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1-Harmonious coloring of triangular snakes
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Abstract
In this article, we discuss the 1-harmonious coloring and investigate the 1-harmonious chromatic number of
triangular snakes and alternate triangular snakes. We also find some relations between the 1-harmonious
chromatic number of triangular snakes and alternate triangular snakes.
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1. Introduction
Throughout this paper, we considered only finite and undi-
rected graphs without any loops or multiple edges. A proper
vertex coloring of a graph G is a function c :V (G)−→{1,2, . . .,
k} in which if u, v ∈V (G) are adjacent, then c(u) 6= c(v) and
if this coloring uses at most k colors is known as k-coloring.
The minimum number of colors are required for this color-
ing is called its chromatic number, and is generally denoted
by χ(G). The 1-harmonious coloring [4] is a kind of vertex
coloring such that the color pairs of end vertices of every
edge are different only for adjacent edges and a minimum
number of colors are required for this coloring is called the
1-harmonious chromatic number, denoted by h1(G). A trian-
gular snake [2, 5–7, 9, 10] is a triangular cactus whose block-
cutpointgraph is a path (a triangular snake is obtained from

a path u1,u2, ...,un by joining ui and ui+1 to a new vertex wi
for i = 1,2, ...,n−1). A double triangular snake graph D(Tn)
consists of two triangular snakes that have a common path, a
triple triangular snake consists of three triangular snakes with
a common path and consequently k-triangular snake graph
k(Tn) consists of k triangular snakes with a common path. A
double alternate triangular snake graph D(ATn) consists of
two alternate triangular snakes with a common path, a triple
alternate triangular snake consists of three alternate triangu-
lar snakes with a common path and consequently k-alternate
triangular snake graph k(ATn) consists of k alternate triangu-
lar snakes with a common path. In this paper, we study the
1-harmonious coloring with the chromatic number of above
mentioned triangular snakes and find some relations between
the 1-harmonious chromatic number of these snakes.

2. Definitions
Definition 2.1 ([2, 5–7, 9, 10]). A triangular snake Tn is
obtained from a path u1,u2, ...,un by joining ui and ui+1 to
new vertices vi and adding edges vi for i = 1,2, ...,n−1. That
is every edge of a path is replaced by a cycle C3.

Definition 2.2 ([2, 5–7, 9, 10]). A double triangular snake
D(Tn) consists of two triangular snakes that have a common
path. That is, a double triangular snake is obtained from a
path u1,u2, ...,un by joining ui and ui+1 to a new vertex vi for
i = 1,2, ...,n−1 and to a new vertex wi for i = 1,2, ...,n−1.

Definition 2.3 ([2, 5, 9]). A triple triangular snake T (Tn)
consists of three triangular snakes that have a common path.
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That is, a triple triangular snake is obtained from a path
u1,u2, ...,un by joining ui and ui+1 to a new vertex vi for
i = 1,2, ...,n−1, to a new vertex wi for i = 1,2, ...,n−1 and
to a new vertex xi for i = 1,2, ...,n−1.

Definition 2.4 ([2, 3, 5–8]). An alternate triangular snake
ATn is the graph obtained from a path u1,u2, ...,un by joining
ui and ui+1 (alternatively) to new vertex vi for i= 1,2, ...,n−1
(that is, every alternate edge of a path is replaced by cycle
C3).

Definition 2.5 ([2, 3, 5–8]). A double alternate triangular
snake D(ATn) is obtained from a path u1,u2, ...,un by joining
ui and ui+1 (alternatively) to new vertices vi for i= 1,2, ...,n−
1 and wi for i = 1,2, ...,n−1.

Definition 2.6 ([2, 5, 9]). A triple alternate quadrilateral
snake T (ATn) is obtained from a path u1,u2, ...,un by joining
ui and ui+1 (alternatively) to new vertices vi for i= 1,2, ...,n−
1, wi for i = 1,2, ...,n−1 and xi for i = 1,2, ...,n−1.

Throughout the paper we consider n as the number of
vertices of path Pn.

3. 1-Harmonious Coloring of Triangular
Snakes

Theorem 3.1. For n≥ 3, triangular snake Tn, the 1-harmonious
chromatic number, h1(Tn) =4(Tn)+1.

