

https://doi.org/10.26637/MJM0804/0135

1-Harmonious coloring of triangular snakes

Akhlak Mansuri^{1*}, Rohit Mehta² and R. S. Chandel³

Abstract

In this article, we discuss the 1-harmonious coloring and investigate the 1-harmonious chromatic number of triangular snakes and alternate triangular snakes. We also find some relations between the 1-harmonious chromatic number of triangular snakes and alternate triangular snakes.

Keywords

1-harmonious coloring, triangular snakes, alternate triangular snakes.

AMS Subject Classification

05C15, 05C75.

¹*Department of Mathematics, Government Girls College, Mandsaur (M.P.) India.*

²*Department of Mathematics, Radharaman Engineering College, Bhopal (M.P.) India.*

³*Department of Mathematics, Government Geetanjali Girls College, Bhopal (M.P.) India.*

***Corresponding author**: ¹akhlaakmansuri@gmail.com; ²rohitmehta1010@gmail.com; ³rs₋chandel2009@yahoo.co.in

Article History: Received **07** July **2020**; Accepted **23** November **2020** c 2020 MJM.

Contents

- **1 [Introduction](#page-0-0) . 2116**
- **2 [Definitions](#page-0-1) . 2116**
- **3 [1-Harmonious Coloring of Triangular Snakes](#page-1-0) . . . 2117**
- **4 [1-Harmonious Coloring of Alternate Triangular Snakes](#page-3-0) 2119**
- **5 [Relations Between the 1-Harmonious Chromatic Num](#page-4-0)[ber of Triangular and Alternate Triangular Snakes2](#page-4-0)120**
- **6 [Conclusions](#page-4-1). .2120 [References](#page-5-0) . 2121**

1. Introduction

Throughout this paper, we considered only finite and undirected graphs without any loops or multiple edges. A proper vertex coloring of a graph *G* is a function $c: V(G) \longrightarrow \{1, 2, \ldots,$ *k*} in which if *u*, $v \in V(G)$ are adjacent, then $c(u) \neq c(v)$ and if this coloring uses at most *k* colors is known as *k*-coloring. The minimum number of colors are required for this coloring is called its chromatic number, and is generally denoted by $\chi(G)$. The 1-harmonious coloring [\[4\]](#page-5-1) is a kind of vertex coloring such that the color pairs of end vertices of every edge are different only for adjacent edges and a minimum number of colors are required for this coloring is called the 1-harmonious chromatic number, denoted by $h_1(G)$. A triangular snake [\[2,](#page-5-2) [5–](#page-5-3)[7,](#page-5-4) [9,](#page-5-5) [10\]](#page-5-6) is a triangular cactus whose blockcutpointgraph is a path (a triangular snake is obtained from

a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} to a new vertex w_i for $i = 1, 2, ..., n-1$). A double triangular snake graph $D(T_n)$ consists of two triangular snakes that have a common path, a triple triangular snake consists of three triangular snakes with a common path and consequently *k*-triangular snake graph $k(T_n)$ consists of k triangular snakes with a common path. A double alternate triangular snake graph $D(AT_n)$ consists of two alternate triangular snakes with a common path, a triple alternate triangular snake consists of three alternate triangular snakes with a common path and consequently *k*-alternate triangular snake graph $k(AT_n)$ consists of *k* alternate triangular snakes with a common path. In this paper, we study the 1-harmonious coloring with the chromatic number of above mentioned triangular snakes and find some relations between the 1-harmonious chromatic number of these snakes.

