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Darcy-Benard surface tension driven convection in a
composite layer with temperature dependent heat
source
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Abstract
The effect of temperature dependent heat source on single component Benard Surface tension driven convection
in a composite layer system comprising of an incompressible fluid saturated porous layer underlying a layer of
same fluid, is studied. The lower surface of the porous layer is rigid and the upper surface is free with surface
tension depending on temperature. The governing partial differential equations are non-dimensionalized using
suitable transformation variables. The eigen value problem obtained after normal mode analysis is solved
analytically using Exact Method. An expression for the eigenvalue, the Thermal Marangoni number is obtained
for two sets of thermal boundary conditions on the boundaries of the composite layer, set (i) Adiabatic-Adiabatic
and set (ii) Isothermal-Adiabatic. The effects of different physical parameters on the same are discussed in
detail.
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1. Introduction
Convection is the physical phenomenon that involves heat

exchange through two systems. The interaction between a

saturated porous layer overlying a fluid layer and convection
in such a configuration is encountered in many industrial and
environmental applications such as extraction of oil from un-
derground reservoirs, packed-bed thermal storage systems,
solidification of alloys, the manufacturing of composite mate-
rials used in aircraft and etc. Surface tension driven convection
or Marangoni convection is the tendency for heat and mass to
travel to areas of higher surface tension within a fluid and has
many industrial applications such as semiconductor process-
ing, welding, heat exchangers crystal growth, effect around
vapour bubbles during nucleation and also in the field of space
technology. There are few works available on Marangoni con-
vection in two layer sysems. Nield [5] has investigated the
linear stability problem of superposed fluid and porous layers
with buoyancy and surface tension effects at the deformable
free upper surface by using Beavers-Joseph slip condition at
the inerface. While Nield [6] also argued about the mod-
elling of Marangoni convection in a fluid saturated porous
medium and has suggested the consideration of composite
system in analyzing the problem of fluid-porous layer. The
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study of Marangoni convection has attracted many researchers
in recent years because of its vast contributions in various in-
dustries. Shivakumara et al. [10] investigated the effect of
internal heat generation on Marangoni convection in a fluid
layer overlying a layer of anisotropic porous medium. The
resulting eigen value problem is solved using regular perturba-
tion technique. An expression for critical Marangoni number
is obtained, possibilities of controlling Marangoni convection
is discussed in detail. Gangadharaiah [3] studied the stability
analysis of Béard-Marangoni convection in a composite sys-
tem theoritically by using regular perturbation technique.
The phenomenon of non-uniform heat source/sink has many
engineering applications loke cooling of metallic sheets, the
intention of thurst bearing, unpolished oil retrieval, etc. Theo-
ritical studies such as those by Thirlby [12], McKenzie et al.
[4], Tveitereid and Palm [13], and Clever [2] were all based
on the assumption that Q is uniform. However, Q is not neces-
sarily uniform in many practical problems with applications
in nature or engineering. A non-uniform Q which produces
a nonlinear basic temperature gradient may be due to heat
release of chemical reactions which take palce in the liquid or
radioactive decay or ohmic heating by a current in a conduc-
tive fluid or heat source produced by radiation from the exter-
nal medium, and so on. The problem of thermal convection in
a horizontal layer of fluid with an internal heat source which
is restricted vary linearly with the vertical variable was first
studied by Riahi [8]. He has proved that the critical Rayleigh
number depends strongly on non-uniform internal heat param-
eter but weakly depends on internal heat parameter and also
showed that the presence of internal heating affect strongly
the cell’s size, the stability of the convection motion and the
internal motion of the hexagonal cells. Pal [7] studied the flow
and heat transfer characteristics in unsteady laminar boundary
layer of an incompressible viscous fluid over continuously
streching permeable surface in the presence of non-uniform
heat source/sink and thermal radiation using Runge-Kutta-
Fehlberg method. Siddheshwar and Titus [9] studied linear
and non linear Rayleigh-Bénard with variable heat source
(sink) using Fourier series where the strength of the heat
source is characterized by an internal Rayleigh number, and
has demonstrated that Ginzburg-Landau model can be derived
from the Lorenz model. Mahantesh et al. [1] examined an ex-
ponential space-dependent heat source and Marangoni effects
on dusty nanofluid boundary layer flow towards a flat surface
by utilizing linear/quadratic variation of the surface tempera-
ture using Runge-Kutta-Fehlberg method coupled with shoot-
ing technique. Sumithra et al. [11] have examined effect of
constant heat source/sink and non uniform temperature gradi-
ents on Darcian-Bénard-Magneto-Marangoni convection in
composite layer horizontally enclosed by adiabatic boundaries.
A closed form solution is obtained for the thermal Marangoni
number. Effects of physical parameters like porous parameter,
internal Rayleigh number in both the layers and thermal ration
for Marangoni number investigated on linear, parabolic and
inverted parabolic temperature profiles. Also, it is observed

