

https://doi.org/10.26637/MJM0804/0135

©2020 MJM.

1-Harmonious coloring of triangular snakes

Akhlak Mansuri^{1*}, Rohit Mehta² and R. S. Chandel³

Abstract

In this article, we discuss the 1-harmonious coloring and investigate the 1-harmonious chromatic number of triangular snakes and alternate triangular snakes. We also find some relations between the 1-harmonious chromatic number of triangular snakes and alternate triangular snakes.

Keywords

1-harmonious coloring, triangular snakes, alternate triangular snakes.

AMS Subject Classification 05C15, 05C75.

00010, 00070.

¹Department of Mathematics, Government Girls College, Mandsaur (M.P.) India.

² Department of Mathematics, Radharaman Engineering College, Bhopal (M.P.) India.

³ Department of Mathematics, Government Geetanjali Girls College, Bhopal (M.P.) India.

*Corresponding author: ¹akhlaakmansuri@gmail.com; ²rohitmehta1010@gmail.com; ³rs_chandel2009@yahoo.co.in

Article History: Received 07 July 2020; Accepted 23 November 2020

Contents

- 2 Definitions 2116
- 3 1-Harmonious Coloring of Triangular Snakes ... 2117
- 4 1-Harmonious Coloring of Alternate Triangular Snakes 2119
- 5 Relations Between the 1-Harmonious Chromatic Number of Triangular and Alternate Triangular Snakes2120
- 6 Conclusions......2120 References......2121

1. Introduction

Throughout this paper, we considered only finite and undirected graphs without any loops or multiple edges. A proper vertex coloring of a graph *G* is a function $c: V(G) \rightarrow \{1, 2, ..., k\}$ in which if $u, v \in V(G)$ are adjacent, then $c(u) \neq c(v)$ and if this coloring uses at most *k* colors is known as *k*-coloring. The minimum number of colors are required for this coloring is called its chromatic number, and is generally denoted by $\chi(G)$. The 1-harmonious coloring [4] is a kind of vertex coloring such that the color pairs of end vertices of every edge are different only for adjacent edges and a minimum number of colors are required for this coloring is called the 1-harmonious chromatic number, denoted by $h_1(G)$. A triangular snake [2, 5–7, 9, 10] is a triangular cactus whose blockcutpointgraph is a path (a triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to a new vertex w_i for i = 1, 2, ..., n - 1). A double triangular snake graph $D(T_n)$ consists of two triangular snakes that have a common path, a triple triangular snake consists of three triangular snakes with a common path and consequently *k*-triangular snake graph $k(T_n)$ consists of k triangular snakes with a common path. A double alternate triangular snake graph $D(AT_n)$ consists of two alternate triangular snakes with a common path, a triple alternate triangular snake consists of three alternate triangular snakes with a common path and consequently *k*-alternate triangular snake graph $k(AT_n)$ consists of *k* alternate triangular snakes with a common path. In this paper, we study the 1-harmonious coloring with the chromatic number of above mentioned triangular snakes and find some relations between the 1-harmonious chromatic number of these snakes.

2. Definitions

Definition 2.1 ([2, 5–7, 9, 10]). A triangular snake T_n is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to new vertices v_i and adding edges v_i for i = 1, 2, ..., n - 1. That is every edge of a path is replaced by a cycle C_3 .

Definition 2.2 ([2, 5–7, 9, 10]). A double triangular snake $D(T_n)$ consists of two triangular snakes that have a common path. That is, a double triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to a new vertex v_i for i = 1, 2, ..., n - 1 and to a new vertex w_i for i = 1, 2, ..., n - 1.

Definition 2.3 ([2, 5, 9]). A triple triangular snake $T(T_n)$ consists of three triangular snakes that have a common path.

That is, a triple triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to a new vertex v_i for i = 1, 2, ..., n - 1, to a new vertex w_i for i = 1, 2, ..., n - 1 and to a new vertex x_i for i = 1, 2, ..., n - 1.

Definition 2.4 ([2, 3, 5–8]). An alternate triangular snake AT_n is the graph obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to new vertex v_i for i = 1, 2, ..., n-1 (that is, every alternate edge of a path is replaced by cycle C_3).