2. Definitions

Definition 2.1 ($[2, 5-7, 9, 10]$ $[2, 5-7, 9, 10]$ $[2, 5-7, 9, 10]$ $[2, 5-7, 9, 10]$ $[2, 5-7, 9, 10]$ $[2, 5-7, 9, 10]$ $[2, 5-7, 9, 10]$). *A triangular snake* T_n *is obtained from a path* u_1, u_2, \ldots, u_n *by joining* u_i *and* u_{i+1} *to new vertices vⁱ and adding edges vⁱ for i* = 1,2,...,*n*−1*. That is every edge of a path is replaced by a cycle C*3*.*

Definition 2.2 ([\[2,](#page-5-2) [5–](#page-5-3)[7,](#page-5-4) [9,](#page-5-5) [10\]](#page-5-6)). *A double triangular snake D*(*Tn*) *consists of two triangular snakes that have a common path. That is, a double triangular snake is obtained from a path u*1,*u*2,...,*uⁿ by joining uⁱ and ui*+¹ *to a new vertex vⁱ for* $i = 1, 2, ..., n-1$ *and to a new vertex w_i for* $i = 1, 2, ..., n-1$ *.*

Definition 2.3 ([\[2,](#page-5-2) [5,](#page-5-3) [9\]](#page-5-5)). A triple triangular snake $T(T_n)$ *consists of three triangular snakes that have a common path.* *That is, a triple triangular snake is obtained from a path* u_1, u_2, \ldots, u_n *by joining* u_i *and* u_{i+1} *to a new vertex* v_i *for i* = 1,2,...,*n*−1*, to a new vertex wⁱ for i* = 1,2,...,*n*−1 *and to a new vertex* x_i *for i* = 1,2,...,*n* – 1.

Definition 2.4 ([\[2,](#page-5-2) [3,](#page-5-8) [5–](#page-5-3)[8\]](#page-5-9)). *An alternate triangular snake* AT_n *is the graph obtained from a path* u_1, u_2, \ldots, u_n *by joining* u_i *and* u_{i+1} *(alternatively) to new vertex* v_i *for* $i = 1, 2, ..., n-1$ *(that is, every alternate edge of a path is replaced by cycle C*3*).*

Definition 2.5 ([\[2,](#page-5-2) [3,](#page-5-8) [5](#page-5-3)[–8\]](#page-5-9)). *A double alternate triangular snake* $D(AT_n)$ *is obtained from a path* u_1, u_2, \ldots, u_n *by joining* u_i *and* u_{i+1} *(alternatively) to new vertices* v_i *for* $i = 1, 2, ..., n - 1$ 1 *and* w_i *for* $i = 1, 2, ..., n - 1$ *.*

Definition 2.6 ([\[2,](#page-5-2) [5,](#page-5-3) [9\]](#page-5-5)). *A triple alternate quadrilateral snake* $T(AT_n)$ *is obtained from a path* u_1, u_2, \ldots, u_n *by joining* u_i *and* u_{i+1} *(alternatively) to new vertices* v_i *for* $i = 1, 2, ..., n - 1$ 1*,* w_i for $i = 1, 2, ..., n-1$ *and* x_i *for* $i = 1, 2, ..., n-1$ *.*

Throughout the paper we consider n as the number of vertices of path Pn.

3. 1-Harmonious Coloring of Triangular Snakes

Theorem 3.1. *For* $n \geq 3$ *, triangular snake* T_n *, the 1-harmonious chromatic number,* $h_1(T_n) = \triangle(T_n) + 1$.

Proof. Let us consider the path graph P_n with *n* vertices u_1, u_2, \ldots, u_n and T_n as the triangular snake with maximum degree, $\triangle(T_n) = 4$. Let the vertices of T_n , $V(T_n) = \{u_i : 1 \le i \le n\}$ *n*}∪ {*v_i* : 1 ≤ *i* ≤ *n*−1} and the edges of *T_n*, *E*(*T_n*) = {*u_iu*_{*i*+1} : 1 ≤ *i* ≤ *n*}∪{*u_iv_i*, *v*_{*i*}*u*_{*i*+1} : 1 ≤ *i* ≤ *n* − 1}. The number of vertices and edges in T_n are $2n-1$ and $3n-3$ respectively. Now we split the proof into following three cases.

