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1. Introduction
Quantum calculus is the modern name for the investigation

of calculus without limits.The quantum calculus or q-calculus
began with FH Jackson[14],[15] in the early twentieth century,
but this kind of calculus had already been worked out by Euler
and Jacobi. Recently it arose interest due to high demand
of mathematics that models quantum computing. q-calculus
appeared as a connection between mathematics and physics. It
has a lot of applications in different mathematical areas such
as number theory, combinatorics, orthogonal polynomials,
basic hyper-geometric functions and other sciences quantum
theory, mechanics and the theory of relativity.

There are many of the fundamental aspects of quantum
calculus. It has been shown that quantum calculus is a subfield
of the more general mathematical field of time scales calculus.
Many mathematicians have done studies in q-calculus analysis
in [5],[8],[9],[10],[16],[17],[18],[19].

Recently, N. Alp[2] proved the correct q-Hermite Hadamard
inequalities and M. Kunt[4] obtained (p,q)-Hermite–Hadamard
inequalities.

In 2017, Alp and Sarikaya [3] gave a new definition of
q-integral which is showed q-integral.

The aim of this paper present some well-known integral
inequalities on q-integral. In second section we give notations
and preliminaries for q-analogue. In third section we obtain
some auxiliary results. In fourth section we establish q-Young,
q-Hölder and q-Minkowski integral inequalities and in finally
section we obtain q-Ostrowski type integral inequalities on
q-integral. Let remember following integral inequalities on
classical analysis.

In 1938, Ostrowski [7] proved the following integral in-
equality:

Let f : I ⊆ R→ R, be a differentiable mapping in
◦
I the

interior of I and a,b ∈
◦
I with a < b. If | f ′(x)| ≤ M for all

x ∈ [a,b], then we have the inequality

∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤ (b−a)M

[
1
4
+

(
x− a+b

2

)2

(b−a)2

]
(1.1)

for ∀x ∈ [a,b].The constant 1
4 is the best possible in the sense

that it cannot be replaced by a smaller constant.
For a > 0, b > 0 and 1

p +
1
r = 1 with p > 1 the following

inequality is well-known Young inequality[13]:

a.b≤ ap

p
+

br

r
.

For 1
p +

1
r = 1 with p > 1 the following inequality is well-
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known Hölder inequality[6]:

b∫
a

| f (t)g(t)|dt ≤ ‖ f‖p ‖g‖r .

For p> 1 the following inequality is well-known Minkowski
inequality[11]:

‖ f +g‖p ≤ ‖ f‖p +‖g‖p .

2. Notations and Preliminaries
In this section, first we give definition and notations of

q-analogue with q-derivatives then definition and properties
of q-integral. Although some different notations were used in
various articles, they have the same meaning. We put together
them below:

For 0 < q < 1 here and further we use the following
notations(see[1])

[n]q =
1−qn

1−q
= 1+q+q2 + ...+qn−1. (2.1)

The definition of q-binomial coefficients:[
n
i

]
q
=

[n]q!

[n− i]q! [i]q!
=

[
n

n− i

]
q
. (2.2)

Also the q-binomial multiplication is as follows:

(x−a)n
q (2.3)

=
n−1
Π

i=0

(
x−qia

)
= (x−a)(x−qa)

(
x−q2a

)
...
(
x−qn−1a

)
, if n ∈ Z+

and by using (2.2) and (2.3) the following formula is called
Gauss’s binomial formula:

(x−a)n
q =

n

∑
i=0

(−1)i
[

n
i

]
q

q
i(i−1)

2 xn−iai. (2.4)

On the other hand, the following notations will be used
throughout the study:

(a : q)0 = 1;

(1−a)n
q = (a : q)n =

n
Π

i=0

(
1−qia

)
;

(1−a)∞

q = (a : q)
∞
=

∞

Π
i=0

(
1−qia

)
(2.5)

and

(1−a)n
q =

(1−a)∞

q

(1−qna)∞

q
=

(a : q)
∞

(qna : q)
∞

, if n ∈ C. (2.6)

Notice that, under our assumptions on q, the infinite product
(2.5) is convergent. Moreover, the definitions (2.3) and (2.6)
are consistent.