Definition 2.5 ([2, 3, 5–8]). A double alternate triangular snake $D(AT_n)$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to new vertices v_i for i = 1, 2, ..., n - 1 and w_i for i = 1, 2, ..., n - 1.

Definition 2.6 ([2, 5, 9]). A triple alternate quadrilateral snake $T(AT_n)$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to new vertices v_i for i = 1, 2, ..., n - 1, w_i for i = 1, 2, ..., n - 1 and x_i for i = 1, 2, ..., n - 1.

Throughout the paper we consider n as the number of vertices of path P_n .

3. 1-Harmonious Coloring of Triangular Snakes

Theorem 3.1. For $n \ge 3$, triangular snake T_n , the 1-harmonious chromatic number, $h_1(T_n) = \triangle(T_n) + 1$.

Proof. Let us consider the path graph P_n with n vertices $u_1, u_2, ..., u_n$ and T_n as the triangular snake with maximum degree, $\triangle(T_n) = 4$. Let the vertices of T_n , $V(T_n) = \{u_i : 1 \le i \le n\} \cup \{v_i : 1 \le i \le n-1\}$ and the edges of T_n , $E(T_n) = \{u_i u_{i+1} : 1 \le i \le n\} \cup \{u_i v_i, v_i u_{i+1} : 1 \le i \le n-1\}$. The number of vertices and edges in T_n are 2n - 1 and 3n - 3 respectively. Now we split the proof into following three cases.

Case 1: Suppose n = 3k. Define coloring $c : V(T_n) \longrightarrow \{1,2,3,4,5\}$ for $n \ge 3$ by $c(u_i) = 1$ (i = 1,4,7,...,n-2), $c(u_i) = 2$ (i = 2,5,8,...,n-1), $c(u_i) = 3$ (i = 3,6,9,...,n). Two sub cases arise here for even n and odd n.

Sub case 1: If *n* is odd, $c(v_i) = 4$ (i = 1, 3, 5, ..., n-2), $c(v_i) = 5$ (i = 2, 4, 6, ..., n-1).

Sub case 2: If *n* is even, $c(v_i) = 4$ (i = 1, 3, 5, ..., n - 1), $c(v_i) = 5$ (i = 2, 4, 6, ..., n - 2).

Vertices $u_2, u_3, ..., u_{n-1}$ are of maximum degree 4 whereas the degree of u_1, u_n is 2, u_i is adjacent to u_{i+1} $(1 \le i \le n-1)$ and vertices u_i $(1 \le i \le n)$ are adjacent to v_j $(1 \le j \le n-1)$. Therefore 5 colors are to be needed to color T_n . From figure 1, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(T_n) = 5$.

Case 2: Suppose n = 3k + 1. Define coloring $c : V(T_n) \rightarrow \{1,2,3,4,5\}$ for $n \ge 3$ by $c(u_i) = 1$ (i = 1,4,7,...,n), $c(u_i) = 2$ (i = 2,5,8,...,n-2), $c(u_i) = 3$ (i = 3,6,9,...,n-1). Again two sub cases arises for even n and odd n, sub-cases and remaining procedure can be done as describe in case 1.

Case 3: Suppose n = 3k + 2. Define coloring $c : V(T_n) \longrightarrow \{1, 2, 3, 4, 5\}$, for $n \ge 3$ by $c(u_i) = 1$ (i = 1, 4, 7, ..., n - 1),

 $c(u_i) = 2$ (i = 2, 5, 8, ..., n), $c(u_i) = 3$ (i = 3, 6, 9, ..., n - 2). Here again two sub cases arises for even *n* and odd *n*, for that we follow the procedure as described in case 1. In all three cases 1-harmonious chromatic number, $h_1(T_n) = 5$. Figure 2

and Figure 3 shows the coloring for case 2 and case 3. $\hfill\square$

Theorem 3.2. For $n \ge 3$, double triangular snake DT_n , the *1*-harmonious chromatic number, $h_1(DT_n) = \triangle(DT_n) + 1$.

