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Abstract
The P-energy of a graph G with a vertex partition P is the sum of the absolute values of the eigenvalues of its
P-matrix . In this article, we discuss the P-energy of the join of graphs in the special case when the component
graphs are either regular or complete bipartite.
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1. Introduction
The study of the energy of an arbitrary graph was initiated

by Ivan Gutman, a chemist and mathematician in 1978 [3].
For a given graph G, its energy is sum of the absolute values
of eigenvalues of the adjacency matrix A(G) [3]. In last few
decades, extensive studies have been done on graph energy
and its variations [4–6].

Sampathkumar et al. [9] introduced the concept of k-
partition energy of a graph EPk(G) in 2015 using the idea of
L-matrix that takes into consideration the vertex partitions
of G. Prajakta and Mayamma [7] extended the concept of
k-partition energy and initiated the study of P-energy, the
sum of absolute values of eigenvalues of P-matrix AP(G).
The entries of AP(G) = (ai j)n×n are given by

ai j =



|Vr| if i = j and vi = v j ∈Vr, for r = 1,2, . . .k
2 if viv j ∈ E(G) with vi,v j ∈Vr,

1 if viv j ∈ E(G) with vi ∈Vr and v j ∈Vs for r 6= s,
−1 if viv j /∈ E(G) with vi,v j ∈Vr,

0 otherwise.

In their study on P-energy, the authors have used the
concept of the P-coronal of a graph G ΓAP

(λ ) which is the

sum of entries in (λ In−AP(G)))−1 where In is an identity
matrix of order n [8] to find a generalized formula that gives
the characteristic polynomial of the join of graphs [8]. The
ΓAP

(λ ) in fact is a variation of M-coronal defined in [1] and
is associated with the matrix AP(G) corresponding to a graph
G with the vertex partition P .

It has been observed that P-matrix of regular graphs have
constant row sum. In this article we determine P-energy of
join of regular graphs along with that of the join of non-regular
complete bipartite graphs. The following results found in [8]
are required for further discussion.

Theorem 1.1. [8] Let G1 be a graph of order n1 and G2 be a
graph of order n2. If P1 is a vertex partition of G1 and P2
is a vertex partition of G2, then

φP(G1OG2,λ )= φP1(G1,λ )φP2(G2,λ )[1−ΓAP1
(λ )ΓAP2

(λ )]

(1.1)

where ΓAPi
(λ ) is the P-coronal of Gi corresponding to

APi(Gi), for i = 1,2.

Theorem 1.2. [8] Let F be a graph of order t and let P1 be
its vertex partition. If G is a graph of order n obtained by the
join of k-copies of F such that P is its vertex partition, then
for P of G such that it is the union of k-copies of P1,

φP(G) =
[
φP1(F,λ )

]k[1−(k−1)ΓAP1
(λ )
][

1+ΓAP1
(λ )
](k−1)

(1.2)

where ΓAP1
(λ ) is the P-coronal of F corresponding to

AP1(F), for i = 1,2.
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Theorem 1.3. [8] Let Gi be a graph of order ni and let Pi be
its vertex partition, for i = 1,2. If APi(Gi) has a constant row
sum Ri for i = 1,2, then for a vertex partition P = P1∪P2
of G1OG2,

φP(G1OG2,λ ) = φP1 (G1,λ )φP2 (G2,λ )

[
(λ −R1)(λ −R2)−n1n2

(λ −R1)(λ −R2)

]
(1.3)

where P1 and P2 are the vertex partitions of G1 and G2.

2. Regular graphs

In this section, we explore the P-energy of join of regular
graphs. We begin with a lemma that gives a property of
AP(G) when G is a regular graph.

Lemma 2.1. If G is a regular graph with vertex partition
P = {V1,V2, . . . ,Vk} such that |Vi|= l, for i= 1,2, . . . ,k, then
AP(G) has a constant row sum R = l+ 1

n (4m1 +2m2−2m3)
where m1 is the number of edges having end vertices are
in same vertex partition, m2, the number of edges with end
vertices are in different partition and m3 is the number of
non-adjacent pairs of vertices.

