

https://doi.org/10.26637/MJM0804/0128

On $\mathscr P$ -energy of join of graphs

Prajakta Bharat Joshi^{1*} and Mayamma Joseph²

Abstract

Given a graph $G = (V, E)$ with a vertex partition $\mathscr P$ of cardinality k, we associate to it a real matrix $A \mathscr P(G)$, whose diagonal entries are the cardinalities of elements in $\mathscr P$ and off-diagonal entries are from the set {2,1,0,−1}. The \mathscr{P} -energy $E_{\mathscr{P}}(G)$ is the sum of the absolute values of eigenvalues of $A_{\mathscr{P}}(G)$. In this paper, we discuss \mathscr{P} -energy of the join of graphs using the concept of *M*-coronal of graphs and determine \mathcal{P} -energy for the complements of the join of graphs.

Keywords

Graph energy, partition energy, $\mathcal P$ -energy, coronal of a graph.

AMS Subject Classification

05C15, 05C50, 05C69.

1,2*Department of Mathematics, CHRIST(Deemed to be University), Bengaluru-560029, India.* ***Corresponding author**: ¹ prajaktabharat.joshi@res.christuniversity.in; ²mayamma.joseph@christuniversity.in **Article History**: Received **14** September **2020**; Accepted **22** November **2020** c 2020 MJM.

Contents

1. Introduction

For present study, we consider graphs $G = (V, E)$ of order *n* and size *m*, which are finite and simple. All the definitions, terminologies and notations related with graph theoretic and spectral theoretic concepts are taken from [\[3,](#page-5-1) [15\]](#page-5-2).

Since the time I. Gutman [\[4\]](#page-5-3) introduced the concept of graph energy as the sum of the absolute values of the eigenvalues of the adjacency matrix $A(G)$ of a graph *G*, several variations and extensions of it has been introduced into the literature by researchers [\[1,](#page-5-4) [5,](#page-5-5) [6,](#page-5-6) [13\]](#page-5-7). One such variation is the concept of *k*-partition energy introduced by E. Sampathkumar et al. [\[13\]](#page-5-7) based on the vertex partitions of a given graph. They defined *k*-*partition energy* $E_{P_k}(G)$ as the sum of the absolute values of the eigenvalues of the *L*-matrix $P_k(G)$ where the entries a_{ij} of $P_k(G)$ are defined as

- (i) For $v_i, v_j \in V_r$, if $v_i v_j \in E(G)$ then $a_{ij} = 2$ and if $v_i v_j \notin$ $E(G)$ then $a_{ij} = -1$.
- (ii) For $v_i \in V_r$ and $v_j \in V_s$, $a_{ij} = 1$ if $v_i v_j \in E(G)$ whereas $a_{ij} = 0$ for $v_i v_j \notin E(G)$.

Given a vertex partition $\mathcal{P} = \{V_1, V_2, \ldots, V_k\}$ of a graph *G*, by assigning to diagonal entries a_{ii} the value $|V_s|$ where $V_s \in \mathcal{P}$ is the set containing v_i , P. B. Joshi and M. Joseph defined P-matrix $A_{\mathscr{P}}(G)$ and P-energy $E_{\mathscr{P}}(G)$ which is the sum of the absolute values of eigenvalues of $A_{\mathscr{P}}(G)$ [\[8\]](#page-5-8). They have obtained some bounds of $E_{\mathscr{P}}(G)$, have determined the value of $E_{\mathscr{P}}(G)$ for some classes of graphs, and have examined the special cases when the $\mathscr P$ -energy takes extreme values. In the present study, we determine $\mathscr P$ -energy for the join of two graphs using the concept of *M*-coronal of a graph, a method adopted in [\[2,](#page-5-9) [10\]](#page-5-10). We further discuss the $\mathscr P$ -energy for the complements of the join of graphs.

For two graphs G_1 and G_2 , the join $G = G_1 \nabla G_2$ is the graph obtained by joining every vertex of graph *G*¹ with every vertex of graph G_2 [\[7\]](#page-5-11).

If *M* is a matrix associated with a graph *G* of order *n*, the *M*-coronal $\Gamma_M(\lambda)$ of *G* is the sum of elements of the matrix $(\lambda I_n - M)^{-1}$. That is, $\Gamma_M(\lambda) = \mathbf{1}_n^T (\lambda I_n - M)^{-1} \mathbf{1}_n$, where $\mathbf{1}_n$ is a column vector of order $n \times 1$ and $\mathbf{1}_n^T$ is its transpose and I_n is an identity matrix of order $n \times n$ [\[2\]](#page-5-9). This definition is a generalization of the coronal of a graph introduced by McLeman and McNicholas for the adjacency matrix of a graph [\[10\]](#page-5-10). Considering the \mathscr{P} -matrix $A_{\mathscr{P}}(G)$ associated with the vertex partition $\mathscr P$ of a graph *G* we define the $\mathscr P$ -coronal of *G* and denote it by $\Gamma_{A_{\mathscr{P}}}(\lambda) = \mathbf{1}_n^T(\lambda I - A_{\mathscr{P}}(G))^{-1}\mathbf{1}_n$. We have adopted the method of first finding the characteristic polynomial $\phi_{\mathscr{P}}(G)$ of *G* in terms of the coronals of the component graphs and then determining the value $E_{\mathscr{P}}(G)$.