Proof. Let us consider the path graph P_n with n vertices $u_1, u_2, ..., u_n$ and DT_n as the double triangular snake with maximum degree, $\triangle(DT_n) = 6$. Let the vertices of DT_n , $V(DT_n) = \{u_i: 1 \le i \le n\} \cup \{v_i, w_i: 1 \le i \le n-1\}$ and the edges of DT_n , $E(DT_n) = \{u_iu_{i+1}: 1 \le i \le n\} \cup \{u_iv_i, v_iu_{i+1}, u_iw_i, w_iu_{i+1}: 1 \le i \le n-1\}$. The number of vertices and edges in DT_n are 3n - 2 and 5n - 5 respectively. Now split the proof is into following three cases.

Case 1: Suppose n = 3k. Define coloring $c : V(DT_n) \longrightarrow \{1, 2, 3, 4, 5, 6, 7\}$ for $n \ge 3$ by $c(u_i) = 1$ (i = 1, 4, 7, ..., n - 2), $c(u_i) = 2$ (i = 2, 5, 8, ..., n - 1), $c(u_i) = 3$ (i = 3, 6, 9, ..., n). Two sub cases arise here for even *n* and odd *n*.

Sub case 1: If *n* is odd, $c(v_i) = 4$ (i = 1, 3, 5, ..., n-2), $c(v_i) = 5$ (i = 2, 4, 6, ..., n-1), $c(w_i) = 6$ (i = 1, 3, 5, ..., n-2), $c(w_i) = 7$ (i = 2, 4, 6, ..., n-1).

Sub case 2: If *n* is even, $c(v_i) = 4$ (i = 1, 3, 5, ..., n - 1), $c(v_i) = 5$ (i = 2, 4, 6, ..., n - 2), $c(w_i) = 6$ for (i = 1, 3, 5, ..., n - 1), $c(w_i) = 7$ (i = 2, 4, 6, ..., n - 2).

Figure 4. 1-harmonious coloring of DT_6 , $h_1(DT_6) = 7$

Vertices $u_2, u_3, ..., u_{n-1}$ are of maximum degree 6 whereas the degree of u_1, u_n is 3, u_i is adjacent to u_{i+1} $(1 \le i \le n-1)$ and vertices u_i $(1 \le i \le n)$ are adjacent to v_j, w_j $(1 \le j \le n-1)$. Therefore 7 colors are to be needed to color DT_n . From figure 4, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(DT_n) = 7$. **Case 2**: Suppose n = 3k + 1 Define coloring $c : V(DT_n) \rightarrow 3k$

Figure 5. 1-harmonious coloring of DT_4 , $h_1(DT_4) = 7$

{1,2,3,4,5,6,7} for $n \ge 3$ by $c(u_i) = 1$ (i = 1,4,7,...,n), $c(u_i) = 2$ (i = 2,5,8,...,n-2), $c(u_i) = 3$ (i = 3,6,9,...,n-1). Again two sub cases arises for even *n* and odd *n*, these subcases and remaining procedure can be done as described in case 1. Figure 5 shows the coloring for DT_4 .

Case 3: Suppose n = 3k + 2. Define coloring $c : V(DT_n) \longrightarrow$

Figure 6. 1-harmonious coloring of DT_5 , $h_1(DT_5) = 7$

{1,2,3,4,5,6,7}, for $n \ge 3$ by $c(u_i) = 1$ (i = 1,4,7,...,n-1), $c(u_i) = 2$ (i = 2,5,8,...,n), $c(u_i) = 3$ (i = 3,6,9,...,n-2). Here again two sub cases arises for even n and odd n, for that we follow the procedure as described in case 1. In all three cases, 1-harmonious chromatic number, $h_1(DT_n) = 7$. Figure 6 shows the coloring for T_5 . **Theorem 3.3.** For $n \ge 3$, triple triangular snake TT_n , the *1*-harmonious chromatic number, $h_1(TT_n) = \triangle(TT_n) + 1$.

Proof. Let us consider the path graph P_n with n vertices $u_1, u_2, ..., u_n$ and TT_n as the triangular snake with maximum degree, $\triangle(TT_n) = 8$. Let the vertices of TT_n , $V(TT_n) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i, x_i : 1 \le i \le n-1\}$ the edges of TT_n $E(TT_n) = \{u_i u_{i+1} : 1 \le i \le n\} \cup \{u_i v_i, v_i u_{i+1}, u_i w_i, w_i u_{i+1}, u_i x_i, x_i u_{i+1} : 1 \le i \le n-1\}$. The number of vertices and edges in TT_n are 4n - 3 and 7n - 7 respectively. Now split the proof into following three cases.