Case 1: Suppose $n = 3k$. Define coloring $c : V(T_n) \longrightarrow$ $\{1,2,3,4,5\}$ for $n \ge 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n-2$), $c(u_i) = 2$ (*i* = 2,5,8,...,*n* − 1), $c(u_i) = 3$ (*i* = 3,6,9,...,*n*). Two sub cases arise here for even *n* and odd *n*.

Sub case 1: If *n* is odd, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n-2$), $c(v_i) =$ 5 ($i = 2, 4, 6, \ldots, n-1$).

Sub case 2: If *n* is even, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n - 1$), $c(v_i) = 5$ ($i = 2, 4, 6, \ldots, n-2$).

Vertices $u_2, u_3, \ldots, u_{n-1}$ are of maximum degree 4 whereas the degree of u_1 , u_n is 2, u_i is adjacent to u_{i+1} $(1 \le i \le n-1)$ and vertices u_i (1 ≤ *i* ≤ *n*) are adjacent to v_j (1 ≤ *j* ≤ *n*−1). Therefore 5 colors are to be needed to color T_n . From figure 1, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(T_n) = 5$.

Case 2: Suppose $n = 3k + 1$. Define coloring $c : V(T_n) \longrightarrow$ $\{1,2,3,4,5\}$ for $n \ge 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n$), $c(u_i) =$ 2 (*i* = 2,5,8,...,*n*−2), *c*(*ui*) = 3 (*i* = 3,6,9,...,*n*−1). Again two sub cases arises for even *n* and odd *n*, sub-cases and remaining procedure can be done as describe in case 1.

Case 3: Suppose $n = 3k + 2$. Define coloring $c: V(T_n) \longrightarrow$ $\{1,2,3,4,5\}$, for $n \geq 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n-1$),

 $c(u_i) = 2$ (*i* = 2,5,8,...,*n*), $c(u_i) = 3$ (*i* = 3,6,9,...,*n* − 2). Here again two sub cases arises for even *n* and odd *n*, for that we follow the procedure as described in case 1. In all three cases 1-harmonious chromatic number, $h_1(T_n) = 5$. Figure 2

Figure 3. 1-harmonious coloring of T_5 , $h_1(T_5) = 5$

and Figure 3 shows the coloring for case 2 and case 3. \Box

Theorem 3.2. *For* $n \geq 3$ *, double triangular snake* DT_n *, the 1*-harmonious chromatic number, $h_1(DT_n) = \triangle(DT_n) + 1$.

Proof. Let us consider the path graph P_n with *n* vertices u_1, u_2, \ldots, u_n and DT_n as the double triangular snake with maximum degree, $\triangle(DT_n) = 6$. Let the vertices of DT_n , $V(DT_n) =$ $\{u_i : 1 \le i \le n\} \cup \{v_i, w_i : 1 \le i \le n-1\}$ and the edges of *DT_n*, $E(DT_n) = \{u_iu_{i+1} : 1 \leq i \leq n\} \cup \{u_iv_i, v_iu_{i+1}, u_iw_i, w_iu_{i+1}$ $1 \leq i \leq n-1$. The number of vertices and edges in DT_n are 3*n*−2 and 5*n*−5 respectively. Now split the proof is into following three cases.

Case 1: Suppose $n = 3k$. Define coloring $c : V(DT_n) \longrightarrow$ $\{1,2,3,4,5,6,7\}$ for $n \ge 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n-2$), $c(u_i) = 2$ (*i* = 2,5,8,...,*n* − 1), $c(u_i) = 3$ (*i* = 3,6,9,...,*n*). Two sub cases arise here for even *n* and odd *n*.

Sub case 1: If *n* is odd, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n-2$), $c(v_i) =$ $5 (i = 2, 4, 6, \ldots, n-1), c(w_i) = 6 (i = 1, 3, 5, \ldots, n-2), c(w_i) =$ $7 (i = 2, 4, 6, \ldots, n-1).$

Sub case 2: If *n* is even, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n-1$), $c(v_i) = 5$ (*i* = 2, 4, 6, ..., *n*−2), $c(w_i) = 6$ for (*i* = 1, 3, 5, ..., *n*− 1), $c(w_i) = 7$ ($i = 2, 4, 6, ..., n-2$).