Proof. Consider a regular graph G a vertex partition P =
{V1,V2, . . . ,Vk} such that |Vi|= l for each Vi ∈P . Since G is
a regular graph and each diagonal entry of AP(G) is l, sum of
the elements of each row of AP(G) is a constant, say R. Now
we will determine the value of R in terms of the types of edges
of G. It can be observed that, number of 1’s, 2’s and −1’s are
2m1, 2m2 and 2m3, respectively. Therefore, the value of R is
given by R = l + 1

n (4m1 +2m2−2m3).

Note that, the quantities m1,m2,m3, and m′1,m
′
2,m

′
3 used

in Theorem 2.2 are taken in the same context as that of
m1,m2 and m3 mentioned in Lemma 2.1.

Theorem 2.2. Let G1 and G2 be two regular graphs of order
n1 and n2 with vertex partitions P1 and P2 respectively. If
P1 = {U1,U2, . . . ,Uk1} and P2 = {V1,V2, . . . ,Vk2} such that
|Ui|= l1 and |Vi|= l2, then for the vertex partition P =P1∪
P2 of G1OG2

EP(G1OG2)= ∑
i=1,2

EPi(Gi)− ∑
i=1,2

∣∣∣∣li+ Mi

ni

∣∣∣∣+ 1
2
(|a1|+ |b1|) ,

where M1 = 4m1 + 2m2− 2m3 and M2 = 4m′1 + 2m′2− 2m′3,

a1 =

[
l1+l2+

M1
n1

+ M2
n2

]
+

{
(l1−l2)2+

(
M1
n1
− M2

n2

)
+2l1

(
M1
n1
−

M2
n2

)
+ 2l2

(
M2
n2
− M1

n1

)
+ 4n1n2

} 1
2

and b1 =

[
l1 + l2 +

M1
n1

+

M2
n2

]
−
{
(l1−l2)2+

(
M1
n1
− M2

n2

)
+2l1

(
M1
n1
− M2

n2

)
+2l2

(
M2
n2
−

M1
n1

)
+4n1n2

} 1
2
.

Proof. For the vertex partition P = P1∪P2 of G1OG2, by
Theorem 1.3 and Lemma 2.1, the characteristic polynomial

AP(G) is

φP(G1OG2,λ ) =

φP1 (G1,λ )φP2 (G2,λ )

{
[λ − (l1 +

M1
n1

)][λ − (l2 +
M2
n2

)]−n1n2

}
[λ − (l1 +

M1
n1

)][λ − (l2 +
M2
n2

)]

It can be written as

[λ − (l1 +
M1

n1
)][λ − (l2 +

M2

n2
)]φP(G1OG2,λ )

= φP1(G1,λ )φP2(G2,λ )

{
[λ 2−

[
l1 + l2 +

M1

n1
+

M2

n2

]
λ

+

[
l1 + l2 +

M1

n1
+

M2

n2

]
−n1n2

}
. (2.1)

Let left and right side of Equation (2.1) be L(λ ) and R(λ )
respectively. The roots of the equations L(λ ) = 0 and R(λ ) =
0 are same. Therefore, the sum of the absolute values of the
roots of these equations are also same. Thus,

|(l1 +
M1

n1
)|+ |(l2 +

M2

n2
)|+EP(G1OG2,λ )

= EP1(G1,λ )+EP2(G2,λ )+
1
2
{
|a1|+ |b1|

}
, (2.2)

where M1 = 4m1 +2m2−2m3 and M2 = 4m′1 +2m′2−2m′3,

a1 =

[
l1+l2+

M1
n1

+ M2
n2

]
+

{
(l1−l2)2+

(
M1
n1
− M2

n2

)
+2l1

(
M1
n1
−

M2
n2

)
+ 2l2

(
M2
n2
− M1

n1

)
+ 4n1n2

} 1
2

and b1 =

[
l1 + l2 +

M1
n1

+

M2
n2

]
−
{
(l1−l2)2+

(
M1
n1
− M2

n2

)
+2l1

(
M1
n1
− M2

n2

)
+2l2

(
M2
n2
−

M1
n1

)
+4n1n2

} 1
2
.

