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Finite-time stability of nonlinear fractional systems
with damping behavior
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Abstract
This paper concentrates with the problem of stability in the finite range of time for nonlinear system with multi
term fractional-order and damping behavior. Utilizing the Mittag Leffler functions and generalized Gronwall
inequality (GI), a sufficient criteria that ensure the finite time stability (FTS) for both condition 0 < α1−α2 < 1 and
1≤ α1−α2 < 2. Finally, two numerical examples are carried out to verify the obtained results.
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1. Introduction
Calculus of fractional order (FO) is an extension for a

traditional calculus which deals with functionals containing
integer-order differentiation and integration. This notion has
been developed by Leibniz and L’Hopital in 1695 where frac-
tional derivatives was described. In recent years, FO systems
have considerable attraction due to their capability to model
complex phenomena. By using fractional derivative formu-
lations, physical systems can be modeled more accurately.
Also, fractional derivative can be used to modeling the struc-
tures in mathematical biology, several chemical processes
and problems related to engineering. In real situations, the
models generated by FO are more suitable rather than integer
order. Since it is possible to model a higher order system by
low order system by using FO derivatives. Application of
fractional calculus established in stochastic dynamical sys-
tems, controlled thermonuclear fusion and plasma physics,

image processing, nonlinear control theory [1, 7, 12, 19]. In
[2, 3, 5, 13, 17], one can refer the potential applications of
FO systems in physical problems description and control,
complex practical systems, etc.

The traditional stability concepts like asymptotic stabil-
ity, Lyapunov stability have been widely studied and these
are deals with the problem whose operations described over
the infinite interval of time [4, 10, 11, 18]. The concept of
asymptotic and exponential stability imply the convergence
of system’s state to an equilibrium position over the infinite
period. Most of the aforementioned results in many fields
consider the problems correlate to the performance of con-
vergency described over an interval of infinite period. But in
practical process, the predominant analysis is that the charac-
teristic of system in an interval of finite period, since it is too
many phyiscally usable than concerning infinite time. In such
case, the traditional methods are not appropriate. For such
kind, the FTS method is proposed in 1950s. There are two
kinds of stability concept over the interval of finite time. One
is FTS i.e., the system’s state of an asymptotic system reach
the equilibrium position in a finite period and another one is
fixed-time stability, that means the convergence time inter-
vals have an identical upper-bounds in domain. FTS method
is more practical and less conservative than the traditional
stability methods. Also, this method is more applicable for
analyzing the path of a system’s state remains within the pre-
scribed bounds over a finite interval of time. In comparison
with asymptotic and other type of stability, the FTS has been



Finite-time stability of nonlinear fractional systems with damping behavior — 2123/2126

utilized to control the path of a space vehicle from an initial
stage to a terminal stage in a described interval of time and
also the greater values of the system’s states should be reached
in all those applications, for example, in the existence of satu-
ration. FTS approach frequently occurs in various practical
problems.

In [9], the authors investigated the stability in finite range
of time for the system of fractional order with delay equation
by make use of the Mittag-Leffler delay type matrix. Hei
and Wu [6] analyzed the stability in finite range of time for
the fractional impulsive systems with delay by proposed few
conditions. By utilizing generalized GI, FTS for the time
delayed systems with FO have been proposed in [8], also the
FTS analyzed for nonlinear system of FO in [14]. In [20], the
authors studied the FTS result for nonlinear FO system involv-
ing discrete time delay. For FO there are several approaches
to the generalization of integration and differentiation, for
example, the Riemann-Liouville, Grunwald-Letnikov, and Ca-
puto derivative approach. This generalization enables one to
describe absolutely noninteger order integrals or derivatives.
The advantage of using Caputo approach is we can define the
initial condition as same as the initial condition defined for
integer order models. For this advantage, in this work, we
consider the FO Caputo derivatives. However, as far as we
know, few results are reported on the FTS of FO systems. The
central concept of this work is to study the FTS for nonlinear
multi term fractional system by using Mittag Leffler function
and GI for both orders 0 < α1−α2 < 1 and 1≤ α1−α2 < 2.

The remaining part of the work consist of: The problem
formulation, some necessary definitions and lemmas are pro-
vided in Section 2. Main result for FTS analysis are provided
in Section 3. In Section 4, the efficiency of the proposed theo-
rems are illustrated by numerical examples. Finally, Section 5
states the conclusion.