Figure 4. 1-harmonious coloring of DT_6 , $h_1(DT_6) = 7$

Vertices $u_2, u_3, \ldots, u_{n-1}$ are of maximum degree 6 whereas the degree of u_1 , u_n is 3, u_i is adjacent to u_{i+1} $(1 \le i \le n-1)$ and vertices u_i $(1 \le i \le n)$ are adjacent to v_j , w_j $(1 \le j \le n)$ *n*−1). Therefore 7 colors are to be needed to color DT_n . From figure 4, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(DT_n) = 7$. **Case 2:** Suppose $n = 3k + 1$ Define coloring $c : V(DT_n) \longrightarrow$

Figure 5. 1-harmonious coloring of DT_4 , $h_1(DT_4) = 7$

 $\{1,2,3,4,5,6,7\}$ for $n \ge 3$ by $c(u_i) = 1$ $(i = 1,4,7,...,n)$, $c(u_i) = 2$ (*i* = 2,5,8,...,*n*−2), $c(u_i) = 3$ (*i* = 3,6,9,...,*n*−1). Again two sub cases arises for even *n* and odd *n*, these subcases and remaining procedure can be done as described in case 1. Figure 5 shows the coloring for *DT*4.

Case 3: Suppose $n = 3k + 2$. Define coloring $c : V(DT_n) \longrightarrow$

Figure 6. 1-harmonious coloring of DT_5 , $h_1(DT_5) = 7$

 $\{1,2,3,4,5,6,7\}$, for $n \ge 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n-1$), $c(u_i) = 2$ (*i* = 2,5,8,...,*n*), $c(u_i) = 3$ (*i* = 3,6,9,...,*n* − 2). Here again two sub cases arises for even *n* and odd *n*, for that we follow the procedure as described in case 1. In all three cases, 1-harmonious chromatic number, $h_1(DT_n) = 7$. Figure 6 shows the coloring for T_5 . \Box

Theorem 3.3. *For* $n \geq 3$ *, triple triangular snake* TT_n *, the 1*-harmonious chromatic number, $h_1(TT_n) = \triangle(TT_n) + 1$.

Proof. Let us consider the path graph P_n with *n* vertices u_1, u_2, \ldots, u_n and TT_n as the triangular snake with maximum degree, $\triangle(TT_n) = 8$. Let the vertices of TT_n , $V(TT_n) =$ $\{u_i: 1 \le i \le n\} \cup \{v_i, w_i, x_i: 1 \le i \le n-1\}$ the edges of TT_n $E(TT_n) = {u_iu_{i+1} : 1 \le i \le n} \cup {u_iv_i, v_iu_{i+1}, u_iw_i, w_iu_{i+1}, u_ix_i,$ $x_i u_{i+1}$: $1 \leq i \leq n-1$. The number of vertices and edges in *TT_n* are 4*n*−3 and 7*n*−7 respectively. Now split the proof into following three cases.

Case 1: Suppose $n = 3k$. Define coloring $c : V(TT_n) \longrightarrow$ $\{1,2,3,4,5,6,7,8,9\}$ for $n \ge 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n-$ 2), $c(u_i) = 2$ ($i = 2, 5, 8, ..., n-1$), $c(u_i) = 3$ ($i = 3, 6, 9, ..., n$). Two sub cases arise here for even *n* and odd *n*.

Sub case 1: If *n* is odd, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n-2$), $c(v_i) =$ $5 (i = 2, 4, 6, \ldots, n-1), c(w_i) = 6 (i = 1, 3, 5, \ldots, n-2), c(w_i) =$ $7(i=2,4,6,...,n-1), c(x_i) = 8(i=1,3,5,...,n-2)), c(x_i) =$ $9 (i = 2, 4, 6, \ldots, n-1).$

Sub case 2: If *n* is even, $c(v_i) = 4$ ($i = 1, 3, 5, ..., n - 1$), $c(v_i) = 5$ ($i = 2, 4, 6, \ldots, n-2$), $c(w_i) = 6$ ($i = 1, 3, 5, \ldots, n-1$), $c(w_i) = 7$ ($i = 2, 4, 6, \ldots, n-2$), $c(x_i) = 8$ ($i = 1, 3, 5, \ldots, n-1$), $c(x_i) = 9$ ($i = 2, 4, 6, \ldots, n-2$).