Definition 2.1. In [15], For f has Dn
q f (a) , Jackson intro-

duced the following q-counterpart of Taylor series:

f (x) =
∞

∑
n=0

(1−q)n

(q;q)n
Dn

q f (a)(x−a)n
q =

∞

∑
n=0

Dn
q f (a)(x−a)n

q

[n]q!

(2.7)

where Dq is the q-difference operator.

Let give definition q-derivates. Let J := [a,b]⊂ R, J◦ :=
(a,b) be interval and 0 < q < 1 be a constant. The definition
of q-derivative of a function f : J → R at a point x ∈ J on
[a,b] as follows:

Definition 2.2. [12]Assume f : J→ R is a continuous func-
tion and let x ∈ J. Then the expression

aDq f (x) (2.8)

=
f (x)− f (qx+(1−q)a)

(1−q)(x−a)
, x 6= a,

aDq f (a) = lim
x→a

aDq f (x)

is called the q-derivative on J of function f at x.

We say that f is q -differentiable on J provided aDq f (x)
exists for all x ∈ J. Note that if a = 0 in (2.8), then 0Dq f =
Dq f , where Dq is the well-known q-derivative of the function
f (x) defined by

Dq f (x) =
f (x)− f (qx)
(1−q)x

.

For more details, see [1].

Lemma 2.3. [12] Let α ∈ R, then we have

aDq (x−a)α = [α]q (x−a)α−1 . (2.9)

The following definitions and theorems with respect to
q-integral were referred in [3]:

Definition 2.4. Let f : J → R is continuous function. For
0 < q < 1

b∫
a

f (s) adqs (2.10)

=
(1−q)(b−a)

2q

[
(1+q)

∞

∑
n=0

qn f (qnb+(1−qn)a)− f (b)

]

which second sense quantum integral definition that call q-
integral for x ∈ J.

Moreover, if c ∈ (a,x) then the definite q-integral on J is
defined by
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x∫
c

f (s) adqs (2.11)

=

x∫
a

f (s) adqs −
c∫

a

f (s) adqs

=
(1−q)(x−a)

2q

×

[
(1+q)

∞

∑
n=0

qn f (qnx+(1−qn)a)− f (x)

]

− (1−q)(c−a)
2q

×

[
(1+q)

∞

∑
n=0

qn f (qnc+(1−qn)a)− f (c)

]
.

The following theorem is the correction of the Theorem 1 in
[3]:

Theorem 2.5. Let f : J→ R be a continuous function. Then
we have

aDq

x∫
a

f (s) adqs =
f (x)+ f (qx+(1−q)a)

2
. (2.12)

Proof. From definition of q-integral, we have

x∫
a

f (s) adqs

=
(1−q)(x−a)

2q

×

[
(1+q)

∞

∑
n=0

qn f (qnx+(1−qn)a)− f (x)

]

and take q-derivative of above equality write that

aDq

x∫
a

f (s) adqs

= aDq

{
(1−q)(x−a)

2q

×

[
(1+q)

∞

∑
n=0

qn f (qnx+(1−qn)a)− f (x)

]}

=
1

(1−q)(x−a)

{
(1−q)(x−a)

2q

×

[
(1+q)

∞

∑
n=0

qn f (qnx+(1−qn)a)− f (x)

]

− (1−q)(x−a)q
2q

×

[
(1+q)

∞

∑
n=0

qn f
(
qn+1x+

(
1−qn+1)a

)
− f (qx+(1−q)a)]}

=
1
2q

[
(1+q)

(
∞

∑
n=0

qn f (qnx+(1−qn)a)

−
∞

∑
n=0

qn+1 f
(
qn+1x+

(
1−qn+1)a

))
+q f (qx+(1−q)a)− f (x)]

=
q f (x)+q f (qx+(1−q)a)

2q

=
f (x)+ f (qx+(1−q)a)

2
.