We would be referring to the following result proved by

Liu and Zhang in 2019 relating $\Gamma_M(\lambda)$ with a real matrix A, the identity matrix I_n and $J_{n \times n}$, a matrix of order $n \times n$ for which each element $a_{ij} = 1$.

Lemma 1.1. *[\[9\]](#page-5-13) Let A be an* $n \times n$ *real matrix. Then*

$$
\det(\lambda I_n - A - \alpha J_n) = [1 - \alpha \Gamma_M(\lambda)] \det(\lambda I_n - A). (1.1)
$$

where α *is a real number and* λ *is an eigenvalue of A.*

We close this section by stating the following lemma and the definitions of k -complement and $k(i)$ -complement of graphs required for further discussion.

Lemma 1.2. *[\[16\]](#page-5-14) If M*,*N*,*P*,*Q are matrices where M is invertible and* $S = \begin{pmatrix} M & N \\ P & Q \end{pmatrix}$, then $\det S = \det M \cdot \det[Q - PM^{-1}N]$.

Definition 1.3. *[\[11\]](#page-5-15) Let G be a graph and* $P_k = \{V_1, V_2, \ldots, V_k\}$ *be its vertex partition. Then the k-complement of G,* (*G*)*^k is obtained by removing edges between the vertices of Vⁱ and V^j , for* $i \neq j$ *and adding edges between the vertices of* V_i *and* V_j *which are not in G.*

Definition 1.4. *[\[12\]](#page-5-16) Let G be a graph and* $P_k = \{V_1, V_2, \ldots, V_k\}$ *be its vertex partition. Then the* $k(i)$ -complement of G , $(G)_{k(i)}$ *is obtained by removing edges of G joining the vertices within V^r and adding the edges from complement of G between the vertices V^r .*

2. Main results

In this section, we present a generalized expression for the characteristic polynomial of the graph $G_1 \nabla G_2$ in terms of the characteristic polynomials and coronals of the component graphs. Further we obtain \mathscr{P} - energy of join of graphs with respect to specific vertex partitions. Recall that $\Gamma_{A,\mathcal{P}}(\lambda)$ denote the coronal corresponding to the matrix $A_{\mathscr{P}}(G)$.

Theorem 2.1. *If* \mathcal{P}_1 *and* \mathcal{P}_2 *are the vertex partitions of two graphs G*¹ *and G*² *of order n*¹ *and n*² *respectively, then*

$$
\phi_{\mathscr{P}}(G_1 \nabla G_2, \lambda) = \phi_{\mathscr{P}_1}(G_1, \lambda) \phi_{\mathscr{P}_2}(G_2, \lambda) [1 - \Gamma_{A_{\mathscr{P}_1}}(\lambda) \Gamma_{A_{\mathscr{P}_2}}(\lambda)].
$$
\n(2.1)

Proof. For a vertex partition $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ of $G_1 \triangledown G_2$, the P-matrix

$$
A_{\mathscr{P}}(G_1 \triangledown G_2) = \begin{pmatrix} A_{\mathscr{P}_1}(G_1)_{n_1 \times n_1} & J_{n_1 \times n_2} \\ J_{n_2 \times n_1} & A_{\mathscr{P}_2}(G_2)_{n_2 \times n_2} \end{pmatrix}.
$$

Therefore, its characteristic polynomial

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \begin{vmatrix} \lambda I_{n_1} - A_{\mathscr{P}_1}(G_1)_{n_1 \times n_1} & -J_{n_1 \times n_2} \\ -J_{n_2 \times n_1} & \lambda I_{n_2} - A_{\mathscr{P}_2}(G_2)_{n_2 \times n_2} \end{vmatrix}.
$$

By Lemma [1.2,](#page-1-1)

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = |\lambda I_{n_1} - A_{\mathscr{P}_1}(G_1)| |[\lambda I_{n_2} - A_{\mathscr{P}_2}(G_2)] - B|.
$$
\n(2.2)

where

$$
B=J_{n_2\times n_1}[\lambda I_{n_1}-A_{\mathscr{P}_1}(G_1)]^{-1}J_{n_1\times n_2}
$$

On computing the value of *B*, it can be written as the product of a scalar quantity *s* and $J_{n_2 \times n_2}$, where *s* is the sum of all the entries from $\left[\lambda I_{n_1} - A_{\mathscr{P}_1}(\overline{G_1})\right]^{-1}$. Therefore by the definition of the $\mathscr P$ -coronal of a graph,

$$
B = \Gamma_{A_{\mathscr{P}_1}}(\lambda) J_{n_2 \times n_2}.
$$
\n(2.3)

Thus from Equations [\(2.2\)](#page-1-2) and [\(2.3\)](#page-1-3),

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \phi_{\mathscr{P}_1}(G_1, \lambda) |\lambda I_{n_2} - A_{\mathscr{P}_2}(G_2) - \Gamma_{A_{\mathscr{P}_1}}(\lambda) J_{n_2 \times n_2}|.
$$

By Lemma [1.1,](#page-1-4)

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \phi_{\mathscr{P}_1}(G_1, \lambda) \big| \lambda I_{n_2} - A_{\mathscr{P}_2}(G_2) \big| \big[1 - \Gamma_{A_{\mathscr{P}_1}}(\lambda) \Gamma_{A_{\mathscr{P}_2}}(\lambda) \big].
$$