2. Preliminaries
This section provides system formulation and some use-

ful properties to derive our required results. Consider the
following nonlinear FO system with damping behavior{

C
0 Dα1

t y(t)−A C
0 Dα2

t y(t) = f (t,y(t)), t ∈ L,
y(0) = y0, y′(0) = y1.

(2.1)

Here C
0 Dα1 indicates the caputo derivative of FO α1 with

lower limit zero and L = [0,T ], state vector y(t) ∈C(L,Rn),
A ∈Rn×n and 0 < α2 ≤ 1, 1 < α1 ≤ 2, f : L×Rn→ Rn is a
continuous function.

Definition 2.1. Fractional integral for h(t) interms of Riemann-
Liouville with α1 ∈ R+ is given by

RLDα1
t0,th(t) =

1
Γ(α1)

∫ t

t0
(t−θ)α1−1h(θ)dθ , t > 0,

where Γ(α1) =
∫

∞

0 tα1−1e−tdt.

Definition 2.2. Fractional derivative for h(t) interms
of Riemann-Liouville with α1 ∈ R+ is given by

RLDα1
t0,th(t) =

dn

dtn
1

Γ(n−α1)

∫ t

t0
(t−θ)n−α1−1

h(θ)dθ ,

with n−1 < α1 < n ∈ Z+.

Definition 2.3. Fractional derivative for h(t) interms
of Caputo with α1 ∈ R+ is given by

C
0 Dα1

t0,th(t) =
1

Γ(n−α1)

∫ t

t0
(t−θ)n−α1−1

h(n)(θ)dθ ,

with n−1 < α1 < n ∈ Z+.

Definition 2.4. [15, 16] The one parameter Mittag Leffler
function is given by

Eα1(z) =
∞

∑
k=0

zk

Γ(kα1 +1)
,

with α1 > 0, Re(α1)> 0 and z ∈C.
For parameters α1 and α2

Eα1,α2(z) =
∞

∑
k=0

zk

Γ(kα1 +α2)
,

with α1,α2 ∈C, Re(α1)> 0, Re(α2)> 0, z ∈C. By
choosing α2 = 1, Eα1,1(z) = Eα1(z).

Definition 2.5. [15] The Laplace transform for
fractional derivative of h(t) interms of Caputo is given by

L{C0 Dα1
t h(t)}= sα1L(h(t))−

m−1

∑
r=0

sα1−r−1h(r)(0).

Furthermore, the Laplace transforms of Mittag-
Leffler functions is given by

L
[
Eα1,1(±λ tα1)

]
(s) =

sα1−1

sα1 ∓λ
,

Re(α1)> 0,

L
[
tα2−1Eα1,α2(±λ tα1)

]
(s) =

sα1−α2

sα1 ∓λ
,

Re(α1)> 0, Re(α2)> 0.

Definition 2.6. [10] System (2.1) is finite time stable w.r.t
{0,L,δ ,ε}, iff γ < δ implies ‖y(t)‖< ε for all t ∈ L, where
γ = max{‖y(0)‖ ,‖y′(0)‖} is the initial time of observation
of system. Also, ε and δ are belongs to R+.

Solution of (2.1) using Laplace and Inverse Laplace Transform
is defined as

y(t) = y0Eα1−α2(A tα1−α2)−A y0tα1−α2

Eα1−α2,α1−α2+1(Atα1−α2)+ y1(t)Eα1−α2,2

(A tα1−α2)+
∫ t

0
(t−θ)α1−α2−1Eα1−α2,α1

(A (t−θ)α1−α2) f (θ ,y(θ))dθ (2.2)

2123
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Now, we impose the following assumption (H1) : On [0,T ),
function f (t,y(t)) satisfies the Lipschitz condition and ∃M > 0
such that

‖ f (t,y(t))‖ ≤ M‖y(t)‖, f or t ∈ L,y ∈ Rn.

Lemma 2.7. [8](Generalized Gronwall Inequality)
If h(t)> 0 & v(t)> 0 is locally integrable on [0,T ) and the continu-
ous function r(t)> 0 is nondecreasing on [0,T ), α1 > 0, r(t)≤M
with

h(t)≤ v(t)+ r(t)
∫ t

0
(t−θ)α1−1h(θ)dθ ,0≤ t < T.