The proof is completed.

Theorem 2.6 (Change of Variables Property). Let f : J→ R
be a function and 0 < q < 1. Then we have

1∫
0

f (sb+(1− s)a) 0dqs =
1

b−a

b∫
a

f (t) adqt . (2.13)

Theorem 2.7. Let f : J→ R be a continuous function. Then,
for c ∈ (a,x) we have

x∫
c

aDq f (s) adqs (2.14)

=
q f (x)+ f (qx+(1−q)a)−q f (c)− f (qc+(1−q)a)

2q
.

Theorem 2.8. Assume f ,g : J→ R are continuous functions.
Then, for x ∈ J,

x∫
a

[ f (s)+g(s)] adqs =

x∫
a

f (s) adqs +

x∫
a

g(s) adqs .

(2.15)

Theorem 2.9. Assume f ,g : J→ R are continuous functions,
α ∈ R. Then, for x ∈ J,

x∫
a

(α f )(s) adqs = α

x∫
a

f (s) adqs . (2.16)
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Theorem 2.10. Assume f ,g : J→R are continuous functions.
Then, for x ∈ J

x∫
c

f (s) aDq g(s) adqs (2.17)

=
q f (s)g(s)+ f (qs+(1−q)a)g(qs+(1−q)a)

2q

∣∣∣∣x
c

−
x∫

c

g(qs+(1−q)a) aDq f (s) adqs .

Theorem 2.11. For α ∈ R\{−1} , the following formula
holds:

x∫
a

(s−a)α
adqs =

1+qα

2 [α +1]q
(x−a)α+1 . (2.18)

3. Auxiliary Results

In this section, we present some auxiliary results which
are used throughout this article.

Lemma 3.1. Let f : [a,b]→ R be a convex q-differentiable
function on (a,b) and 0 < q < 1. Then we have

1
b−a

 x∫
a

(t−a) aDq f (t) adqt (3.1)

+

b∫
x

(t−b) aDq f (t) adqt


=

1
2q

[q f (x)+ f (qx+(1−q)a)

−(1−q) f (qb+(1−q)a)]

− 1
b−a

b∫
a

f (qt +(1−q)a) adqt .

Proof. By using (2.17), then we have

x∫
a

(t−a) aDq f (t) adqt (3.2)

+

b∫
x

(t−b) aDq f (t) adqt

= q(t−a) f (t)+(qt+(1−q)a−a) f (qt+(1−q)a)
2q

∣∣∣x
a

−
x∫

a

f (qt +(1−q)a) aDq (t−a) adqt

+ q(t−b) f (t)+(qt+(1−q)a−b) f (qt+(1−q)a)
2q

∣∣∣b
x

−
b∫

x

f (qt +(1−q)a) aDq (t−b) adqt

= q(b−a) f (x)+(b−a) f (qx+(1−q)a)−(1−q)(b−a) f (qb+(1−q)a)
2q

−
b∫

a

f (qt +(1−q)a) adqt

=
b−a

2q
[q f (x)+ f (qx+(1−q)a)

−(1−q) f (qb+(1−q)a)]

−
b∫

a

f (qt +(1−q)a) adqt

divide by (b−a) equation (3.2) and the proof is completed.

Remark 3.2. In Lemma 3.1, by using change of variables
property, then we have

x∫
a

(t−a) aDq f (t) adqt (3.3)

+

b∫
x

(t−b) aDq f (t) adqt

= (x−a)2
1∫

0

t aDq f (xt +(1− t)a) 0dqt

+(b− x)2
1∫

0

(t−1) aDq f (bt +(1− t)x) 0dqt .

Remark 3.3. In Lemma 3.1 if we take q→ 1−, we recapture
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the following equation for convex function.

1
b−a

 x∫
a

(t−a) f ′(t)dt +
b∫

x

(t−b) f ′(t)dt


= f (x)− 1

b−a

b∫
a

f (t)dt.