Hence, the characteristic polynomial of $A_{\mathscr{P}}(G_1 \nabla G_2)$

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \phi_{\mathscr{P}_1}(G_1, \lambda) \phi_{\mathscr{P}_2}(G_2, \lambda) [1 - \Gamma_{A_{\mathscr{P}_1}}(\lambda) \Gamma_{A_{\mathscr{P}_2}}(\lambda)].
$$

Remark 2.2. *For* $\mathcal{P} = V(G_1 \triangledown G_2)$ *,*

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \phi_{\mathscr{P}_1}(A, \lambda) \phi_{\mathscr{P}_2}(B, \lambda) [1 - 4\Gamma_A(\lambda)\Gamma_B(\lambda)].
$$
\n(2.4)

 $where A = A \mathscr{P}_1(G_1) + n_2 I_{n_1} and B = A \mathscr{P}_2(G_2) + n_1 I_{n_2}.$

It has been observed in [\[2,](#page-5-9) [3,](#page-5-1) [10\]](#page-5-10) that the adjacency matrix of a regular graph has a constant row sum, but it is interesting to observe that in case of $\mathscr P$ -matrix, not only regular graphs but non-regular graphs can also have $\mathscr P$ -matrices with constant row sum. Note that, row sum is the sum of all the elements in a row of the given matrix.

We now attempt to determine the exact value of $E_{\mathscr{P}}(G_1 \nabla G_2)$ in the special case when $A_{\mathscr{P}}(G_1)$ and $A_{\mathscr{P}}(G_2)$ has a constant row sums R_1 and R_2 respectively. First we prove the following lemma that gives the value of $\Gamma_{A,\mathcal{P}}(\lambda)$.

Lemma 2.3. Let G be a graph of order *n* such that its \mathcal{P} *matrix* $A_{\mathscr{P}}(G)$ *corresponding to the partition* $\mathscr P$ *has a constant row sum R, then*

$$
\Gamma_{A_{\mathscr{P}}}(\lambda) = \frac{n}{\lambda - R}.\tag{2.5}
$$

Proof. Let $A_{\mathscr{P}}(G)$ be \mathscr{P} -matrix of *G* and *R* be its constant row sum. Thus,

$$
A_{\mathscr{P}}(G)\mathbf{1}_n = R\mathbf{1}_n.
$$

Therefore,

$$
\Gamma_{A_{\mathscr{P}}}(\lambda) = \mathbf{1}_n^T [\lambda I_n - A_{\mathscr{P}}(G)]^{-1} \mathbf{1}_n = \frac{\mathbf{1}_n^T \mathbf{1}_n}{\lambda - R} = \frac{n}{\lambda - R}.
$$

Using Theorem [2.1](#page-1-5) and Lemma [2.3,](#page-1-6) we derive the characteristic polynomial of $\mathscr P$ -matrix of join of two graphs G_1 and G_2 in the special case when $\mathscr P$ -matrices of G_1 and G_2 have a constant row sum R_1 and R_2 respectively.

Lemma 2.4. *If* G_1 *and* G_2 *are graphs of oder* n_1 *and* n_2 *having vertex partitions* \mathscr{P}_1 *and* \mathscr{P}_2 *such that* $A_{\mathscr{P}_1}(G_1)$ *has a constant row sum* R_1 *and* $A_{\mathscr{P}_2}(G_2)$ *has a constant row sum R*₂*, then with respect to the vertex partition* $\mathscr{P} = \mathscr{P}_1 \cup \mathscr{P}_2$ *of* $G_1 \nabla G_2$

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \phi_{\mathscr{P}_1}(G_1, \lambda) \phi_{\mathscr{P}_2}(G_2, \lambda) \left[\frac{(\lambda - R_1)(\lambda - R_2) - n_1 n_2}{(\lambda - R_1)(\lambda - R_2)} \right]
$$
\n(2.6)

where \mathscr{P}_1 *and* \mathscr{P}_2 *are the vertex partitions of* G_1 *and* G_2 *.*

Proof. By Lemma [2.3,](#page-1-6)

$$
\Gamma_{A,\mathcal{P}_1}(\lambda) = \frac{n_1}{\lambda - R_1} \tag{2.7}
$$

and

$$
\Gamma_{A_{\mathscr{P}_2}}(\lambda) = \frac{n_2}{\lambda - R_2}.\tag{2.8}
$$

Therefore by substituting Equations [\(2.7\)](#page-2-0) and [\(2.8\)](#page-2-1) in [\(2.1\)](#page-1-7),

$$
\phi_{\mathscr{P}}(G_1 \triangledown G_2, \lambda) = \phi_{\mathscr{P}_1}(G_1, \lambda) \phi_{\mathscr{P}_2}(G_2, \lambda) \left[1 - \frac{n}{\lambda - R_1} \frac{n}{\lambda - R_2}\right]
$$

$$
= \phi_{\mathscr{P}_1}(G_1, \lambda) \phi_{\mathscr{P}_2}(G_2, \lambda) \left[\frac{(\lambda - R_1)(\lambda - R_2) - n_1 n_2}{(\lambda - R_1)(\lambda - R_2)}\right].
$$