Case 1: Suppose n = 3k. Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ for $n \ge 3$ by $c(u_i) = 1$ (i = 1, 4, 7, ..., n - 2), $c(u_i) = 2$ (i = 2, 5, 8, ..., n - 1), $c(u_i) = 3$ (i = 3, 6, 9, ..., n). Two sub cases arise here for even *n* and odd *n*.

Sub case 1: If *n* is odd, $c(v_i) = 4$ (i = 1, 3, 5, ..., n-2), $c(v_i) = 5$ (i = 2, 4, 6, ..., n-1), $c(w_i) = 6$ (i = 1, 3, 5, ..., n-2), $c(w_i) = 7$ (i = 2, 4, 6, ..., n-1), $c(x_i) = 8$ (i = 1, 3, 5, ..., n-2)), $c(x_i) = 9$ (i = 2, 4, 6, ..., n-1).

Sub case 2: If *n* is even, $c(v_i) = 4$ (i = 1, 3, 5, ..., n - 1), $c(v_i) = 5$ (i = 2, 4, 6, ..., n - 2), $c(w_i) = 6$ (i = 1, 3, 5, ..., n - 1), $c(w_i) = 7$ (i = 2, 4, 6, ..., n - 2), $c(x_i) = 8$ (i = 1, 3, 5, ..., n - 1), $c(x_i) = 9$ (i = 2, 4, 6, ..., n - 2).

Vertices $u_2, u_3, ..., u_{n-1}$ are of maximum degree 8 whereas

Figure 7. 1-harmonious coloring of TT_6 , $h_1(TT_6) = 9$

the degree of u_1 , u_n is 4, u_i is adjacent to u_{i+1} $(1 \le i \le n-1)$, vertices u_i $(1 \le i \le n)$ are adjacent to v_j , w_j and x_i $(1 \le j \le n-1)$. Therefore we need 9 colors to color TT_n , as shown in figure 7. Therefore 9 colors are to be needed to color TT_n . From figure 7, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(TT_n) = 9$.

Case 2: Suppose n = 3k + 1 Define coloring $c : V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ for $n \ge 3$ by $c(u_i) = 1$ (i = 1, 4, 7, ..., n), $c(u_i) = 2$ (i = 2, 5, 8, ..., n-2), $c(u_i) = 3$ (i = 3, 6, 9, ..., n-1). Again two sub cases arises for even *n* and odd *n*, these subcases and remaining procedure can be done as described in case 1. Figure 8 shows the coloring for TT_4 .

Case 3: Suppose n = 3k + 2. Define coloring $c: V(TT_n) \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, for $n \ge 3$ by $c(u_i) = 1$ (i = 1, 4, 7, ..., n - 1), $c(u_i) = 2$ (i = 2, 5, 8, ..., n), $c(u_i) = 3$ (i = 3, 6, 9, ..., n - 2). Here again two sub cases arises for even n and odd n, for that we follow the procedure as describe in case 1. In all three

Figure 8. 1-harmonious coloring of TT_4 , $h_1(TT_4) = 9$

Figure 9. 1-harmonious coloring of TT_5 , $h_1(TT_5) = 9$

cases, 1-harmonious chromatic number, $h_1(TT_n) = 9$. Figure 9 shows the coloring for TT_5 .

Theorem 3.4. For $n \ge 3$, k-triangular snake kT_n , the 1- harmonious chromatic number, $h_1(kT_n) = \triangle(kT_n) + 1$.

Proof. Consequently, it is obvious from above theorems. \Box

4. 1-Harmonious Coloring of Alternate Triangular Snakes

Theorem 4.1. For $n \ge 4$, alternate triangular snake AT_n , the *1*-harmonious chromatic number, $h_1(AT_n) = \triangle(AT_n) + 1$.