Then

h(t)≤ v(t)+
∫ t

0

[ +∞

∑
n=1

[
r(t)Γ(α1)

]n
Γ(nα1)

(t−θ)nα1−1v(θ)
]
dθ ,

0≤ t < T.

Corollary 2.8. From the assumption of above Lemma 2.7 and on
[0,T ), v(t) is a nondecreasing function. Then

h(t)≤ v(t)Eα1 (r(t)Γ(α1))tα1) . (2.3)

Lemma 2.9. [4]
(1) There exist M1 and M2 which are greater than or equal to

one 3 for any α1−α2(∈ R+)< 1,∥∥Eα1−α2,1(A tα1−α2)
∥∥≤M1

∥∥∥eA t
∥∥∥ ,∥∥Eα1−α2,α1−α2(A tα1−α2)

∥∥≤M2

∥∥∥eA t
∥∥∥ , (2.4)

here A indicates the matrix.
(2) Suppose α1−α2(∈ R+)≥ 1 then for γ = 1,2,α1∥∥Eα1−α2,γ (A tα1−α2)

∥∥≤ ∥∥∥eA tα1−α2
∥∥∥ (2.5)

In addition, if A is a stability matrix, then ∃ a constant N ≥ 1 such
that t > 0∥∥Eα1−α2,γ (A tα1−α2)

∥∥≤ Ne−ηt for 0 < α1−α2 < 1∥∥Eα1−α2,γ (A tα1−α2)
∥∥≤ e−ηt for 1≤ α1−α2 < 2, (2.6)

where η be the greatest eigenvalue of A .

3. Main Results
Now, we derive the FTS for a nonlinear damped dynamical

system for both fractional orders 0<α1−α2 < 1 & 1≤α1−α2 < 2.

Theorem 3.1. Choose 0 < α1−α2 < 1 with the assumption (H1),
then FO system with damping behavior (2.1) is finite time stable
provided that

Ne−ηt [1+‖A ‖ tα1−α2 + t
]

Eα1−α2

(
NM Γ(α1−α2)tα1−α2

)
<

ε

δ
. (3.1)

Proof. Taking norm on both sides of equation (2.2) we get the
following,

‖y(t)‖ ≤ ‖y0‖
∥∥Eα1−α2(A tα1−α2)

∥∥+‖A ‖‖y0‖|t|α1−α2∥∥Eα1−α2,α1−α2+1(A tα1−α2)
∥∥+‖y1‖|t|∥∥Eα1−α2,2(A tα1−α2)

∥∥+∫ t

0
|t−θ |α1−α2−1∥∥Eα1−α2,α1(A (t−θ)α1−α2)
∥∥‖ f (θ ,y(θ))‖dθ .

(3.2)

Using Lemma 2.9, equation (3.2) implies,

‖y(t)‖ ≤ ‖y0‖Ne−ηt +‖A ‖‖y0‖|t|α1−α2 Ne−ηt

+‖y1‖|t|Ne−ηt +
∫ t

0
|t−θ |α1−α2−1 Ne−η(t−θ)

‖ f (θ ,y(θ))‖dθ . (3.3)

Using hypothesis (H1) in (3.3), we get

‖y(t)‖ ≤ ‖y0‖Ne−ηt +‖A ‖‖y0‖|t|α1−α2 Ne−ηt

+‖y1‖|t|Ne−ηt +
∫ t

0
|t−θ |α1−α2−1 Ne−η(t−θ)

M ‖y(θ)‖dθ . (3.4)

Now multiply both sides of above equation by eηt , this implies

eηt‖y(t)‖ ≤ N
[
‖y0‖+‖A ‖‖y0‖|t|α1−α2 +‖y1‖|t|

]
+
∫ t

0
|t−θ |α1−α2−1 NeηsM ‖y(θ)‖dθ . (3.5)

According to Lemma 2.7, let

h(t) = eηt ‖y(t)‖ ,
v(t) = N

[
‖y0‖+‖A‖‖y0‖|t|α1−α2 +‖y1‖|t|

]
,

r(t) = NM,

From the above it is easily understand that on [0,T ), v(t) is nonde-
creasing function. Hence utilizing the Corollary 2.8 to (3.5), we
get

h(t) ≤ v(t)Eα1−α2(r(t)Γ(α1−α2)t(α1−α2))