that the effect of heat source/sink is dominant in the fluid
layer.
This research paper aims at understanding the effect of tem-
perature dependent heat sources on surface tension driven
convection in a composite system comprising of an incom-
pressible fluid saturated porous layer over which lies a layer of
the same fluid under microgravity condition. This composite
layer is bounded below and above by rigid and free boundaries
with surface tension effects depending on temperature at free
boundary. The eigen value, the thermal Marangoni number is
obtained for two sets of temperature boundary combinations
set (i) Adiabatic-Adiabatic and set (ii) Adiabatic-Isothermal.

2. Formulation of the Problem
Consider an infinite horizontal layer of a Newtonian fluid

of depth ‘d’overlying a fluid saturated isotropic densely packed
porous layer of depth ‘dm’ with heat sources Q and Qm respec-
tively. The lower surface of the porous layer is rigid and the
upper surface of the fluid layer is free with the surface tension
depending on temperature. A Cartesian coordinate system is
chosen with the origin at the interface between porous and
fluid layers and the z-axis, vertically upwards. The basic equa-
tions governing such a system are,
For the Fluid Layer:

∇ ·−→q = 0 (2.1)

ρo

[
∂
−→q

∂ t
+(−→q ·5)−→q

]
=−5P+µ52−→q (2.2)

∂T
∂ t

+(−→q ·5)T = κ52 T +Q(T −To) (2.3)

For the porous layer:

5m ·−→qm = 0 (2.4)

ρo

φ

∂
−→qm

∂ tm
=−5m Pm−

µ

K
−→qm (2.5)

A
∂Tm

∂ tm
+(−→qm ·5m)Tm = κm52

m Tm +Qm(Tm−To)

(2.6)

where −→q is the velocity vector, ρo is the fluid density, t is
the time, µ is the fluid viscosity, P is the total pressure, φ

is the porosity, κ is the thermal diffusivity of the fluid, K is
the permeability of the porous medium, A =

(ρoCp)m
(ρoCp) f

is the
ratio of heat capacities where Cp is the specific heat, κm is the
thermal diffusivity of the porous medium, T and Tm denotes
temperatures in the fluid and porous medium respectively.
Here subscripts m refers to the porous layer and f refers to
the fluid layer.
The basic state of fluid and porous layers are assumed to be
quiescent, pressure and temperatures are functions of z only.
The temperature distributions are found to be

Tb(z) = Tu−To

sin
(√

Q
κ

d
) sin

(√
Q
κ

z
)
+To, 0≤ z≤ d (2.7)
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Tmb(zm) =
To−TL

sin
(√

Qm
κm

dm

) sin

(√
Qm

κm
zm

)
+To,

−dm ≤ zm ≤ 0 (2.8)

where,

To =

Tu
√

Qκ sin
(√

Qm
κm

dm

)
+TL
√

Qmκm sin
(√

Q
κ

d
)

√
Qmκmsin

(√
Q
κ

d
)
+
√

Qκsin
(√

Qm
κm

dm

)
is the interface temperature.
Now an infinitesimal perturbations are superimposed in the
form

−→q =−→qb +
−→q ′, T = Tb(z)+θ , P = Pb(z)+P′ (2.9)

−→qm =−→qmb +
−→qm
′, Tm = Tmb(zm)+θm, Pm = Pmb(zm)+P′m

(2.10)

where the prime indicates a perturbed quantity and the sub-
script ′b′ denotes the basic state. Equations (2.9) and (2.10)are
substituted in equations (2.1) to (2.6) and linearized in the
ususal manner. The pressure term is eliminated from the
equations (2.2) and (2.5) by taking curl twice on these two
equations and then the resulting equations are non dimension-
alized using appropriate scale factors according as Vanishree
et al. [14] and Sumithra et al. [11]
The dimensionless equations are subjected to normal mode
analysis in the form[

W
θ

]
=

[
W (z)
θ(z)

]
f (x,y)ent (2.11)

[
Wm
θm

]
=

[
Wm(zm)
θm(zm)