Lemma 3.4. Let p > 1, and (a− t)p
q is q-binomial,then we

have

x∫
0

(a− t)p
q 0dqt (3.4)

=
1

2 [p+1]q

(
1+q−q

(
a− x

q

)p+1

q
− (a− x)p+1

q

)
.

Proof. By using q-binomial formula and (2.18) we obtain the
following result

x∫
0

(a− t)p
q adqt

=

x∫
0

p

∑
n=0

(−1)n q
n(n−1)

2

[
p
n

]
q

ap−ntn
0dqt

=
p

∑
n=0

(−1)n q
n(n−1)

2

[
p
n

]
q

ap−n
x∫

0

tn
0dqt

=
p

∑
n=0

(−1)n q
n(n−1)

2

[
p
n

]
q

ap−n 1+qn

2 [n+1]q
xn+1

=
1
2

p

∑
n=0

(−1)n q
n(n−1)

2 [p]q!

[p−n]q! [n+1]q!
ap−nxn+1

+
1
2

p

∑
n=0

(−1)n q
n(n−1)

2 [p]q!

[p−n]q! [n+1]q!
qnap−nxn+1

=
1
2

p+1

∑
n=1

(−1)n−1 q
(n−1)(n−2)

2 [p]q!

[p−n+1]q! [n]q!
ap−n+1xn

+
1
2

p+1

∑
n=1

(−1)n−1 q
(n−1)(n−2)

2 [p]q!

[p−n+1]q! [n]q!
qn−1ap−n+1xn

= − 1
2 [p+1]q

×(
q

p+1

∑
n=1

(−1)n q
n(n−1)

2

[
p+1

n

]
q

ap+1−n
(

x
q

)n

+
p+1

∑
n=1

(−1)n q
n(n−1)

2

[
p+1

n

]
q

ap+1−nxn

)

= − q
2 [p+1]q

[(
a− x

q

)p+1

q
−1

]

− 1
2 [p+1]q

[
(a− x)p+1

q −1
]

=
1+q

2 [p+1]q
−

q
(

a− x
q

)p+1

q
+(a− x)p+1

q

2 [p+1]q

=
1

2 [p+1]q

(
1+q−q

(
a− x

q

)p+1

q
− (a− x)p+1

q

)
and the proof is completed.

Example 3.5. Let p > 1, and (a− t)p
q is q-binomial,then we

have

1∫
0

(1− t)p
q 0dqt =

1+q
2 [p+1]q

. (3.5)

Proof. By using (3.4) with choose a = 1 and x = 1 then the
proof is completed as follows

1∫
0

(1− t)p
q 0dqt

=
1

2 [p+1]q

(
1+q−q

(
1− 1

q

)p+1

q
− (1−1)p+1

q

)

by using
(

1− 1
q

)p+1

q
=
(

1− 1
q

)(
1− q

q

)(
1− q2

q

)
..= 0 and

we obtain

1∫
0

(1− t)p
q 0dqt =

1+q
2 [p+1]q

which is desired.

4. q-Young, q-Hölder’s and q-Minkowski
Inequalities

In this section, we obtained q-Young, q-Hölder’s and q-
Minkowski Inequalities on q-integral.

Theorem 4.1 (q-Young Inequality). a> 0, b> 0 and 1
p +

1
r =

1 with p > 1

a.b≤ 1+qp−1

2 [p]q
ap +

1+qr−1

2 [r]q
br. (4.1)
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Figure 1. y = xp−1

Proof. Choose y = xp−1 functions for p > 1 and 1
p +

1
r = 1

with a > 0, b > 0. Let draw the graph of y = xp−1

s1 =

a∫
0

xp−1
adqx =

1−q
1−qp

1+qp−1

2
ap,

s2 =

b∫
0

y
1

p−1 adqy =
1−q

1−q
p

p−1

1+q
1

p−1

2
b

p
p−1

=
1−q
1−qr

1+qr−1

2
br.

According to the graph of y = xp−1 we have

a.b≤ s1 + s2 =
1−q

2

[
1+qp−1

1−qp ap +
1+qr−1

1−qr br
]

a.b≤ 1+qp−1

2 [p]q
ap +

1+qr−1

2 [r]q
br

which is completed the proof.