Proof. Let us consider the path graph P_n with *n* vertices $u_1, u_2, ..., u_n$ and AT_n as the alternate triangular snake with maximum degree, $\triangle(AT_n) = 3$.

Let the vertices of AT_n , $V(AT_n) = \{u_i : 1 \le i \le n\} \cup \{v_i :$

Figure 10. 1-harmonious coloring of AT_6 , $h_1(AT_6) = 4$

 $1 \le i \le \frac{n}{2}$ and the edges of AT_n , $E(AT_n) = \{u_i u_{i+1} : 1 \le i \le n\} \cup \{u_i v_i, v_i u_{i+1} : 1 \le i \le n-1\}$. The number of vertices and edges in AT_n are $\frac{3n}{2}$ and 2n-1 respectively. Define coloring $c : V(AT_n)) \longrightarrow \{1, 2, 3, 4\}$. Three case are arises here; for n = 6k, n = 6k-2 and n = 6k+2. Remaining proof and coloring process may be followed as discussed in the section 3.

Figure 12. 1-harmonious coloring of AT_8 , $h_1(AT_8) = 4$

Figure 10, 11 and 12 shows the coloring for n = 6k, n = 6k - 2 and n = 6k + 2 respectively. Hence the result.

Theorem 4.2. For $n \ge 4$, double alternate triangular snake $D(AT_n)$, the 1-harmonious chromatic number, $h_1(D(AT_n)) = \triangle(D(AT_n)) + 1$.

Proof. Let us consider the path graph P_n with *n* vertices $u_1, u_2, ..., u_n$ and $D(AT_n)$ as the double alternate triangular

Figure 13. 1-harmonious coloring of $D(AT_6)$, $h_1(D(AT_6)) = 5$

Figure 14. 1-harmonious coloring of $D(AT_4)$, $h_1(D(AT_4)) = 5$

snake with maximum degree, $\triangle(D(AT_n)) = 4$. Let the vertices of $D(AT_n)$, $V(D(AT_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i : 1 \le i \le n\}$ and the edges of $D(AT_n)$, $E(D(AT_n)) = \{u_iu_{i+1} : 1 \le i \le n\} \cup \{u_iv_i, v_iu_{i+1}, u_iw_i, w_iu_{i+1} : 1 \le i \le n-1\}$.

The number of vertices and edges in $D(AT_n)$ are 2n and 3n-1

respectively. Define coloring $c: V(D(AT_n)) \longrightarrow \{1,2,3,4,5\}$. Three case are arises here; for n = 3k, n = 6k - 2 and n = 6k + 2. Remaining proof and coloring process may be followed as discussed in the section 3. Figure 13, 14 and 15

Figure 15. 1-harmonious coloring of $D(AT_8)$, $h_1(D(AT_8)) = 5$.

shows the coloring for n = 3k, n = 6k - 2 and n = 6k + 2 respectively. Hence the result.

Theorem 4.3. For $n \ge 4$, triple alternate triangular snake $T(AT_n)$, the 1-harmonious chromatic number, $h_1(T(AT_n)) = \triangle(T(AT_n)) + 1$.

Proof. Let P_n Let us consider the path graph P_n with *n* vertices $u_1, u_2, ..., u_n$ and $T(AT_n)$ as the triple alternate triangular snake with maximum degree, $\triangle(T(AT_n)) = 5$.

Figure 16. 1-harmonious coloring of $T(AT_6)$, $h_1(T(AT_6)) = 6$

Figure 17. 1-harmonious coloring of $T(AT_4)$, $h_1(T(AT_4)) = 6$

 $h_1(T(AT_8)) = 6$

Let the vertices of $T(AT_n)$,

$$W(T(AT_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i, x_i : 1 \le i \le \frac{n}{2}\}$$

and the edges of $T(AT_n)$, $E(T(AT_n)) = \{u_i u_{i+1} : 1 \le i \le n\} \cup \{u_i v_i, v_i u_{i+1}, w_i u_{i+1}, u_i x_i, x_i u_{i+1} : 1 \le i \le n-1\}$. The number of vertices and edges in $T(AT_n)$ are $\frac{5n}{2}$ and 4n-1 respectively. Define coloring $c : V(T(AT_n)) \longrightarrow \{1, 2, 3, 4, 5, 6\}$ Three case are arises here; for n = 3k, n = 6k - 2 and n = 6k + 2. Remaining proof and coloring process may be followed as discussed in the section 3. Figure 16, 17 and 18 shows the coloring for n = 3k, n = 6k - 2 and n = 6k + 2 respectively. Hence the result.