]
fm(xm,ym)enmt (2.12)

with52
2 f +a2 f = 0 and (5m)

2
2 fm +a2

m fm = 0, where a and
am are nondimensional horizontal wave numbers, n and nm
are frequencies, W (z) and Wm(zm) are dimensionless vertical
velocities in fluid and porous layers, the following equations
are obtained: In 0≤ z≤ 1,(

D2−a2− n
Pr

)
(D2−a2)W (z) = 0 (2.13)(

D2−a2 +RI +n
)

θ(z)+W (z)
√

RI
cos(
√

RIz)
sin
√

RI
= 0 (2.14)

In −1≤ zm ≤ 0,(
nmβ 2

Prm
−1
)(

D2
m−a2

m
)

Wm(zm) = 0 (2.15)

(
D2

m−a2
m −RIm +nmA)θm(zm)

+Wm(zm)
√

RIm
cos(

√
RImzm)

sin
√

RIm
= 0 (2.16)

where Pr = µ

ρoκ
is the prandtl number in the fluid layer, Prm =

φ µ

ρoκm
is the Prandtl in the porous layer, β 2 = K

d2
m
= Da is the

darcy number, RI =
Q
κ

d2 is the internal Rayleigh number
for the fluid layer and RIm = Qm

κm
d2

m is the internal Rayleigh
number for the porous layer. Obtaining the relevant nuetral
stability (n = nm = 0), we get, in 0≤ z≤ 0,(

D2−a2)(D2−a2)W (z) = 0 (2.17)(
D2−a2 +RI

)
θ(z)+W (z)

√
RI

cos(
√

RIz)
sin
√

RI
= 0. (2.18)

In −1≤ zm ≤ 0,(
D2

m−a2
m
)

Wm(zm) = 0 (2.19)

(
D2

m−a2
m− RIm)θm(zm)

+Wm(zm)
√

RIm
cos(

√
RImzm)

sin
√

RIm
= 0 (2.20)

Equations (2.17) to (2.20) are decoupled ordinary differential
eqauations. To solve these equations we need six velocity
boundary conditions and four temperature boundary condi-
tions.

3. Boundary Conditions

The suitable boundary conditions are non-dimensionalized
and then subjected to normal mode analysis. They are:

W (1) =0 (3.1)

W (0) =
ζ

εT
Wm(0) (3.2)

(
D2 +a2)W (0) =

ζ 3µ̂

εT

(
D2

m +a2
m
)

Wm(0) (3.3)

(
D3−3a2D

)
W (0) =− ζ 2µ̂

εT Da
DmWm(0) (3.4)

Wm(1−) =0 (3.5)

D2W (1)+Mθ(1) =0. (3.6)

Here µ̂ = µm
µ

is the viscosity ratio, where µm is the effective
viscosity of the fluid in the porous layer, and in this paper the
value of µ̂ is considered as unity, that is viscosity of the fluid
in the fluid layer is same as the viscosity of the fluid in the
porous layer, ζ = d

dm
is the depth ratio, εT = κ

κm
is the ratio

of thermal diffusivity and M = − ∂σ

∂T
(To−Tu)d

µκ
is the thermal

Marangoni number, where σ is the surface tension and T is
the temperature.

4. Method of Solution
The velocity equations (2.17) and (2.19) are solved exactly

for vertical velocity distributions W (z) and Wm(zm) and are
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suitably obtained as,

W (z) =A1[cosh(az)+A2 sinh(az)+A3zcosh(az)

+A4zsinh(az)] (4.1)
WmZm =A1[Am1 cosh(amzm)+Am2 sinh(amzm)] (4.2)

where A1, A2, A3, A4, Am1 and Am2 are constants which are de-
termined by velocity boundary conditions given by equations
(3.1), (3.2), (3.3), (3.4) and (3.5) and they are:

A2 =−
ζ am

2a3Da
coth(am), A3 =−[1+(A2 +A4) tanh(a)]

A4 =
1
a
[ζ 2a2

m−a2], Am1 =
εT

ζ
, Am2 =−

εT

ζ
coth(am)

4.1 Thermal Marangoni number for the set (i) Adia-
batic - Adiabatic (A-A) condition

The Adiabatic-Adaiabatic temperature boundary conditions
on the boundaries of the composite layer are used to solve
the temperature distributions θ(z) and θm(zm), where both the
boundaries of the composite layer are adiabatic. They are as
follows:

Dθ(1) = 0, θ(0) =
εT

ζ
θm(0), Dθ(0) = Dmθm(0),

Dmθm(−1) = 0. (4.3)

The temperature distributions obtained by solving equations
(2.18) and (2.20) using velocity distributions (4.1) and (4.2)
are,

θ(z) =A1[c1 cosh(bz)+ c2 sinh(bz)− f (z)] (4.4)
θm(zm) =A1[c3 cosh(bmzm)+ c4 sinh(bmzm)− fm(zm)] (4.5)

where b =
√

a2−RI and bm =
√

a2
m−RIm .