≤ N
[
‖y0‖+‖A‖‖y0‖|t|α1−α2 +‖y1‖|t|

]
Eα1−α2(NM Γ(α1−α2)t(α1−α2)). (3.6)

Now replacing h(t), which imply that

‖y(t)‖ ≤ Ne−ηt [‖y0‖+‖A ‖‖y0‖|t|α1−α2 +‖y1‖|t|
]

Eα1−α2(NM Γ(α1−α2)t(α1−α2)). (3.7)

When ‖y0‖ ≤ δ , ‖y1‖ ≤ δ , the above equation becomes,

‖y(t)‖ ≤ Nδe−ηt [1+‖A ‖|t|α1−α2 + |t|
]

Eα1−α2(NM Γ(α1−α2)t(α1−α2)),

From the statement of the theorem we can get the following,

‖y(t)‖ ≤ ε, for all t ∈ [0,T ).

This implies (2.1) is finite time stable for the interval
0 < α1−α2 < 1.

Theorem 3.2. If 1 ≤ α1−α2 < 2 with the condition (H1) holds.
Then system (2.1) is finite time stable provided that

e−ηt [1+‖A ‖ tα1−α2 + t
]

Eα1−α2

(
M Γ(α1−α2)tα1−α2

)
<

ε

δ
(3.8)

for any t ∈ [0,T ).

Proof. Proof is obtained by proceeding the same steps followed in
Theorem 3.1 by using Lemma 2.9.
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Corollary 3.3. The multi term fractional linear equation,{ C
0 Dα1

t y(t)−A C
0 Dα2

t y(t) = By(t), t ∈ L,
y(0) = y0, y′(0) = y1,

(3.9)

is finite time stable for 0 < α1−α2 < 1, if

Ne−ηt [1+‖A ‖ tα1−α2 + t
]

Eα1−α2

(
‖B‖N Γ(α1−α2)tα1−α2

)
<

ε

δ
. (3.10)

Corollary 3.4. System (3.9) is finite time stable
for 1≤ α1−α2 < 2, if

e−ηt [1+‖A ‖ tα1−α2 + t
]

Eα1−α2

(
‖B‖ Γ(α1−α2)tα1−α2

)
<

ε

δ
.

4. Example
Example 4.1. Consider the nonlinear FO system with damping
behavior{

C
0 Dα1

t y1(t)−C
0 Dα2

t y2(t) =
√

y2
1(t)+5,

C
0 Dα1

t y2(t)−C
0 Dα2

t y1(t) = 0,

where α1 = 1.25 and α2 = 0.75. Now we consider the system (2.1)
with the following parameters

A =

[
1 0
0 0.5

]
and f (t,y(t))=

[ √
y2

1(t)+5
0

]
.

Evidently, the hypothesis (H1) is satisfied for M = 1. Now to
validate the FTS condition (3.1) w.r.t η = 1 and ‖A ‖ = 1 from
Theorem 3.1. Let us choose δ = 0.05,N = 1.5,ε = 1, then from
inequality (3.1), we can obtain the estimated time of
FTS is T ≈ 0.2301.

Example 4.2. Consider the system (3.9) with the parameters α1 =

1.25,α2 = 0.75, A =

[
1 0
2 3

]
and B =

[
0 −1
2 0

]
.

Let us choose N = 2, ε = 1, δ = 0.05. Now to validate the FTS
condition (3.10) w.r.t η = 3, ‖A ‖ = 3.6503 and ‖B‖ = 2. Hence
the inequality (3.10) implies,

2e−3t
[
1+ t +3.6503t0.5

]
E0.5

(
7.09t0.5

)
< 20.

From Corollary 3.3, we can obtain the estimated time of FTS is
T ≈ 0.502.

5. Conclusion
We analyzed the stability in the finite range of time for a nonlin-

ear FO systems with damping behaviour. So far many authors investi-
gated about the FTS result for linear and nonlinear fractional systems.
In literature, the stability result in the finite range of time for this type
of nonlinear system with damping behaviour not yet been studied.
By using the Laplace and Inverse Laplace Transforms, Mittag Leffler
function, Caputo derivative and GI, a few conditions are proposed
to ensure the FTS result for both conditions 0 < α1−α2 < 1 and
1≤ α1−α2 < 2 involving damping behavior. Finally, the results are
verified through examples.
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