Proof. Let us consider the path graph Pn with n vertices
u1,u2, ...,un and Tn as the triangular snake with maximum de-
gree,4(Tn) = 4. Let the vertices of Tn, V (Tn) = {ui : 1≤ i≤
n}∪{vi : 1≤ i≤ n−1} and the edges of Tn, E(Tn) = {uiui+1 :
1≤ i≤ n}∪{uivi,viui+1 : 1≤ i≤ n−1}. The number of ver-
tices and edges in Tn are 2n−1 and 3n−3 respectively. Now
we split the proof into following three cases.
Case 1: Suppose n = 3k. Define coloring c : V (Tn) −→
{1,2,3,4,5} for n ≥ 3 by c(ui) = 1 ( i = 1,4,7, ...,n− 2),
c(ui) = 2 (i = 2,5,8, ...,n− 1), c(ui) = 3 (i = 3,6,9, ...,n).
Two sub cases arise here for even n and odd n.
Sub case 1: If n is odd, c(vi)= 4 (i= 1,3,5, ...,n−2), c(vi)=
5 (i = 2,4,6, ...,n−1).
Sub case 2: If n is even, c(vi) = 4 (i = 1,3,5, ...,n− 1),
c(vi) = 5 (i = 2,4,6, ...,n−2).

Vertices u2,u3, ...,un−1 are of maximum degree 4 whereas
the degree of u1, un is 2, ui is adjacent to ui+1 (1≤ i≤ n−1)
and vertices ui (1≤ i≤ n) are adjacent to v j (1≤ j ≤ n−1).
Therefore 5 colors are to be needed to color Tn. From figure 1,
clearly we find that for each vertex, the adjacent vertices are
colored with different color. Therefore, h1(Tn) = 5.
Case 2: Suppose n = 3k+1. Define coloring c : V (Tn)−→
{1,2,3,4,5} for n≥ 3 by c(ui) = 1 (i = 1,4,7, ...,n), c(ui) =
2 (i = 2,5,8, ...,n−2), c(ui) = 3 (i = 3,6,9, ...,n−1). Again
two sub cases arises for even n and odd n, sub-cases and re-
maining procedure can be done as describe in case 1.
Case 3: Suppose n = 3k+2. Define coloring c : V (Tn) −→
{1,2,3,4,5}, for n ≥ 3 by c(ui) = 1 (i = 1,4,7, ...,n− 1),

Figure 1. 1-harmonious coloring of T6, h1(T6) = 5

c(ui) = 2 (i = 2,5,8, ...,n), c(ui) = 3 (i = 3,6,9, ...,n− 2).
Here again two sub cases arises for even n and odd n, for that
we follow the procedure as described in case 1. In all three
cases 1-harmonious chromatic number, h1(Tn) = 5. Figure 2

Figure 2. 1-harmonious coloring of T4, h1(T4) = 5

Figure 3. 1-harmonious coloring of T5, h1(T5) = 5

and Figure 3 shows the coloring for case 2 and case 3.

Theorem 3.2. For n ≥ 3, double triangular snake DTn, the
1-harmonious chromatic number, h1(DTn) =4(DTn)+1.

Proof. Let us consider the path graph Pn with n vertices
u1,u2, ...,un and DTn as the double triangular snake with maxi-
mum degree,4(DTn) = 6. Let the vertices of DTn, V (DTn) =
{ui : 1≤ i≤ n}∪{vi,wi : 1≤ i≤ n−1} and the edges of DTn,
E(DTn) = {uiui+1 : 1 ≤ i ≤ n} ∪ {uivi,viui+1,uiwi,wiui+1 :
1 ≤ i ≤ n− 1}. The number of vertices and edges in DTn
are 3n−2 and 5n−5 respectively. Now split the proof is into
following three cases.
Case 1: Suppose n = 3k. Define coloring c : V (DTn) −→
{1,2,3,4,5,6,7} for n≥ 3 by c(ui) = 1 (i = 1,4,7, ...,n−2),
c(ui) = 2 (i = 2,5,8, ...,n− 1), c(ui) = 3 (i = 3,6,9, ...,n).
Two sub cases arise here for even n and odd n.
Sub case 1: If n is odd, c(vi) = 4 (i= 1,3,5, ...,n−2), c(vi) =
5 (i= 2,4,6, ...,n−1), c(wi)= 6 (i= 1,3,5, ...,n−2), c(wi)=
7 (i = 2,4,6, ...,n−1).
Sub case 2: If n is even, c(vi) = 4 (i = 1,3,5, ...,n− 1),
c(vi)= 5 (i= 2,4,6, ...,n−2), c(wi)= 6 for (i= 1,3,5, ...,n−
1), c(wi) = 7 (i = 2,4,6, ...,n−2).
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Figure 4. 1-harmonious coloring of DT6, h1(DT6) = 7