Theorem 2.5. Let G_1 and G_2 be two graph of order n_1 and n_1 *respectively. Let* \mathcal{P}_1 *and* \mathcal{P}_2 *be their respective vertex partitions. Then for a vertex partition* $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ *of* $G_1 \triangledown G_2$

$$
E_{\mathscr{P}}(G_1 \triangledown G_2) = E_{\mathscr{P}_1}(G_1) + E_{\mathscr{P}_2}(G_2) - \sum_{i=1,2} |R_i| + \frac{1}{2} \left\{ \left| (R_1 + R_2) + \sqrt{(R_1 + R_2)^2 - 4(R_1R_2 - n_1n_2)} \right| + \left| (R_1 + R_2) - \sqrt{(R_1 + R_2)^2 - 4(R_1R_2 - n_1n_2)} \right| \right\}
$$

where R_i *is a constant row sum of* $A_{\mathscr{P}}(G_i)$ *, for i* = 1,2*.*

Proof. By Lemma [2.4,](#page-2-2) Equation [\(2.6\)](#page-2-3) can be written as

$$
[\lambda - R_1][\lambda - R_2] \phi_{\mathscr{P}}(G_1 \nabla G_2, \lambda)
$$

= $\phi_{\mathscr{P}_1}(G_1, \lambda) \phi_{\mathscr{P}_2}(G_2, \lambda) [(\lambda - R_1)(\lambda - R_2) - n_1 n_2].$ (2.9)

Let the left hand side of the Equation [\(2.9\)](#page-2-4) be $L(\lambda)$ and the right hand side be $R(\lambda)$. Thus, the roots of the equations $L(\lambda) = 0$ and $R(\lambda) = 0$ are same. Therefore, sum of the

absolute values of the roots of these equations are also same. Thus,

$$
\sum_{i=1,2} |R_i| + E_{\mathscr{P}}(G_1 \nabla G_2) = E_{\mathscr{P}_1}(G_1) + E_{\mathscr{P}_2}(G_2)
$$

+ $\frac{1}{2} \left\{ |(R_1 + R_2) + \sqrt{(R_1 + R_2)^2 - 4(R_1R_2 - n_1n_2)}| + |(R_1 + R_2) - \sqrt{(R_1 + R_2)^2 - 4(R_1R_2 - n_1n_2)}| \right\}.$
Hence,

$$
E_{\mathscr{P}}(G_1 \nabla G_2) = E_{\mathscr{P}_1}(G_1) + E_{\mathscr{P}_2}(G_2) - \sum_{i=1,2} |R_i| + \frac{1}{2} \left\{ |(R_1 + R_2) + \sqrt{(R_1 + R_2)^2 - 4(R_1R_2 - n_1n_2)}| + |(R_1 + R_2) - \sqrt{(R_1 + R_2)^2 - 4(R_1R_2 - n_1n_2)}| \right\}.
$$

Remark 2.6. As observed in [\[8\]](#page-5-8), the \mathcal{P} -energy of a graph G *corresponding to partition* $\mathcal{P} = V(G)$ *is the maximum and is referred to as the robust* \mathscr{P} *-energy* $E_{\mathscr{P}_r}(G)$ *. Therefore, from Equations* [\(2.4\)](#page-1-8) *and* [\(2.5\)](#page-1-9) *it follows that robust* \mathcal{P} -energy of $G_1 \nabla G_2$

$$
E_{\mathscr{P}_r}(G_1 \nabla G_2) = \sum_{i=1}^{n_1} |\lambda_i + n_2| + \sum_{i=1}^{n_2} |\lambda'_i + n_1| - \sum_{i=1,2} |R'_i|
$$

+
$$
\frac{1}{2} \left\{ \left| (R'_1 + R'_2) + \sqrt{(R'_1 + R'_2)^2 - 4(R'_1 R'_2 - 4n_1 n_2)} \right| + \left| (R'_1 + R'_2) - \sqrt{(R'_1 + R'_2)^2 - 4(R'_1 R'_2 - 4n_1 n_2)} \right| \right\}
$$

where λ_i , λ'_i are the eigenvalues of $A_{\mathscr{P}_1}(G_1)$, $A_{\mathscr{P}_2}(G_2)$ re*spectively.*

In the next theorem, we derive an expression for the characteristic polynomial for the join of *k*-copies of a graph *F* in terms of characteristic polynomial of *F*. Further, using this expression we obtain $E_{\mathscr{P}}(G)$ where *G* is the join of *k*-copies of *F* when $A \varphi(F)$ has constant row sum.

Theorem 2.7. Let F be a graph of order *t* and \mathcal{P}_1 be its *vertex partition. If G is the join of k-copies of F, then for the vertex partition* P *of G having k elements, each of which is a* P1*,*

$$
\phi_{\mathscr{P}}(G) = \left[\phi_{\mathscr{P}_1}(F,\lambda)\right]^k \left[1 - (k-1)\Gamma_{A_{\mathscr{P}_1}}(\lambda)\right] \left[1 + \Gamma_{A_{\mathscr{P}_1}}(\lambda)\right]^{(k-1)}.
$$
\n(2.10)

Proof. By the choice of \mathcal{P} , we have the \mathcal{P} -matrix of *G*,

$$
A_{\mathscr{P}}(G) = \begin{pmatrix} A_{\mathscr{P}_1}(F) & J & J & \dots & J \\ J & A_{\mathscr{P}_1}(F) & J & \dots & J \\ J & J & A_{\mathscr{P}_1}(F) & \dots & J \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ J & J & J & \dots & A_{\mathscr{P}_1}(F) \end{pmatrix}_{k \times k}
$$

.