Therefore, on simplifying Equation (2.2) we get the re-
quired result.

Corollary 2.3. Let G1 and G2 be two regular graphs of order
n1 and n2,with degrees r1 and r2 respectively. If P1 and P2
are the vertex partitions of G1 and G2, then corresponding to
the vertex partition P = P1∪P2 of G1OG2, then,

(i) EP(G1OG2) = ∑
i=1,2

EPi(Gi)− ∑
i=1,2

(3ri+1)+ 1
2

{
|a|+

|b|
}

, where a= [3(r1+r2)+2]+
√

3(r1− r2)2 +4n1n2 and b=
[3(r1+r2)+2]−

√
3(r1− r2)2 +4n1n2, provided P1 = {V (G1)}

and P2 = {V (G2)}.

(ii) EP(G1OG2)= ∑
i=1,2

EPi(Gi)− ∑
i=1,2

(2ri−ni+2)+ 1
2

{
|a2|+

|b2|
}
,where a2 = [2(r1 + r2)− (n1 +n2)+4]+{(2r1 +

2r2)
2+(n1+n2)

2+4r1(n2−n1)+4r2(n1−n2)}
1
2 b2 =

[2(r1+r2)−(n1+n2)+4]−{(2r1+2r2)
2+(n1+n2)

2+

4r1(n2−n1)+4r2(n1−n2)}
1
2 when P1 = {{u1},{u2}

, . . . ,{un1}} and P2 = {{v1},{v2}, . . . ,{vn2}}.

By Theorem 1.2 and Lemma 2.1, we obtain the following
result. We state it without proof as the proof is similar to that
of Theorem 2.2.
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Theorem 2.4. Let H be a regular graph of order n1 and
P = {V1,V2, . . . ,Vt} be its vertex partition such that |Vi|= l1
for i = 1,2, . . . , t. Let G be the join of k-copies of H and P
be its vertex partition such that it is the union of k-copies of
P. Then for P

EP(G) = kEP1(H)+
1
n1
|(k−1)n2

1 + l1 +M1|

+
(k−1)

n1
|M1 + l1n1−n2

1|−
k
n1
|l1n1 +M1|.

Corollary 2.5. Let H be an r1-regular graph of order n1 and
P be its vertex partition. Let G be the join of k-copies of H.
If P is the vertex partition of G such that it is the union of
k-copies of P, then

(i) EP(G)= kEP1(H)+|3r1+1−(k−1)n1|+(k−1)|3r1+
1−n1|− k|3r1 +1| when P1 =V (H) and

(ii) EP(G) = kEP1(H)+ |2(r1 + 1)− kn1|+ 2(k− 1)|r+
1−n1|−k|2r1−n1+2| if P1 = {{u1},{u2}, . . . ,{un1}}.

Let G be the join of k regular graphs of order n1,n2, . . . ,nk
and degree r1,r2, . . . ,rk respectively. Then the join G is a
regular graph if ni− ri = ni+1− ri+1 [2]. In the next theorem,
we use this condition and obtain the P-energy of a regular
graph which is the join of k graphs, each of which is regular.

Theorem 2.6. Let G1,G2, . . . ,Gk be the regular graphs of
order n1,n2, . . . ,nk and degree r1,r2, . . . ,rk respectively. Let
P1,P2, . . . ,Pk be their vertex partitions. If G=G1OG2O . . .
OGk is an r-regular graph of order n such that r = n− s, then

for a vertex partition P =
k⋃

i=1
Pi of G

EP(G) =
k

∑
i=1

EPi(Gi)−
k

∑
i=1

Ri +

( k−1

∑
i=1

ni +Rk

)
+

k−1

∑
i=1
|Ri−ni| (2.3)

where Ri is a constant row sum of APi(Gi) and s = ni− ri =
ni+1− ri+1, for i = 1,2, . . . ,k.