Vertices u2,u3, ...,un−1 are of maximum degree 6 whereas
the degree of u1, un is 3, ui is adjacent to ui+1 (1≤ i≤ n−1)
and vertices ui (1 ≤ i ≤ n) are adjacent to v j, w j (1 ≤ j ≤
n−1). Therefore 7 colors are to be needed to color DTn. From
figure 4, clearly we find that for each vertex, the adjacent ver-
tices are colored with different color. Therefore, h1(DTn) = 7.
Case 2: Suppose n = 3k+1 Define coloring c : V (DTn)−→

Figure 5. 1-harmonious coloring of DT4, h1(DT4) = 7

{1,2,3,4,5,6,7} for n ≥ 3 by c(ui) = 1 (i = 1,4,7, ...,n),
c(ui) = 2 (i = 2,5,8, ...,n−2), c(ui) = 3 (i = 3,6,9, ...,n−1).
Again two sub cases arises for even n and odd n, these sub-
cases and remaining procedure can be done as described in
case 1. Figure 5 shows the coloring for DT4.
Case 3: Suppose n = 3k+2. Define coloring c : V (DTn)−→

Figure 6. 1-harmonious coloring of DT5, h1(DT5) = 7

{1,2,3,4,5,6,7}, for n≥ 3 by c(ui) = 1 (i = 1,4,7, ...,n−1),
c(ui) = 2 (i = 2,5,8, ...,n), c(ui) = 3 (i = 3,6,9, ...,n− 2).
Here again two sub cases arises for even n and odd n, for that
we follow the procedure as described in case 1. In all three
cases, 1-harmonious chromatic number, h1(DTn) = 7. Figure
6 shows the coloring for T5.

Theorem 3.3. For n ≥ 3, triple triangular snake T Tn, the
1-harmonious chromatic number, h1(T Tn) =4(T Tn)+1.

Proof. Let us consider the path graph Pn with n vertices
u1,u2, ...,un and T Tn as the triangular snake with maximum
degree, 4(T Tn) = 8. Let the vertices of T Tn, V (T Tn) =
{ui : 1≤ i≤ n}∪{vi,wi,xi : 1≤ i≤ n−1} the edges of T Tn
E(T Tn)= {uiui+1 : 1≤ i≤ n}∪{uivi,viui+1,uiwi,wiui+1,uixi,
xiui+1 : 1≤ i≤ n−1}. The number of vertices and edges in
T Tn are 4n−3 and 7n−7 respectively. Now split the proof
into following three cases.
Case 1: Suppose n = 3k. Define coloring c : V (T Tn) −→
{1,2,3,4,5,6,7,8,9} for n≥ 3 by c(ui)= 1 (i= 1,4,7, ...,n−
2), c(ui) = 2 (i = 2,5,8, ...,n−1), c(ui) = 3 (i = 3,6,9, ...,n).
Two sub cases arise here for even n and odd n.
Sub case 1: If n is odd, c(vi) = 4 (i= 1,3,5, ...,n−2), c(vi) =
5 (i= 2,4,6, ...,n−1), c(wi)= 6 (i= 1,3,5, ...,n−2), c(wi)=
7 (i= 2,4,6, ...,n−1), c(xi)= 8 (i= 1,3,5, ...,n−2)), c(xi)=
9 (i = 2,4,6, ...,n−1).
Sub case 2: If n is even, c(vi) = 4 (i = 1,3,5, ...,n− 1),
c(vi) = 5 (i= 2,4,6, ...,n−2), c(wi) = 6 (i= 1,3,5, ...,n−1),
c(wi) = 7 (i = 2,4,6, ...,n−2),c(xi) = 8 (i = 1,3,5, ...,n−1),
c(xi) = 9 (i = 2,4,6, ...,n−2).