Vertices $u_2, u_3, \ldots, u_{n-1}$ are of maximum degree 8 whereas

Figure 7. 1-harmonious coloring of TT_6 , $h_1(TT_6) = 9$

the degree of u_1 , u_n is 4, u_i is adjacent to u_{i+1} ($1 \le i \le n-1$), vertices u_i ($1 \le i \le n$) are adjacent to v_j , w_j and x_i ($1 \le j \le n$) $n-1$). Therefore we need 9 colors to color TT_n , as shown in figure 7. Therefore 9 colors are to be needed to color TT_n .From figure 7, clearly we find that for each vertex, the adjacent vertices are colored with different color. Therefore, $h_1(TT_n) = 9.$

Case 2: Suppose $n = 3k + 1$ Define coloring $c : V(TT_n) \longrightarrow$ $\{1,2,3,4,5,6,7\}$ for $n \geq 3$ by $c(u_i) = 1$ $(i = 1,4,7,...,n)$, $c(u_i) = 2$ (*i* = 2,5,8,...,*n*−2), $c(u_i) = 3$ (*i* = 3,6,9,...,*n*−1). Again two sub cases arises for even *n* and odd *n*, these subcases and remaining procedure can be done as described in case 1. Figure 8 shows the coloring for *T T*4.

Case 3: Suppose $n = 3k + 2$. Define coloring $c : V(TT_n) \longrightarrow$ $\{1,2,3,4,5,6,7,8,9\}$, for $n \ge 3$ by $c(u_i) = 1$ ($i = 1,4,7,...,n-$ 1), $c(u_i) = 2$ ($i = 2, 5, 8, \ldots, n$), $c(u_i) = 3$ ($i = 3, 6, 9, \ldots, n-2$). Here again two sub cases arises for even *n* and odd *n*, for that we follow the procedure as describe in case 1. In all three

Figure 8. 1-harmonious coloring of TT_4 , $h_1(TT_4) = 9$

Figure 9. 1-harmonious coloring of TT_5 , $h_1(TT_5) = 9$

cases, 1-harmonious chromatic number, $h_1(TT_n) = 9$. Figure 9 shows the coloring for *T T*5. \Box

Theorem 3.4. *For* $n \geq 3$ *, k-triangular snake kT_n, the 1- harmonious chromatic number,* $h_1(kT_n) = \triangle(kT_n) + 1$.

Proof. Consequently, it is obvious from above theorems. \Box

4. 1-Harmonious Coloring of Alternate Triangular Snakes

Theorem 4.1. *For* $n \geq 4$ *, alternate triangular snake* AT_n *, the 1*-harmonious chromatic number, $h_1(AT_n) = \triangle (AT_n) + 1$.

Proof. Let us consider the path graph P_n with *n* vertices u_1, u_2, \ldots, u_n and AT_n as the alternate triangular snake with maximum degree, $\triangle (AT_n) = 3$.

Let the vertices of AT_n , $V(AT_n) = \{u_i : 1 \le i \le n\} \cup \{v_i :$

Figure 10. 1-harmonious coloring of AT_6 , $h_1(AT_6) = 4$

 $1 \le i \le \frac{n}{2}$ and the edges of AT_n , $E(AT_n) = \{u_iu_{i+1} : 1 \le i \le \frac{n}{2}\}$ *n*}∪{*u_iv*_{*i*}</sub>, *v*_{*i*}*u*_{*i*+1} : 1 ≤ *i* ≤ *n*−1}. The number of vertices and edges in AT_n are $\frac{3n}{2}$ and $2n-1$ respectively. Define coloring $c: V(AT_n) \rightarrow \{1, 2, 3, 4\}.$ Three case are arises here; for $n = 6k$, $n = 6k - 2$ and $n = 6k + 2$. Remaining proof and coloring process may be followed as discussed in the section 3.

