN+ j)T̂nN+ je1

= ∑
r,s∈Z

αr,s−nNe2πi m
M sT̂se1 (1.1)

Now by definition of the window coefficient sequence {ηr,s},
E m

M
TnNg = ∑

r,s∈Z
ηr,sErTsh.

Therefore, U(E m
M

TnNg) = U( ∑
r,s∈Z

ηr,sErTsh)

= ∑
r,s∈Z

ηr,sT̂se1 (1.2)
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Thus from equations (1.1) and (1.2) , UE m
M

TnN = Ê m
M

T̂nNU

satisfies only when ηr,s = αr,s−nNe2πi m
M s.

Hence by Theorem 3.4 {Ê m
M

T̂nNUg : m = 0,1,2...M−
1,n ∈ Z} is a Gabor frame in l2(Z).
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