Therefore, the characteristic polynomial of $A_{\mathscr{P}}(G)$

$$
\phi_{\mathscr{P}}(G) = |\lambda I - A_{\mathscr{P}}(G)|.
$$

Apply the following row and column operations on $\phi_{\mathscr{P}}(G)$,

(i) Add $\sum_{k=1}^{k}$ $\sum_{i=2}$ *C_i* to first column,

(ii) Subtract first row from i^{th} row, for $i = 2, 3, \ldots, k$.

Therefore, it becomes

$$
\phi_{\mathscr{P}}(G,\lambda) = \left|\lambda I - A_{\mathscr{P}_1}(F) - (k-1)J\right| \left|\lambda I - A_{\mathscr{P}_1}(F) + J\right|^{(k-1)}.
$$

By Lemma [1.1,](#page-1-4)

$$
\phi_{\mathscr{P}}(G,\lambda) = \left[1 - (k-1)\Gamma_{A_{\mathscr{P}_1}}(\lambda)\right] |\lambda I - A_{\mathscr{P}_1}(F)|
$$

$$
\left\{ \left[1 + \Gamma_{A_{\mathscr{P}_1}}(\lambda)\right] |\lambda I - A_{\mathscr{P}_1}(F)| \right\}^{(k-1)}
$$

$$
= \left[\phi_{\mathscr{P}_1}(F,\lambda)\right]^k \left[1 - (k-1)\Gamma_{A_{\mathscr{P}_1}}(\lambda)\right] \left[1 + \Gamma_{A_{\mathscr{P}_1}}(\lambda)\right]^{(k-1)}.
$$

Remark 2.8. *For* $\mathcal{P} = V(G)$ *,*

$$
\phi_{\mathscr{P}}(G) = \left[\phi_{\mathscr{P}_1}(C,\lambda)\right]^k \left[1 - 2(k-1)\Gamma_C(\lambda)\right] \left[1 + 2\Gamma_C(\lambda)\right]^{(k-1)}
$$
\nwhere $C = A \circledcirc (F) + (n-t)L$

 $where C = A_{\mathscr{P}_1}(F) + (n - t)I_t.$

Now, we consider the join of *k*-copies of a graph *F* wherein the $\mathscr P$ -matrix of F has a constant row sum and obtain the corresponding characteristic polynomial in the the next result.

Lemma 2.9. *Let G be the join of k-copies of a graph F of order t.* Let \mathcal{P} and \mathcal{P}_1 be the vertex partitions of G and F respectively. If $A_{\mathscr{P}_1}(F)$ has constant row sum R, then for $\mathscr P$ *such that it is the union of k-copies of* \mathcal{P}_1 *,*

$$
\phi_{\mathscr{P}}(G,\lambda) = \left[\frac{\phi_{\mathscr{P}_1}(F)}{\lambda - R}\right]^k \left[\lambda - R - (k-1)t\right] \left[\lambda - R + t\right]^{(k-1)}.
$$

Proof. Let $A_{\mathscr{P}_1}(F)$ be a \mathscr{P} -matrix of *F* which has a constant row sum *R*, then by Lemma [2.3,](#page-1-6)

$$
\Gamma_{A_{\mathscr{P}_1}}(\lambda) = \frac{t}{\lambda - R}.\tag{2.11}
$$

Therefore, by Theorem [2.7](#page-2-5) and Equation [\(2.11\)](#page-3-1)

$$
\phi_{\mathscr{P}}(G) = \left[\phi_{\mathscr{P}_1}(F,\lambda)\right]^k \left[1 - (k-1)\frac{t}{\lambda - R}\right] \left[1 + \frac{t}{\lambda - R}\right]^{(k-1)}
$$

$$
= \left[\frac{\phi_{\mathscr{P}_1}(F,\lambda)}{\lambda - R'}\right]^k \left[\lambda - R - (k-1)t\right] \left[\lambda - R + t\right]^{(k-1)}.
$$

Thus, the result holds.

By using Lemma [2.9,](#page-3-2) we obtain the corresponding \mathscr{P} energy.

Theorem 2.10. *Let F be a graph of order t and G be the join of k-copies of F. Let* \mathcal{P}_1 *and* \mathcal{P} *be the vertex partitions of* G and F respectively. If $A_{\mathscr{P}_1}(F)$ has a constant row sum *R, then for a vertex partition* P *such that it is the union of k*-copies of \mathscr{P}_1 ,

$$
E_{\mathcal{P}}(G) = kE_{\mathcal{P}_1}(F) - kR + |R + (k-1)t| + (k-1)|R - t|.
$$
\n(2.12)

Proof. By Lemma [2.9,](#page-3-2) the characteristic polynomial of $A \mathscr{P}(G)$ can be written as,

$$
(\lambda - R)^{k} \phi_{\mathscr{P}}(G, \lambda) = \left[\phi_{\mathscr{P}_1}(F) \right]^{k} \left[\lambda - R - (k-1)t \right] \left[\lambda - R + t \right]^{(k-1)}.
$$
\n(2.13)

Now, consider the left hand side and the right hand side of the Equation [\(2.13\)](#page-3-3) as $L_1(\lambda)$ and $R_1(\lambda)$ respectively. The roots of equation $L_1(\lambda) = 0$ and $R_1(\lambda) = 0$ are same. Therefore, the sum of the absolute values of their roots are also same. Thus,

$$
kR+E_{\mathscr{P}}(G)=kE_{\mathscr{P}_1}(F)+|R+(k-1)t|+(k-1)|R-t|.
$$

Therefore,

$$
E_{\mathscr{P}}(G) = kE_{\mathscr{P}_1}(F) - kR + |R + (k-1)t| + (k-1)|R - t|.
$$

Hence, the result holds.