The coefficients c1, c2, c3 and c4 are obtained by using tem-
perature boundary conditions (4.3) and are as follows:

c1 = δ1 +
εT

ζ
c3, c2 =

δ3− c1bsinh(b)
bcosh(b)

, c4 =
c3bm sinh(bm)

bm cosh(bm)

c3 =
−bδ1 sinh(b)cosh(bm)−δ2 cosh(b)cosh(bm)+δ3 cosh(bm)+δ4 cosh(b)

bm sinh(bm)cosh(b)+ εT
ζ

bsinh(b)cosh(bm)

δ1 =

(
A4

2a
√

RI sin(
√

RI)

)
,

δ2 =

( √
RI

2asin(
√

RI)

)(
A2−

A3

a
+

aA3

RI

)
−

(
Am2

√
RIm

2am sin(
√

RIm)

)

δ3 =
1

2asin(
√

RI)
(Λ1 +A2Λ2 +A3Λ3 +A4Λ4)

Λ1 =acosh(a)sin(
√

RI)+
√

RI sinh(a)cos(
√

RI)

Λ2 =asinh(a)sin(
√

RI)+
√

RI cosh(a)cos(
√

RI)

Λ3 =asin(
√

RI)cosh(a)+
√

RI cosh(a)cos(
√

RI)

− 1
a
√

RI cos(
√

RI)cosh(a)

− sin(
√

RI)sinh(a)+
a√
RI

cos(
√

RI)cosh(a)

Λ4 =Λ41 +Λ42

Λ41 =asin(
√

RI)sinh(a)+
√

RI cos(
√

RI)cosh(a)

− sin(
√

RI)cosh(a)

Λ42 =

(
a√
RI
−
√

RI

a

)
cos(
√

RI)sinh(a)

δ4 =
1

2am sin(
√

RIm)
(Am1λ1−Am2λ2)

λ1 =am cosh(am)sin(
√

RIm)+
√

RIm sinh(am)cos(
√

RIm)

λ2 =am sinh(am)sin(
√

RIm)+
√

RIm cos(
√

RIm)cosh(am).

The eigen value thermal Marangoni number M obtained from
the boundary condition (3.6) is:

M =−D2W (1)
a2θ(1)

and using the same condition for the set (i) Adaiabatic-Adiabatic
condition, the thermal Marangoni number is:

MAA =− m11 cosh(a)+m12 sinh(a)

a2
(

m21−
(

1
2asin(

√
RI)

)
(m22 +A3m23 +A4m24)

) (4.6)

m11 =a2(1+A3)+2aA4, m12 = a2(A2 +A3)+2aA3

m21 =c1 cosh(b)+ c2 sinh(b)

m22 =sinh(a)sin(
√

RI)+A2 cosh(a)sin(
√

RI)

m23 =sinh(a)sin(
√

RI)−
1
a

sin(
√

RI)cosh(a)

+
1√
RI

cos(
√

RI)sinh(a)

m24 =sin(
√

RI)cosh(a)− 1
a

sin(
√

RI)sinh(a)

+
1√
RI

cos(
√

RI)cosh(a)

4.2 Thermal Marangoni number for the set (i) Adia-
batic -Isothermal (A-I) condition

The Adiabatic-Isothermal temperature boundary conditions
on the boundaries of the composite layer are used to solve the
temperature distributions θ(z) and θm(zm), where the upper
boundary of the fluid layer is adiabatic and the lower boundary
of the porous layer is isothermal and they are as follows:

Dθ(1) = 0, θ(0) =
εT

ζ
θm(0), Dθ(0) = Dmθm(0),

θm(−1) = 0 (4.7)
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The temperature distributions are obtained by solving equa-
tions (2.18) and (2.20) using the velodity distributions (4.1)
and (4.2) and are as follows:

θ(z) =A1[c11 cosh(bz)+ c12 sinh(bz)− f (z)] (4.8)
θm(zm) =A1[c23 cosh(bmzm)+ c24 sinh(bmzm)− fm(zm)]