Vertices u2,u3, ...,un−1 are of maximum degree 8 whereas

Figure 7. 1-harmonious coloring of T T6, h1(T T6) = 9

the degree of u1, un is 4, ui is adjacent to ui+1 (1≤ i≤ n−1),
vertices ui (1 ≤ i ≤ n) are adjacent to v j,w j and xi (1 ≤ j ≤
n− 1). Therefore we need 9 colors to color T Tn, as shown
in figure 7. Therefore 9 colors are to be needed to color T Tn
.From figure 7, clearly we find that for each vertex, the ad-
jacent vertices are colored with different color. Therefore,
h1(T Tn) = 9.

Case 2: Suppose n = 3k+1 Define coloring c : V (T Tn)−→
{1,2,3,4,5,6,7} for n ≥ 3 by c(ui) = 1 (i = 1,4,7, ...,n),
c(ui) = 2 (i = 2,5,8, ...,n−2), c(ui) = 3 (i = 3,6,9, ...,n−1).
Again two sub cases arises for even n and odd n, these sub-
cases and remaining procedure can be done as described in
case 1. Figure 8 shows the coloring for T T4.
Case 3: Suppose n = 3k+2. Define coloring c : V (T Tn)−→
{1,2,3,4,5,6,7,8,9}, for n≥ 3 by c(ui)= 1 (i= 1,4,7, ...,n−
1), c(ui) = 2 (i = 2,5,8, ...,n), c(ui) = 3 (i = 3,6,9, ...,n−2).
Here again two sub cases arises for even n and odd n, for that
we follow the procedure as describe in case 1. In all three
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Figure 8. 1-harmonious coloring of T T4, h1(T T4) = 9

Figure 9. 1-harmonious coloring of T T5, h1(T T5) = 9

cases, 1-harmonious chromatic number, h1(T Tn) = 9. Figure
9 shows the coloring for T T5.

Theorem 3.4. For n≥ 3, k-triangular snake kTn, the 1- har-
monious chromatic number, h1(kTn) =4(kTn)+1.

Proof. Consequently, it is obvious from above theorems.

4. 1-Harmonious Coloring of Alternate
Triangular Snakes

Theorem 4.1. For n≥ 4, alternate triangular snake ATn, the
1-harmonious chromatic number, h1(ATn) =4(ATn)+1.

Proof. Let us consider the path graph Pn with n vertices
u1,u2, ...,un and ATn as the alternate triangular snake with
maximum degree,4(ATn) = 3.

Let the vertices of ATn, V (ATn) = {ui : 1 ≤ i ≤ n} ∪ {vi :

Figure 10. 1-harmonious coloring of AT6, h1(AT6) = 4

1≤ i≤ n
2} and the edges of ATn, E(ATn) = {uiui+1 : 1≤ i≤

n}∪{uivi,viui+1 : 1≤ i≤ n−1}. The number of vertices and
edges in ATn are 3n

2 and 2n−1 respectively. Define coloring
c : V (ATn)) −→ {1,2,3,4}. Three case are arises here; for
n = 6k, n = 6k−2 and n = 6k+2. Remaining proof and col-
oring process may be followed as discussed in the section 3.

Figure 11. 1-harmonious coloring of AT4, h1(AT4) = 4

Figure 12. 1-harmonious coloring of AT8, h1(AT8) = 4

Figure 10, 11 and 12 shows the coloring for n= 6k, n= 6k−2
and n = 6k+2 respectively. Hence the result.

Theorem 4.2. For n≥ 4, double alternate triangular snake
D(ATn), the 1-harmonious chromatic number, h1(D(ATn)) =
4(D(ATn))+1.