Proof. For a vertex partition P =P1∪P2 of G, by Theorem
1.3,

φP(G1OG2,λ ) =
φP1 (G1,λ )φP2 (G2,λ )[λ − (n1 +R2)][λ +n1−R1]

[λ −R1][λ −R2]
(2.4)

Now, let G = (G1OG2)OG3 and P = P1∪P2∪P3. Then
Equation (2.4) becomes,

φP(G,λ ) =
3

∏
i=i

φPi(Gi,λ )

[λ −Ri]
[λ − (n1 +n2 +R3)]

[λ +n1−R1][λ +n2−R2]

=
3

∏
i=i

φPi(Gi,λ )

[λ −Ri]
[λ − ( ∑

i=1,2
ni +R3)] ∏

i=1,2
[λ +ni−Ri]

continuing in this way for G1,G2, . . . ,Gk and P =
k⋃

i=1
Pi,

we obtain

φP(G,λ )=
k

∏
i=i

φPi(Gi,λ )

[λ −Ri]

k−1

∏
i=1

[λ−(Ri−ni)]

{
λ−

[ k−1

∑
i=1

ni+Rk

]}
.

(2.5)

Now, Equation (2.5) can be written as

k

∏
i=i

[λ −Ri]φP(G,λ )=
k

∏
i=i

φPi(Gi,λ )
k−1

∏
i=1

[λ−(Ri−ni)]{
λ −

[ k−1

∑
i=1

ni +Rk

]}
. (2.6)

Consider the left hand side and the right hand side of the
Equation (2.6) as S1(λ ) and S2(λ ) respectively. The roots of
equation S1(λ ) = 0 and S2(λ ) = 0 are same. Therefore, the
sum of the absolute values of their roots are also same. Thus,

k

∑
i=i
|Ri|+EP(G,λ ) =

k

∑
i=i

EPi(Gi,λ )+
k−1

∑
i=1
|Ri−ni|+

∣∣∣∣ k−1

∑
i=1

ni +Ri

∣∣∣∣.
Therefore,

EP(G,λ ) =
k

∑
i=i

EPi(Gi,λ )+
k−1

∑
i=1
|Ri−ni|+

∣∣∣∣ k−1

∑
i=1

ni +Rk

∣∣∣∣− k

∑
i=i
|Ri|.

Hence, the result holds.

Corollary 2.7. Let Gi be a regular graph of order ni, degree

ri such that Pi = V (Gi), for i = 1,2, . . . ,k. If G =
k⋃

i=1
Gi

is a regular graph of degree r such that its vertex partition

P =
k⋃

i=1
Pi, then

EP(G) =
k

∑
i=1

EPi(Gi)−
k

∑
i=1

(3ri +1)+
( k−1

∑
i=1

ni +3rk +1
)

+
k−1

∑
i=1
|3ri +1−ni|.(2.7)

3. Complete bipartite graphs

In this section, we determine the P-energy of join of com-
plete bipartite graphs using Theorem 1.1 and 1.2. First we
obtain the P-coronal of a complete bipartite graph.

Lemma 3.1. Let Kr,s be a complete bipartite graph of order
n = r+ s such that r 6= s. Then for the vertex partition P =
{V1,V2} where V1 and V2 are the two partite sets of Kr,s and
P = {{v1},{v2}, . . . ,{vn}}, the P-coronal of Kr,s is

ΓAP
(λ ) =

nλ +2rs−n
λ 2−2λ − (rs−1)

. (3.1)

Proof. Let X = diag((λ + s−1)Ir,(λ + r−1)Is) be a diago-
nal matrix of order n×n. Then

[λ −AP(Kr,s)]X1n = [λ 2−2λ − (rs−1)]1n.
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Therefore,

ΓAP
(λ ) = 1T

n [λ In−AP(Kr,s)]
−11n

=
1T

n X1n

[λ 2−2λ − (rs−1)]

=
nλ +2rs−n

[λ 2−2λ − (rs−1)]
.