Remark 4.2. In Theorem 4.1, if we take q→ 1−, we recapture
Young inequality in [13].

Theorem 4.3 (q-Hölder’s Inequality). Let 1
p + 1

r = 1 with
p > 1. Then the following inequality holds

b∫
a

| f (t)g(t)| adqt ≤

[
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

]
‖ f‖p ‖g‖r

(4.2)

where

‖ f‖p =

 b∫
a

| f (t)|p adqt

 1
p

.

Proof. Choose a = | f (t)|
‖ f‖p

, b = |g(t)|
‖g‖r

and by using q-Young
inequality, we write

| f (t)|
‖ f‖p

|g(t)|
‖g‖r

≤ 1+qp−1

2 [p]q

| f (t)|p

‖ f‖p
p
+

1+qr−1

2 [r]q

|g(t)|r

‖g‖r
r
. (4.3)

Now take q-integral inequality (4.3) on [a,b] , we get

1
‖ f‖p ‖g‖r

b∫
a

| f (t)g(t)| adqt

≤ 1+qp−1

2 [p]q

1
‖ f‖p

p

b∫
a

| f (t)|p adqt

+
1+qr−1

2 [r]q

1
‖g‖r

r

b∫
a

|g(t)|r adqt

≤ 1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

and thus,

b∫
a

| f (t)g(t)| adqt ≤

[
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

]
‖ f‖p ‖g‖r

which is completed the proof.

Remark 4.4. In Theorem 4.2, if we take q→ 1−, we recapture
classical Holder’s inequality.

Theorem 4.5 (q-Minkowski Inequality). For p > 1

‖ f +g‖p ≤

[
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

](
‖ f‖p +‖g‖p

)
. (4.4)

Proof. From q-Hölder’s inequality, we get

‖ f +g‖p
p

≤
b∫

a

| f (t)| | f (t)+g(t)|p−1
adqt

+

b∫
a

|g(t)| | f (t)+g(t)|p−1
adqt

≤

(
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

)

×

 b∫
a

| f (t)+g(t)|r(p−1)
adqt

 1
r

×


 b∫

a

| f (t)|p adqt

 1
p

+

 b∫
a

|g(t)|p adqt

 1
p
 .
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By using r (p−1) = p, it follows that

‖ f +g‖p ≤

[
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

](
‖ f‖p +‖g‖p

)
and the proof is completed.

Remark 4.6. In Theorem 4.4, if we take q→ 1−, we recapture
classical Minkowski inequality.

5. Ostrowski Type Inequalities
In this section, we obtained q-Ostrowski type inequalities

for q-integral as follows:

Theorem 5.1. Let f : [a,b]→ R be a convex q-differentiable
function on (a,b) and

∣∣ aDq f (x)
∣∣ ≤ M for all x ∈ [a,b].

Then, we have∣∣∣∣ 1
2q
{q f (x)+ f (qx+(1−q)a) (5.1)

−(1−q) f (qb+(1−q)a)}

− 1
b−a

b∫
a

f (qt +(1−q)a) adqt

∣∣∣∣∣∣
≤ (b−a)M

[
1
4
+

(
x− a+b

2

)2

(b−a)2

]
for all x ∈ [a,b] and 0 < q < 1.

Proof. By using equation (3.1), we have∣∣∣∣ (b−a)
2q

{q f (x)+ f (qx+(1−q)a) (5.2)

−(1−q) f (qb+(1−q)a)}

−
b∫

a

f (qt +(1−q)a) adqt

∣∣∣∣∣∣
≤

x∫
a

|t−a|
∣∣ aDq f (t)

∣∣ adqt

+

b∫
x

|t−b|
∣∣ aDq f (t)

∣∣ adqt

≤M
x∫

a

(t−a) adqt +M
b∫

x

(b− t) adqt

= M
(1+q)(t−a)2

2 [2]q

∣∣∣∣∣
x

a

−M

 (1+q)(t−a)2

2 [2]q
+(a−b)(t−a)

∣∣∣∣∣
b

x



= M
[
(x−a)2 +(b−a)

(
a+b

2
− x
)]

= (b−a)2 M

[
1
4
+

(
x− a+b

2

)2

(b−a)2

]
with divide by (b−a) inequality (5.2), and the proof is com-
pleted.