Proof. Let us consider the path graph Pn with n vertices
u1,u2, ...,un and D(ATn) as the double alternate triangular

Figure 13. 1-harmonious coloring of D(AT6), h1(D(AT6))
= 5

Figure 14. 1-harmonious coloring of D(AT4), h1(D(AT4))
= 5

snake with maximum degree, 4(D(ATn)) = 4. Let the ver-
tices of D(ATn), V (D(ATn)) = {ui : 1≤ i≤ n}∪{vi,wi : 1≤
i≤ n

2} and the edges of D(ATn), E(D(ATn)) = {uiui+1 : 1≤
i≤ n}∪{uivi,viui+1,uiwi,wiui+1 : 1≤ i≤ n−1}.
The number of vertices and edges in D(ATn)) are 2n and 3n−1
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respectively. Define coloring c : V (D(ATn))−→{1,2,3,4,5}.
Three case are arises here; for n = 3k,n = 6k− 2 and n =
6k+ 2. Remaining proof and coloring process may be fol-
lowed as discussed in the section 3. Figure 13, 14 and 15

Figure 15. 1-harmonious coloring of D(AT8), h1(D(AT8))
= 5.

shows the coloring for n = 3k, n = 6k− 2 and n = 6k + 2
respectively. Hence the result.

Theorem 4.3. For n ≥ 4, triple alternate triangular snake
T (ATn), the 1-harmonious chromatic number, h1(T (ATn)) =
4(T (ATn))+1.

Proof. Let Pn Let us consider the path graph Pn with n vertices
u1,u2, ...,un and T (ATn) as the triple alternate triangular snake
with maximum degree,4(T (ATn)) = 5.

Figure 16. 1-harmonious coloring of T (AT6), h1(T (AT6))
= 6

Figure 17. 1-harmonious coloring of T (AT4), h1(T (AT4))
= 6

Figure 18. 1-harmonious coloring of T (AT8),
h1(T (AT8)) = 6

Let the vertices of T (ATn),

V (T (ATn)) = {ui : 1≤ i≤ n}∪{vi,wi,xi : 1≤ i≤ n
2
}

and the edges of T (ATn), E(T (ATn)) = {uiui+1 : 1≤ i≤ n}∪
{uivi,viui+1,wiui+1,uixi,xiui+1 : 1≤ i≤ n−1}. The number
of vertices and edges in T (ATn) are 5n

2 and 4n−1 respectively.
Define coloring c : V (T (ATn))−→{1,2,3,4,5,6} Three case
are arises here; for n = 3k,n = 6k−2 and n = 6k+2. Remain-
ing proof and coloring process may be followed as discussed
in the section 3. Figure 16, 17 and 18 shows the coloring for
n = 3k, n = 6k− 2 and n = 6k+ 2 respectively. Hence the
result.

Theorem 4.4. For n≥ 4, k-alternate triangular snake kATn,
the 1-harmonious chromatic number, h1(kATn) =4(kTn)+1.

Proof. Consequently, it is obvious from above theorems.

5. Relations Between the 1-Harmonious
Chromatic Number of Triangular and

Alternate Triangular Snakes

From section 3 and 4, we observed the following relations be-
tween the 1-harmonious chromatic number of these triangular
and alternate triangular snakes;

• h1(Tn) = h1(ATn)+1.

• h1(DTn) = h1(D(ATn))+2.

• h1(T Tn) = h1(T (ATn))+3 and so on.... consequently,

• h1(kTn) = h1(kATn)+ k.

6. Conclusions
In this article, we discuss the 1-harmonious coloring and
find the 1-harmonious chromatic number of triangular and
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alternate triangular snakes i.e.

h1(Tn) =4 (Tn)+1,
h1(DTn) =4 (DTn)+1,
h1(T Tn) =4 (T Tn)+1,
h1(kTn) =2k+3,
h1(ATn) =4 (ATn)+1,

h1(D(ATn)) =4 (D(ATn))+1,
h1(T (ATn)) =4 (T (ATn))+1

h1(kATn) =4 (kTn)+1.

We also find the relations between 1-harmonious chromatic
number of these snakes i.e. h1(Tn) = h1(ATn)+1, h1(DTn) =
h1(D(ATn))+2, h1(T Tn) = h1(T (ATn))+3 and so on.... con-
sequently, h1(kTn) = h1(kATn)+ k.
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