Figure 10, 11 and 12 shows the coloring for $n = 6k$, $n = 6k-2$ and $n = 6k + 2$ respectively. Hence the result. \Box

Theorem 4.2. *For* $n \geq 4$ *, double alternate triangular snake* $D(AT_n)$, the 1-harmonious chromatic number, $h_1(D(AT_n)) =$ $\triangle(D(AT_n))+1$.

Proof. Let us consider the path graph P_n with *n* vertices u_1, u_2, \ldots, u_n and $D(AT_n)$ as the double alternate triangular

Figure 13. 1-harmonious coloring of $D(AT_6)$, $h_1(D(AT_6))$ $= 5$

Figure 14. 1-harmonious coloring of $D(AT_4)$, $h_1(D(AT_4))$ $= 5$

snake with maximum degree, $\triangle(D(AT_n)) = 4$. Let the vertices of $D(AT_n)$, $V(D(AT_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i : 1 \le n\}$ $i \leq \frac{n}{2}$ and the edges of $D(AT_n)$, $E(D(AT_n)) = \{u_iu_{i+1} : 1 \leq$ $i \leq n$ $\} \cup \{u_i v_i, v_i u_{i+1}, u_i w_i, w_i u_{i+1} : 1 \leq i \leq n-1\}.$

The number of vertices and edges in $D(AT_n)$ are 2*n* and 3*n*−1

respectively. Define coloring $c: V(D(AT_n)) \longrightarrow \{1, 2, 3, 4, 5\}.$ Three case are arises here; for $n = 3k, n = 6k - 2$ and $n =$ $6k + 2$. Remaining proof and coloring process may be followed as discussed in the section 3. Figure 13, 14 and 15

shows the coloring for $n = 3k$, $n = 6k - 2$ and $n = 6k + 2$ respectively. Hence the result. \Box

Theorem 4.3. *For* $n \geq 4$ *, triple alternate triangular snake* $T(AT_n)$, the 1-harmonious chromatic number, $h_1(T(AT_n)) =$ $\triangle(T(AT_n))+1$.

Proof. Let P_n Let us consider the path graph P_n with *n* vertices u_1, u_2, \ldots, u_n and $T(AT_n)$ as the triple alternate triangular snake with maximum degree, $\triangle(T(AT_n)) = 5$.

Figure 16. 1-harmonious coloring of $T(AT_6)$, $h_1(T(AT_6))$ $= 6$

Figure 17. 1-harmonious coloring of $T(AT_4)$, $h_1(T(AT_4))$ $= 6$

 $h_1(T(AT_8)) = 6$

Let the vertices of $T(AT_n)$,

$$
V(T(AT_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i, x_i : 1 \le i \le \frac{n}{2}\}\
$$

and the edges of $T(AT_n)$, $E(T(AT_n)) = \{u_iu_{i+1} : 1 \le i \le n\} \cup$ $\{u_i v_i, v_i u_{i+1}, w_i u_{i+1}, u_i x_i, x_i u_{i+1} : 1 \le i \le n-1\}$. The number of vertices and edges in $T(AT_n)$ are $\frac{5n}{2}$ and $4n-1$ respectively. Define coloring $c: V(T(AT_n)) \longrightarrow \{1, 2, 3, 4, 5, 6\}$ Three case are arises here; for $n = 3k, n = 6k - 2$ and $n = 6k + 2$. Remaining proof and coloring process may be followed as discussed in the section 3. Figure 16, 17 and 18 shows the coloring for $n = 3k$, $n = 6k - 2$ and $n = 6k + 2$ respectively. Hence the result. \Box

Theorem 4.4. *For* $n \geq 4$ *, k-alternate triangular snake kAT_n*, *the 1-harmonious chromatic number,* $h_1(kAT_n) = \triangle(kT_n) + 1$.