Theorem 3.2. Let Kr1,s1 and K′r2,s2
be two complete bipartite

graphs of order n1 and n2. Let P1 and P2 be their vertex
partitions respectively. Then for a vertex partition P =P1∪
P2 of Kr1,s1OK′r2,s2

,

EP(Kr1,s1OK′r2,s2
) = EP1(Kr1,s1)+EP2(K

′
r2,s2

)−|(1+
√

r1s1)|
−|(1−

√
r1s1)|− |(1+

√
r2s2)|− |(1−

√
r2s2)|

+|c1|+ |c2|+ |c3|+ |c4|

where c1,c2,c3 and c4 are the roots of the quartic polynomial
λ 4−4λ 3−[r1s1+r2s2+n1n2−6]λ 2+2[r1s1(1−n2)+r2s2(1−
n1)+n1n2−2]λ +[r1s1(2n2−1)+r2s2(2n1−1)−3r1r2s1s2−
n1n2 +1].

Proof. By Lemma 3.1 and Theorem 1.1,

φP(Kr1,s1OK′r2,s2
,λ ) =

φP1(Kr1,s1 ,λ )φP2(K
′
r2,s2

,λ )

[λ 2−2λ − (r1s1−1)][λ 2−2λ − (r2s2−1)]{
[λ 2−2λ − (r1s1−1)][λ 2−2λ − (r2s2−1)]

−[n1λ +2r1s1−n1][n2λ +2r2s2−n2]

}
.

It can be written as,

[λ 2−2λ − (r1s1−1)][λ 2−2λ − (r2s2−1)]φP(Kr1,s1OK′r2,s2
,λ )=

φP1(Kr1,s1 ,λ )φP2(K
′
r2,s2

,λ )

{
[λ 2−2λ−(r1s1−1)][λ 2−2λ−(r2s2

−1)]− [n1λ +2r1s1−n1][n2λ +2r2s2−n2]

}
.

On taking factors of the first two terms on the left hand
side, we get{

(λ − (1+
√

r1s1))(λ − (1−√r1s1))(λ − (1+
√

r2s2))(λ − (1−

√
r2s2))

}
φP(Kr1,s1OK′r2,s2

,λ )= φP1(Kr1,s1 ,λ )φP2(K
′
r2,s2

,λ )

{
[λ 2−

2λ − (r1s1− 1)][λ 2− 2λ − (r2s2− 1)]− [n1λ + 2r1s1− n1][n2λ +

2r2s2−n2]

}
.

On simplifying the last two terms on the right hand side,

we obtain

(λ − (1+
√

r1s1))(λ − (1−
√

r1s1))(λ − (1+
√

r2s2))

(λ − (1−
√

r2s2))φP(Kr1,s1OK′r2,s2
,λ )

= φP1(Kr1,s1 ,λ )φP2(K
′
r2,s2

,λ )

{
λ

4−4λ
3−[r1s1+r2s2

+n1n2−6]λ 2+2[r1s1(1−n2)+r2s2(1−n1)+n1n2−2]λ

+[r1s1(2n2−1)+r2s2(2n1−1)−3r1r2s1s2−n1n2+1]
}
.

Thus,

|(1+
√

r1s1)|+ |(1−
√

r1s1)|+ |(1+
√

r2s2)|+ |(1−
√

r2s2)|
+EP(Kr1,s1OK′r2,s2

,λ ) = EP1(Kr1,s1 ,λ )+EP2(K
′
r2,s2

,λ )

+ |c1|+ |c2|+ |c3|+ |c4| (3.2)

where c1,c2,c3 and c4 are the roots of the quartic polynomial
λ 4− 4λ 3− [r1s1 + r2s2 + n1n2− 6]λ 2 + 2[r1s1(1− n2)+ r2s2(1−
n1)+n1n2−2]λ +[r1s1(2n2−1)+r2s2(2n1−1)−3r1r2s1s2−n1n2+

1].
Hence on simplifying Equation (3.2), we get the required
result.