Remark 2.11. *The robust* P*-energy of join G of k-copies of a graph F*

$$
E_{\mathcal{P}_r}(G) = k \sum_{i=1}^t |\lambda_i + n - t| - kR' + |R' + 2(k-1)t| + (k-1)|R' - 2t|
$$

where λ_i is an eigenvalue of $A_{\mathscr{P}_1}(F)$ for $i = 1, 2, ..., t$ and R' *is the constant row sum of* $A_{\mathscr{P}_1}(F) + (n - t)I_t$.

3. Complements of join of graphs

In this section, we determine the $\mathscr P$ -energy of complement and generalized complements of join of graphs. It is to be noted that, the disjoint union of graphs is the complement of the join of those graphs [\[7\]](#page-5-11).

We begin with the \mathcal{P} -energy of complement of join of *k*-copies of a graph.

Theorem 3.1. *Let G be a graph of order n obtained by the join of k-copies of a graph F of order t and* P *be its vertex partition such that it is the union of k-copies of vertex partition* \mathscr{P}_1 *of F.* If \overline{G} *is the complement of G, then for the vertex partition* $\mathscr P$ *of* \overline{G} *,*

$$
E_{\mathscr{P}}(\overline{G}) = \sum_{i=1}^{k} E_{\mathscr{P}_i}(\overline{F}).
$$

 \Box

 \Box

Proof. For a vertex partition $\mathcal P$ such that it is the union of *k*-copies of \mathcal{P}_1 , the \mathcal{P} -matrix of \overline{G} is

$$
A_{\mathscr{P}}(\overline{G}) = \begin{pmatrix} A_{\mathscr{P}_1}(\overline{F}) & 0 & 0 & \dots & 0 \\ 0 & A_{\mathscr{P}_2}(\overline{F}) & 0 & \dots & 0 \\ 0 & 0 & A_{\mathscr{P}_3}(\overline{F}) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_{\mathscr{P}_k}(\overline{F}) \end{pmatrix}_{k \times k}
$$
\n(3.1)

where 0's are the block zero matrices of order $n_1 \times n_1$. Therefore by Lemma [1.2](#page-1-1) and Equation [\(3.1\)](#page-4-0), we get

$$
\phi_{\mathscr{P}}(\overline{G},\lambda)=\phi_{\mathscr{P}_1}(\overline{F},\lambda)\phi_{\mathscr{P}_2}(\overline{F},\lambda)\dots\phi_{\mathscr{P}_k}(\overline{F},\lambda).
$$

Therefore,

$$
E_{\mathscr{P}}(\overline{G})=E_{\mathscr{P}_1}(\overline{F})+E_{\mathscr{P}_2}(\overline{F})+\ldots+E_{\mathscr{P}_k}(\overline{F}).
$$

In the next theorem, we determine the characteristic polynomial of complement of the join of *k*-copies of *F*. It's proof is similar to that of Theorem [2.7.](#page-2-5)

Theorem 3.2. Let F be a graph of order *t* and \mathcal{P}_1 be its *vertex partition such that* $\mathcal{P}_1 = V(\overline{F})$ *. Let G be a graph of order n obtained by the join of k-copies of* F *and* $\mathscr P$ *be its vertex partition. Then for* $\mathcal{P} = V(\overline{G})$ *,*

$$
\phi_{\mathscr{P}}(\overline{G}) = \left[\phi_{\mathscr{P}_1}(D,\lambda)\right]^k \left[1 + (k-1)\Gamma_D(\lambda)\right] \left[1 - \Gamma_D(\lambda)\right]^{(k-1)}.
$$

where $D = A_{\mathscr{P}_1}(\overline{F}) + (n-t)I_t$.

Now we consider a graph F whose $\mathscr P$ -matrix has a constant row sum and find the corresponding $\mathscr P$ -energy using Theorem [3.2.](#page-4-1)

Theorem 3.3. *Let G be a graph of order n obtained by the join of k*-copies of a graph F of order *t* such that P and P_1 are *their vertex partitions respectively. Let* \overline{G} *be the complement of G If* $A_{\mathscr{P}_1}(\overline{F})$ *has constant row sum R, then for* $\mathscr{P} = V(\overline{G})$ *,*

$$
E \mathscr{P}(\overline{G}) = k \sum_{i=1}^{t} |\lambda_i + n - t| - kR' + |R' - (k-1)t| + (k-1)|R' + t|.
$$
\n(3.2)