Proof. Consequently, it is obvious from above theorems. \Box

5. Relations Between the 1-Harmonious Chromatic Number of Triangular and Alternate Triangular Snakes

From section 3 and 4, we observed the following relations between the 1-harmonious chromatic number of these triangular and alternate triangular snakes;

- $h_1(T_n) = h_1(AT_n) + 1$.
- $h_1(DT_n) = h_1(D(AT_n)) + 2.$
- $h_1(TT_n) = h_1(T(AT_n)) + 3$ and so on.... consequently,
- • $h_1(kT_n) = h_1(kAT_n) + k$.

6. Conclusions

In this article, we discuss the 1-harmonious coloring and find the 1-harmonious chromatic number of triangular and alternate triangular snakes *i*.*e*.

$$
h_1(T_n) = \triangle (T_n) + 1,
$$

\n
$$
h_1(DT_n) = \triangle (DT_n) + 1,
$$

\n
$$
h_1(TT_n) = \triangle (TT_n) + 1,
$$

\n
$$
h_1(kT_n) = 2k + 3,
$$

\n
$$
h_1(AT_n) = \triangle (AT_n) + 1,
$$

\n
$$
h_1(D(AT_n)) = \triangle (D(AT_n)) + 1,
$$

\n
$$
h_1(T(AT_n)) = \triangle (T(AT_n)) + 1,
$$

\n
$$
h_1(kAT_n) = \triangle (kT_n) + 1.
$$

We also find the relations between 1-harmonious chromatic number of these snakes *i.e.* $h_1(T_n) = h_1(AT_n) + 1$, $h_1(DT_n) =$ $h_1(D(AT_n)) + 2$, $h_1(TT_n) = h_1(T(AT_n)) + 3$ and so on.... consequently, $h_1(kT_n) = h_1(kAT_n) + k$.

References

- [1] J. A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, London, MacMillan, 1976.
- [2] J. A. Gallian, A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, (2019), #DS6.
- [3] P. Jeyanthi, A. Maheswari and M. VijayaLakshmi, 3- Product cordial labeling of some snake graphs, *Proyecciones J. Math.*, 38(1)(2019), 13-30.
- [4] J. Liu, M. Arockiaraj and A. Nelson , Tight Bounds on 1-Harmonious Coloring of Certain Graphs, *Symmetry* , 11(2019), 917.
- [5] R. Ponraj and S. S. Narayanan, Difference Cordiality of Some Snake Graphs obtained from double alternate snake graphs, *Global J. Math. Sciences: Theory and Practical*, (5)(2013), 167-175.
- [6] R. Ponraj and S. S. Narayanan, Difference Cordiality of Some Snake Graphs, *J. Appl. Math.& Informatics*, 32(3- 4)(2014), 377-387.
- [7] R. Ponraj and S. S. Narayanan, Difference Cordiality of Some derived Graphs, *J. Math. Combin*, (4)(2013), 37-48.
- [8] R. Ponraj and S. S. Narayanan, Difference Cordial labeling of Graphs graphs obtained from triangular snakes, *Applications Applied Math.*, 9(2)(2014), 811-825.
- [9] N. B. Rathod and K. K. Kanani , V4-cordial labeling of some alternate triangular snake related graphs, *National Level Science Symposium, Organized by Christ College*, Rajkot, Sponsored, February 14, (2016).
- [10] M.S.F.T. Selvi, Harmonious coloring of central graphs of certain snake graphs, *Appl. Math. Sci.*, (9)(2015), 569- 578.
- [11] Y. Xi, Y. Yang, and L. Wang, On harmonious labeling of the double triangular snake, *Indian J. Pure Appl. Math.*, (39)(2008), 177-184.
- [12] D. Xu, Harmonicity of triangular snakes, *J. Math. Res. Exposition*, (15)(1995), 475-476.

? ? ? ? ? ? ? ? ? ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 ? ? ? ? ? ? ? ? ?