Remark 5.2. In Theorem 5.1, if we take q→ 1−, we recapture
inequality (1.1).

Theorem 5.3. Let f : I ⊂R→R be a convex q-differentiable
function on I◦ and

∣∣ aDq f (x)
∣∣ is convex for all x ∈ I◦ and

a,b ∈ I. Then the following inequality holds:∣∣∣∣ 1
2q
{q f (x)+ f (qx+(1−q)a) (5.3)

−(1−q) f (qb+(1−q)a)}

− 1
b−a

b∫
a

f (qt +(1−q)a) adqt

∣∣∣∣∣∣
≤ q

2 [3]q

(x−a)2 ∣∣ aDq f (a)
∣∣+(b− x)2

∣∣ aDq f (b)
∣∣

b−a

+
1+q2

2 [3]q

(x−a)2 +(b− x)2

b−a

∣∣ aDq f (x)
∣∣ .

Proof. By using (3.1),(3.3) and convexty of
∣∣ aDq f (x)

∣∣ ,
then we have∣∣∣∣ 1

2q
{q f (x)+ f (qx+(1−q)a)

−(1−q) f (qb+(1−q)a)}

− 1
b−a

b∫
a

f (qt +(1−q)a) adqt

∣∣∣∣∣∣
=

1
b−a

∣∣∣∣∣∣
x∫

a

(t−a) aDq f (t) adqt

+

b∫
x

(t−b) aDq f (t) adqt

∣∣∣∣∣∣
=

∣∣∣∣∣∣ (x−a)2

b−a

1∫
0

t aDq f (xt +(1− t)a) 0dqt

+
(b− x)2

b−a

1∫
0

(t−1) aDq f (bt +(1− t)x) 0dqt

∣∣∣∣∣∣
≤ (x−a)2

b−a

1∫
0

t
(

t
∣∣ aDq f (x)

∣∣
+(1− t)

∣∣ aDq f (a)
∣∣ ) 0dqt

+ (b−x)2

b−a

1∫
0
(1− t)

(
t
∣∣ aDq f (b)

∣∣
+(1− t)

∣∣ aDq f (x)
∣∣ ) 0dqt
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=
(x−a)2

b−a

[
1+q2

2 [3]q

∣∣ aDq f (x)
∣∣

+

(
1
2
− 1+q2

2 [3]q

)∣∣ aDq f (a)
∣∣]

+
(b− x)2

b−a

[(
1
2
− 1+q2

2 [3]q

)∣∣ aDq f (b)
∣∣

+
1+q2

2 [3]q

∣∣ aDq f (x)
∣∣]

=
q

2 [3]q
·
(x−a)2 ∣∣ aDq f (a)

∣∣+(b− x)2
∣∣ aDq f (b)

∣∣
b−a

+
1+q2

2 [3]q
· (x−a)2 +(b− x)2

b−a

∣∣ aDq f (x)
∣∣

where 1
2 −

1+q2

2[3]q
= q

2[3]q
and the proof is completed.

Corollary 5.4. Let f : I ⊂ R→ R be a convex differentiable
function on I◦ and | f ′ (x)| is convex for all x ∈ I◦ and a,b ∈ I.
Then the following inequality holds:∣∣∣∣∣∣ f (x)− 1

b−a

b∫
a

f (t)dt

∣∣∣∣∣∣ (5.4)

≤ (x−a)2 | f ′ (a)|+(b− x)2 | f ′ (b)|
6(b−a)

+
(x−a)2 +(b− x)2

3(b−a)

∣∣ f ′ (x)∣∣ .
Proof. In (5.3) if we take q→ 1−, we recapture (5.4) and the
proof is completed.