Proof. By Lemma [2.3](#page-1-6) and Theorem [3.2,](#page-4-1)

$$
\phi_{\mathscr{P}}(\overline{G}) = \left[\phi_{\mathscr{P}_1}(D,\lambda)\right]^k \left[1 + (k-1)\frac{t}{\lambda - R'}\right] \left[1 - \frac{t}{\lambda - R'}\right]^{(k-1)}
$$
\nwhere $D = A_{\mathscr{P}_1}(\overline{F}) + (n-t)I_t$ and $R' = R + n - t$.

$$
\phi_{\mathscr{P}}(\overline{G}) = \left[\phi_{\mathscr{P}_1}(D,\lambda)\right]^k \left[\frac{\lambda - R' + (k-1)t}{\lambda - R'}\right] \left[\frac{\lambda - R' - t}{\lambda - R'}\right]^{(k-1)}
$$

$$
= \left[\frac{\phi_{\mathscr{P}_1}(D)}{\lambda - R'}\right]^k \left[\lambda - R' + (k-1)t\right] \left[\lambda - R' - t\right]^{(k-1)}.
$$

Thus, it can be written as

$$
(\lambda - R')^{k} \phi_{\mathscr{P}}(G, \lambda) = \left[\phi_{\mathscr{P}_1}(D) \right]^{k} \left[\lambda - R' + (k-1)t \right] \left[\lambda - R' - t \right]^{(k-1)}.
$$

Therefore,

 \Box

$$
kR' + E\mathscr{P}(G,\lambda) = k \sum_{i=1}^{t} |\lambda_i + n - t| + |R' - (k-1)t|
$$

$$
+ (k-1)|R' + t|
$$

$$
E\mathscr{P}(\overline{G}) = k \sum_{i=1}^{t} |\lambda_i + n - t| - kR' + |R' - (k-1)t|
$$

$$
+ (k-1)|R' + t|.
$$
where λ_i is an eigenvalue of $D = A\mathscr{P}_1(\overline{F}) + (n-t)I_t.$

Now, we obtain the \mathcal{P} -energy of complement of join of *k* graphs in the next result. We state it without proof as it's proof is similar to the proof of Theorem [3.1.](#page-3-4)

Theorem 3.4. Let G be the join of *k* graphs G_1, G_2, \ldots, G_k *such that* $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k$ *are the vertex partitions of*

 G_1, G_2, \ldots, G_k *respectively and* $\mathscr{P} = \bigcup^k$ $\bigcup_{i=1}$ \mathscr{P}_i *be the vertex partition of G.* If \overline{G} *is the complement of G, then for the vertex partition* $\mathscr{P} = \bigcup^{k}$ $\bigcup_{i=1}$ \mathscr{P}_i of $V(G)$ *,*

$$
E_{\mathscr{P}}(\overline{G})=E_{\mathscr{P}_1}(G_1)+E_{\mathscr{P}_2}(G_2)+\ldots+E_{\mathscr{P}_k}(G_k).
$$

In the next theorem, we determine the $\mathscr P$ -energy of k complement of join of *k* graphs.

Theorem 3.5. For a graph $G = G_1 \bigtriangledown G_2 \bigtriangledown \ldots \bigtriangledown G_k$ of order *n* such that $\mathscr{P} = \sum^{k}$ $\sum_{i=1}$ \mathscr{P}_i , $E_{\mathscr{P}}((G)_k) =$ *k* $\sum_{i=1} E_{\mathscr{P}_i}((G_i)_k).$ (3.3)

where $(G)_k$ *is the k-complement of the graph G and* \mathscr{P}_i *is the vertex partition of* G_i *, for* $i = 1, 2, \ldots, k$ *.*

Proof. The \mathscr{P} -matrix of $(G)_k$ is the diagonal matrix whose diagonal entries are $A_{\mathscr{P}_1}(\overline{G_1})_k$, $A_{\mathscr{P}_2}(\overline{G_2})_k$, ..., $A_{\mathscr{P}_k}(\overline{G_k})_k$. Therefore, by Lemma [1.2](#page-1-1)

$$
\phi_{\mathscr{P}}(\overline{(G)_k},\lambda)=\phi_{\mathscr{P}_1}(\overline{(G_1)_k},\lambda)\phi_{\mathscr{P}_2}(\overline{(G_2)_k},\lambda)\ldots\phi_{\mathscr{P}_k}(\overline{(G_k)_k},\lambda).
$$

Thus, the \mathscr{P} -energy of $(G)_k$ is

$$
E_{\mathscr{P}}(\overline{(G)_k})=E_{\mathscr{P}_1}(\overline{(G_1)_k})+E_{\mathscr{P}_2}(\overline{(G_2)_k})+\ldots+E_{\mathscr{P}_k}(\overline{(G_k)_k}).
$$

Remark 3.6. *Let G be the join of k graphs having the vertex partition* $\mathscr{P} = V(G)$ *and* $\overline{(G)_1}$ *be the* 1*-complement of G. Then the robust* \mathscr{P} *-energy of* $\overline{(G)_1}$

$$
E_{\mathscr{P}_r}(\overline{(G)_1})=E_{\mathscr{P}_r}(G).
$$

Now, we determine the characteristic polynomial of *k*(*i*) complement of join of *k*-copies of a graph.