(4.9)

The coefficients c11, c12, c23 and c44 are obtained by using
temperature boundary conditions (4.7) and are as follows:

c11 =δ1 +
εT

ζ
c23, c12 =

δ12 + c24bm

b
, c23 =

∆1 +∆2

∆12
,

c24 =
c23 cosh(bm)−δmII

sinh(bm)
,

∆1 =−bδ1 sinh(b)sinh(bm)−δ2 cosh(b)sinh(bm)

∆2 =δmII bm cosh(b)+δ3 sinh(bm),

∆12 =bm cosh(bm)cosh(b)+
εT

ζ
bsinh(b)sinh(bm)

δmII =
1

2am sin(
√

RIm)
(Am1∆3−Am2∆4)

∆3 =am cosh(am)sin(
√

RIm)+
√

RIm sinh(am)cos(
√

RIm)

∆4 =am sinh(am)sin(
√

RIm)+
√

RIm cosh(am)cos(
√

RIm)

The eigen value, thermal Marangoni number ontained from
boundary condition (3.6) is:

M =−D2W (1)
a2θ(1)

and using the same condition for the set (ii) Adiabatic-Isothermal
condition, the thermal Marangoni number is:

MAI =−
m11 cosh(a)+m12 sinh(a)

a2
(

m21−
(

1
2asin(

√
RI)

)
(m22 +A3m23 +A4m24)

)
(4.10)

m11 =a2(1+A3)+2aA4, m12 = a2(A2 +A3)+2aA3

m21 =c1 cosh(b)+ c2 sinh(b)

m22 =sinh(a)sin(
√

RI)+A2 cosh(a)sin(
√

RI)

m23 =sinh(a)sin(
√

RI)−
1
a

sin(
√

RI)cosh(a)

+
1√
RI

cos(
√

RI)sinh(a)

m24 =sin(
√

RI)cosh(a)− 1
a

sin(
√

RI)sinh(a)

+
1√
RI

cos(
√

RI)cosh(a)

5. Result and Discussion
The effect of surface tension driven convection in a com-

posite system consisting of a fluid layer saturated by the same
system is investigated theoretically.

Figure 1. Comparison of thermal Marangoni number for A-A
and A-I

(a)

(b)

Figure 2. Effects of internal Rayleigh number RIm

The eigen value problem is solved exactly and an anlytical
expression for the thermal Marangoni number is obtained for
two types of temperature boundary conditions, viz., (i)both
the boundaries of the composite layer are adiabatic(A-A), (ii)
lower rigid boundary is isothermal and upper free surface is
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adiabatic(A-I). The effects of RI , RIm , the internal Rayleigh

(a)

(b)

Figure 3. Effects of internal Rayleigh number RI

nubers for the fluid and porous layers, the horizontal wave
number a, the thermal diffusivity ratio εT , and the Darcy
number Da on the Marangoni number are displayed in the
following figures where the supplementary parameters are
fixed.
The comparison of thermal Mrangoni numbers as a function of
depth ratio ζ for the Adiabatic-Adiabtic(A-A) and Adiabatic-
Isothermal(A-I)temperature boundary conditions is shown in
Figure 1. It is observed that in case of A-A boundaries, the
thermal Marangoni number MAA increases initially with ζ and
reaches maximum and then decreases with further increase in
ζ . In case of A-I boundaries, thermal marangoni number MAI
increases with increase in ζ without any decrasing trend as no-
ticed in case of A-A boundaries. For smaller values of depth
ratio, the system is stable when A-A temperature boundary
conditions are deployed, whereas for larger values of depth
ratio the same system is stable for A-I temperature boundary
combinations. But both MAA and MAI coincide when the value
of the depth ratio is ζ = d

dm
= 0.75.

Figures (2a) and (2b) are the plots of MAA and MAI versus
the depth ratio ζ for the linear temperature distrbution for

(a)

(b)