Theorem 4.4. For $n \ge 4$, k-alternate triangular snake kAT_n , the 1-harmonious chromatic number, $h_1(kAT_n) = \triangle(kT_n) + 1$.

Proof. Consequently, it is obvious from above theorems. \Box

5. Relations Between the 1-Harmonious Chromatic Number of Triangular and Alternate Triangular Snakes

From section 3 and 4, we observed the following relations between the 1-harmonious chromatic number of these triangular and alternate triangular snakes;

- $h_1(T_n) = h_1(AT_n) + 1.$
- $h_1(DT_n) = h_1(D(AT_n)) + 2.$
- $h_1(TT_n) = h_1(T(AT_n)) + 3$ and so on.... consequently,
- $h_1(kT_n) = h_1(kAT_n) + k$.

6. Conclusions

In this article, we discuss the 1-harmonious coloring and find the 1-harmonious chromatic number of triangular and

alternate triangular snakes *i.e.*

$$h_1(T_n) = \triangle (T_n) + 1,$$

$$h_1(DT_n) = \triangle (DT_n) + 1,$$

$$h_1(TT_n) = \triangle (TT_n) + 1,$$

$$h_1(kT_n) = 2k + 3,$$

$$h_1(AT_n) = \triangle (AT_n) + 1,$$

$$h_1(D(AT_n)) = \triangle (D(AT_n)) + 1$$

$$h_1(T(AT_n)) = \triangle (T(AT_n)) + 1.$$

We also find the relations between 1-harmonious chromatic number of these snakes *i.e.* $h_1(T_n) = h_1(AT_n) + 1$, $h_1(DT_n) = h_1(D(AT_n)) + 2$, $h_1(TT_n) = h_1(T(AT_n)) + 3$ and so on.... consequently, $h_1(kT_n) = h_1(kAT_n) + k$.

References

- ^[1] J. A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, London, MacMillan, 1976.
- [2] J. A. Gallian, A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, (2019), #DS6.
- [3] P. Jeyanthi, A. Maheswari and M. VijayaLakshmi, 3-Product cordial labeling of some snake graphs, *Proyecciones J. Math.*, 38(1)(2019), 13-30.
- [4] J. Liu, M. Arockiaraj and A. Nelson, Tight Bounds on 1-Harmonious Coloring of Certain Graphs, *Symmetry*, 11(2019), 917.
- ^[5] R. Ponraj and S. S. Narayanan, Difference Cordiality of Some Snake Graphs obtained from double alternate snake graphs, *Global J. Math. Sciences: Theory and Practical*, (5)(2013), 167-175.
- [6] R. Ponraj and S. S. Narayanan, Difference Cordiality of Some Snake Graphs, J. Appl. Math. & Informatics, 32(3-4)(2014), 377-387.
- [7] R. Ponraj and S. S. Narayanan, Difference Cordiality of Some derived Graphs, *J. Math. Combin*, (4)(2013), 37-48.
- [8] R. Ponraj and S. S. Narayanan, Difference Cordial labeling of Graphs graphs obtained from triangular snakes, *Applications Applied Math.*, 9(2)(2014), 811-825.
- ^[9] N. B. Rathod and K. K. Kanani , V4-cordial labeling of some alternate triangular snake related graphs, *National Level Science Symposium, Organized by Christ College*, Rajkot, Sponsored, February 14, (2016).
- [10] M.S.F.T. Selvi, Harmonious coloring of central graphs of certain snake graphs, *Appl. Math. Sci.*, (9)(2015), 569-578.
- [11] Y. Xi, Y. Yang, and L. Wang, On harmonious labeling of the double triangular snake, *Indian J. Pure Appl. Math.*, (39)(2008), 177-184.
- [12] D. Xu, Harmonicity of triangular snakes, J. Math. Res. Exposition, (15)(1995), 475-476.