Theorem 5.5. Let f : I ⊂R→R and
∣∣ aDq f (x)

∣∣rbe convex
q-differentiable function on I◦ for 1

p +
1
r = 1 with p > 1 and

a,b ∈ I. Then the following inequality holds:∣∣∣∣ 1
2q
{q f (x)+ f (qx+(1−q)a) (5.5)

−(1−q) f (qb+(1−q)a)}

− 1
b−a

b∫
a

f (qt +(1−q)a) adqt

∣∣∣∣∣∣
≤

[
1+qp−1

4 [p]q
+

1+qr−1

4 [r]q

]

×

 (x−a)2

b−a

(
1+qp

[p+1]q

) 1
p

×
(∣∣ aDq f (x)

∣∣r + ∣∣ aDq f (a)
∣∣r) 1

r

+
(b− x)2

b−a

(
1+q

[p+1]q

) 1
p

×
(∣∣ aDq f (b)

∣∣r + ∣∣ aDq f (x)
∣∣r) 1

r

}
.

Proof. By using Lemma (3.1) and (3.3), then we have

N

=

∣∣∣∣ (b−a)
2q

{q f (x)+ f (qx+(1−q)a)

−(1−q) f (qb+(1−q)a)}

−
b∫

a

f (qt +(1−q)a) adqt

∣∣∣∣∣∣

≤ (x−a)2
1∫

0

t
∣∣ aDq f (xt +(1− t)a)

∣∣ 0dqt

+(b− x)2
1∫

0

(1− t)
∣∣ aDq f (bt +(1− t)x)

∣∣ 0dqt

and by using q-Hölder’s inequality then we have

N ≤

[
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

]

×

(x−a)2

 1∫
0

t p

 1
p

×

 1∫
0

{
t
∣∣ aDq f (x)

∣∣r
+(1− t)

∣∣ aDq f (a)
∣∣r } 0dqt

 1
r

+(b− x)2

 1∫
0

(1− t)p
q 0dqt

 1
p

×

 1∫
0

{
t
∣∣ aDq f (b)

∣∣r
+(1− t)

∣∣ aDq f (x)
∣∣r } 0dqt

 1
r
 .
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Now by using equality (3.5) we have

N ≤

[
1+qp−1

2 [p]q
+

1+qr−1

2 [r]q

]

×

(x−a)2

(
1+qp

2 [p+1]q

) 1
p

×

(∣∣ aDq f (x)
∣∣r

2
+

∣∣ aDq f (a)
∣∣r

2

) 1
r

+(b− x)2

(
1+q

2 [p+1]q

) 1
p

×

(∣∣ aDq f (b)
∣∣r

2
+

∣∣ aDq f (x)
∣∣r

2

) 1
r


=

[
1+qp−1

4 [p]q
+

1+qr−1

4 [r]q

]

×

(x−a)2

(
1+qp

[p+1]q

) 1
p

×
(∣∣ aDq f (x)

∣∣r + ∣∣ aDq f (a)
∣∣r) 1

r

+(b− x)2

(
1+q

[p+1]q

) 1
p

×
(∣∣ aDq f (b)

∣∣r + ∣∣ aDq f (x)
∣∣r) 1

r

}
with divide by (b−a) last inequality the proof is completed.

Corollary 5.6. Let f : I ⊂ R→ R and | f ′ (x)|rbe convex dif-
ferentiable function on I◦ for 1

p +
1
r = 1 with p> 1 and a,b∈ I.

Then the following inequality holds:∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (t)dt

∣∣∣∣∣∣ (5.6)

≤ 1

2
1
r (p+1)

1
p

×

{
(x−a)2

b−a

(∣∣ f ′ (x)∣∣r + ∣∣ f ′ (a)∣∣r) 1
r

+
(b− x)2

b−a

(∣∣ f ′ (b)∣∣r + ∣∣ f ′ (x)∣∣r) 1
r

}
.

Proof. In (5.5) if we take q→ 1−, we recapture (5.4) and the
proof is completed.
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