Since the proof technique of the following theorem is
same as that of Theorem 3.2, we state the next result without
proof.

Theorem 3.3. Let G1 be a graph of order n1 such that AP1(G1)
has a constant row sum R1 and Kr1,s1 be a complete bipartite
graph of order n2. Let P1 and P2 be their vertex partitions
respectively. Then for a vertex partition P = P1 ∪P2 of
G1OKr1,s1 ,

EP(G1OKr1,s1) = EP1(G1)+EP2(Kr1,s1)−|R1|
− |(1+

√
r1s1)|+ |d1|+ |d2|+ |d3|

where d1,d2 and d3 are the roots of the cubic polynomial
λ 3−(R1+2)λ 2− [2R1−r1s1−n1n2+1]λ +[R1(r1s1−1)−
2r1s1s2n1 +n1n2].

Now, we derive the expression for P-energy of join of
k-copies of Kr,s in the next theorem.

Theorem 3.4. Let Kr,s be a complete bipartite graph of order
t, for r 6= s and P1 be its vertex partition. Let G be the join
of k-copies of Kr,s and P be its vertex partition such that it is
the union of k-copies of P1. Then

EP(G) = kEP1(Kr,s)− k(1+
√

rs)− k(1−
√

rs)

+
1
2

{∣∣∣∣t(k−1)+2+
√

t2(k−1)2 +4[2(k−1)+1]rs
∣∣∣∣

+

∣∣∣∣t(k−1)+2−
√

t2(k−1)2 +4[2(k−1)+1]rs
∣∣∣∣

+

∣∣∣∣t−2+
√

t2 +4rs
∣∣∣∣+ ∣∣∣∣t−2−

√
t2 +4rs

∣∣∣∣}.
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Proof. By Lemma 3.1, the P-coronal of Kr,s corresponding
to AP1(Kr,s) is given by

ΓAP1
(λ ) =

tλ +2rs− t
λ 2−2λ − (rs−1)

. (3.3)

By substituting Equation (3.3) in (1.2), we get

φP(G,λ ) =

[
φP1(Kr,s)

D

]k[
D− (k−1)N

][
D+N

](k−1)
.

(3.4)

where N = (tλ +2rs− t) and D = λ 2−2λ − (rs−1). Equa-
tion (3.4) can be written as

Dk
φP(G,λ ) =

[
φP1(Kr,s)

]k[
D−(k−1)N

][
D+N

](k−1)
.

(3.5)

Consider the left hand side and the right hand side of the
Equation (3.5) as S1(λ ) and S2(λ ) respectively. The roots of
equation S1(λ ) = 0 and S2(λ ) = 0 are same. Therefore, the
sum of the absolute values of their roots are also same. To get
this, we need to find out their roots.

1. The roots of D are 1±
√

rs, roots of
[
D− (k−1)N

]
.

2. The roots of
[
D− (k−1)N

]
are

1
2

{
t(k−1)+2±

√
t2(k−1)2 +4[2(k−1)+1]rs

}

3. Then roots of
[
D+N

]
are

1
2
[t−2+

√
t2 +4rs]

Thus, by Equation (3.5)

k(1+
√

rs)+ k(1−
√

rs)EP(G) = kEP1(Kr,s)

+
1
2

∣∣∣∣t(k−1)+2+
√

t2(k−1)2 +4[2(k−1)+1]rs
∣∣∣∣

+
1
2

∣∣∣∣t(k−1)+2−
√

t2(k−1)2 +4[2(k−1)+1]rs
∣∣∣∣

+
1
2

∣∣∣∣t−2+
√

t2 +4rs
∣∣∣∣+ 1

2

∣∣∣∣t−2−
√

t2 +4rs
∣∣∣∣.

(3.6)

On simplifying Equation (3.6), we get the required result.
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