Figure 4. Effects of Darcy number Da

different porous internal Rayleigh number RIm when the other
parameters are fixed. In case of A-A boundaries, it is observed
that MAA increases intially with ζ and reaches maximum and
then decreases with further increase in ζ . One important
observation that can be made from fig (2a) is that when the
strength of the heat source is small (RIm = 0.01), MAA attains
maximum with increasing ζ up to a certain epth ratio and
then remains the same with further increase in ζ , whereas for
RIm = 0.35 and 0.6, MAA increase with ζ , attains maximum
and decreases with further increse in ζ . This indicates that the
choice of the strength of heat source plays a crucial role in the
stability of the system. It is also observed that increase in RIm
decreases MAA and thus destabilizes the system. this indicates
that the increase in the strength of the heat source in the porous
layer decreases the surface tension thereby decreasing MAA.
From Fig. 2b we notice that the thermal Marangoni number
MAI increases with increase in ζ and decreases with increase
in RIm for the A-I boundaries and thus destabilize the system.
one can see from these graphs that the effect of RIm is more
dominant in the case of A-A temperature boundary conditions.
It is also observed that for different RIm , both MAA and MAI
remain same till ζ attains a certain value. This implies that the
effect of RIm is significant in the porous dominant composite
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layer.
Thermal Marangoni numbers MAA and MAI as a function of

(a)

(b)

Figure 5. Effects of thermal diffusivity ratio εT

depth ratio ζ for linear temperature distribution are shown in
Figs. 3a and 3b. The effect of fluid internal Rayleigh number,
RI for a set of fixed physical parameters a = 1,RIm = εT =
0.5,Da = 10 and different values of RI = 0.25,0.4,0.5. In
case of A-A boundary combination(Fig. 3a), it is observed
that MAA increases initially with ζ and reaches maiximum
and then decreases with further increase in ζ . In case of A-I
boundary combination (Fig.3b), MAI increases with increase
in ζ without ant decreasing trend as noticed in case of A-A
boundaries. Also, it is observed that MAA and MAI decreases
with increase in RI for both the cases and thus destabilize
system. All other observations are qualitatively similar to
those observed in Figs. 2a and 2b.
The variations in MAA and MAI as a function of ζ in Figs.

4a and 4b, respectively for Da = 5,10,100 when RI = RIm =
εT = 0.5 and a = 1. In case of A-A boundaries(Fig.4a), it
is seen that MAA increase initially with ζ and reaches max-
imum and then decreases with further increase in ζ . It is
also observed that increase in Da is ti increase the tharmal
Marangoni number MAA and thus stabilize system. This result
is in tune with the intution, physically Da increase implies

(a)

(b)

Figure 6. Effects of wave number a

the increase in the permeability there by allowing the flow of
more fluid which delays the onset of convection. In case of
A-I boundaries (Fig. 4b) also MAI increases with increase in
ζ as well as Da and thus stabilize system.
The effect of thermal diffusivity ratio εT as a function of ζ

for a st of fixed physical parameters RI = RIm− = 0.5,a =
1,Da = 10 and different values of εT = 0.15,0.2,0.25 in case
of A-A and A-I boundaries are depicted in Figs. 5a and 5b.
From Fig. 5a, it is seen that MAA increases initially with ζ

reaches maximum and then decreases with further increase
in ζ , whereas in case of A-I boundaries, MAI increases with
increase in ζ as shown in Fig. 5b. Also it is observed that
increase in decreases MAA and MAI in both the cases and thus
having a destabilizing effect on the system. Physically, in-
crease in thermal diffusivity increases the heat transfer rate
which destabilizes the system.
Figures 6a and 6b show variations in MAA and MAI with ζ for
different values of horizontal wave number a = 1.2,1.5,1.8
when RI = RIm = εT = 0.5 and Da = 10. In case of A-A and
A-I boundaries, we observe that an increase in ζ increases
MAA and MAI respectively. This is because increase in depth
ratio decreases the temperature at the surface ther by increas-
ing the surface tension due to the increase in cohesive force
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with decrease in molecular thermal activity. Also increase in
wave number ‘a’ increases thermal Marangoni numbers MAA
and MAI thus stabilizing system. Physically increase in wave
number, decreases the cell size and hence increase the thermal
Marangoni numbers MAA and MAI .

6. Conclusion
The effect of temperature dependent heat source on sur-

face tension driven convection in a composite system com-
prising of an incompressible fluid saturated porous layer over
which lies a layer of the same fluid is analyzed theoretically.
The following conclusions are drawn from the above results.

1. The effect of internal Rayleigh numbers, both RIm and
RI , and thermal diffusivity ratio εT is to destabilize
the system and that of porous parameter Da and the
wave number a is ti stabilize the system for both the
boundaries viz., A-A and A-I.

2. The strength of heat source in both porous and fluid
layer, RIm and RI , can be effectively chosen to control
the convection.

3. MAA(ζ )< MAI(ζ ) for all parameters except for smaller
depth ratios.
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