Theorem 3.7. Let F be a graph of order t and let \mathcal{P}_1 be its *vertex partition. If G is a graph of order n obtained by the join of k-copies of F such that* $\mathcal P$ *is its vertex partition, then for* $\mathscr P$ *of* $(G)_{k(i)}$ such that it is the union of k-copies of $\mathscr P_1$,

$$
\phi_{\mathscr{P}}(\overline{(G)_{k(i)}}) = \left[\phi_{\mathscr{P}_1}(\overline{(F)_{k(i)}}, \lambda)\right]^k \left[1 - (k-1)\Gamma_{A_{\mathscr{P}_1}}(\lambda)\right]
$$

$$
\left[1 + \Gamma_{A_{\mathscr{P}_1}}(\lambda)\right]^{(k-1)}.\ (3.4)
$$

We omit the proof of Theorem [3.7,](#page-5-17) since the process of obtaining Equation [\(3.4\)](#page-5-18) is similar to that of Equation [\(2.10\)](#page-2-6) in the proof of Theorem [2.7.](#page-2-5)

Now in Theorem [3.8](#page-5-19) by considering the case when $A_{\mathscr{P}_1}(F)$ has a constant row sum *R*, we obtain the the corresponding $\mathscr P$ -energy by the similar method as shown in the proof of Theorem [3.3.](#page-4-2) Therefore, we state the result directly without proof.

Theorem 3.8. *Let G be the join of k-copies of a graph F of order t having* $\mathscr P$ *and* $\mathscr P_1$ *as their vertex partitions respectively. If* $A_{\mathscr{P}_1}(F)$ *has constant row sum R, then for a vertex* partition \mathscr{P} of $(G)_{k(i)}$ such that it is the union of k -copies of *vertex partitions* \mathscr{P}_1 *of* $(F)_{k(i)}$ *,*

$$
E_{\mathscr{P}}(\overline{(G)_{k(i)}}) = kE_{\mathscr{P}_1}(\overline{(F)_{k(i)}}) - kR + |R + (k-1)t| + (k-1)|R - t|.
$$

The robust $\mathscr P$ -energy of the $k(i)$ -complement of join of k graphs is given by the following result.

Proposition 3.9. Let G_i be graphs of order n_i for $i = 1, 2, ..., k$. *If* $G = G_1 \bigtriangledown G_2 \bigtriangledown \ldots \bigtriangledown G_k$, then for the vertex partition $\mathscr{P} = V((G)_{1(i)})$

$$
E_{\mathscr{P}_r}(\overline{(G)_{1(i)}}) = \sum_{i=1}^k \sum_{j=1}^{n_i} \left| \lambda_{i_j} + (n - n_i) \right|
$$

where $(G)_{1(i)}$ is the $1(i)$ -complement of the graph G of order *n* and λ_{i_j} is an eigenvalue of $A_{\mathscr{P}_i}((G_i)_{1(i)})$ for $j = 1, 2, \ldots, n_i$ *where* $i = 1, 2, ..., k$.

References

- [1] C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth, Color energy of a graph, *Proc. Jangjeon Math. Soc.* 16(3) (2013), 335–351.
- [2] S. Y. Cui and G. X. Tian, The spectrum and the signless Laplacian spectrum of coronae, *Linear Algebra Appl.* 437(7) (2012), 1692–1703.
- ^[3] D. M. Cvetković, M. Doob and H. Sachs, Spectra of *Graphs*, Academic Press, New York, 1980.
- [4] I. Gutman, The energy of a graph, *Ber. Math. Stat. Sekt. Forschungsz. Graz.* 103 (1978), 1–22.
- [5] I. Gutman and B. Furtula, The total π -electron energy saga, *Croat. Chem. Acta.* 90(3) (2017), 359–368, DOI: 10.5562/cca3189
- [6] I. Gutman, X. Li, J. Zhang, *Graph Energy*, Springer, New York, 2012.
- ^[7] R. Hammack, W. Imrich, S. Klavžar, *Handbook of product graphs*, CRC press, 2011.
- [8] P. B. Joshi and M. Joseph, P-energy of graphs, *Acta Univ. Sapientiae, Info.* 12(1) (2020), 137–157.
- [9] X. Liu, and Z. Zhang, Spectra of subdivision-vertex join and subdivision-edge join of two graphs, *Bull. Malaysian Math. Sci. Soc.* 42(1) (2019), 15–31.
- [10] C. McLeman and E. McNicholas, Spectra of coronae, *Linear Algebra Appl.*, 435(5) (2011), 998–1007.
- [11] E. Sampathkumar and L. Pushpalatha, Complement of a graph: A generalization, *Graphs Comb.*, 14(4) (1998), 377–392.
- [12] E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam and P. Bhat, Generalized complements of a graph, *Indian J. Pure Appl. Math.*, 29(6) (1998), 625–639.
- [13] E. Sampathkumar, S. V. Roopa, K. A. Vidya, M. A. Sriraj, Partition energy of a graph, *Proc. Jangjeon Math. Soc.* 18(4) (2015), 473–493.
- [14] E. Sampathkumar and M. A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, *J. Comb. Inf. Syst. Sci.* 38 (2013), 113–120.
- [15] D. B. West, *Introduction to Graph Theory*, Pearson, New Jersey, 2001.
- [16] F. Zhang (Ed.), *The Schur Complement and its Applications*, Springer Science & Business Media, 2006.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********