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The characterizations of some special Frenet curves
in Minkowski 3-space
Başak Özülkü Engin1 and Ahmet Yücesan2*

Abstract
We derive a general differential equation satisfied by the distance function for non-null Frenet curves in Minkowski
3-space. By using this differential equation, we easily express the well-known characterizations of non-null
some special Frenet curves which are pseudo-spherical curves and rectifying curves. Then we get a new
characterization of general helix. Lastly, we characterize non-null pseudo-spherical curves with respect to
centrode and co-centrode. Similarly, we derive a general differential equation satisfied by the distance function
for null Frenet curves. By means of this differential equation we see that there is not exist null Frenet curve lies
on pseudo-sphere and we get the well-known characterization of null rectifying curves. Finally, we find a new
characterization for null general helix and we obtain characterization null general helix with respect to centrode
and co-centrode.
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1. Introduction
One of the study topics of the theory of curves in differen-

tial geometry is to characterize some special curves. Some spe-
cial curves in Euclidean 3−space R3 and Minkowski 3−space
R3

1
are characterized by curvature and torsion of curves ([1–

6, 9, 11, 13, 15–18, 20, 21]). In 2018, Deshmukh et al.[7]
prove that every unit speed Frenet curve in Euclidean 3−space
R3 satisfies a general differential equation based on curvature,
torsion and distance function. As a result of this differential
equation they give well-known characterizations of spherical
and rectifying curves. Then, they derive a new characteriza-
tion for general helices. Finally, they obtain a simple new
characterization of spherical curves relative to the centrode
and co-centrode.

As it is known, since a curve in Minkowski 3−space R3
1

has different causal characters, it is interesting to characterize
some special curves in Minkowski 3−space. Therefore, in this
study, we characterize both non-null and null special curves
according to curvature, torsion and distance function. First of
all, let us briefly recall the structure of Minkowski 3−space
R3

1
.

Let R3
1

be Minkowski 3−space (or the 3−dimensional
Lorentzian space) with symmetric, bilinear and non-degenerate
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metric called as Lorentzian metric defined by

〈u,v〉=−u1v1 +u2v2 +u3v3

for vectors u = (u1,u2,u3) and v = (v1,v2,v3) in Euclidean
3−space R3. The Lorentzian vector product of u and v is
given by

u× v = (u3v2−u2v3,u3v1−u1v3,u1v2−u2v1).

Thus, according to the structure of Lorentzian metric, a vector
is named in three different categories as spacelike, timelike
and null (lightlike). If < u,u >> 0 (or u = 0), < u,u >< 0,
< u,u >= 0 (and u 6= 0) then a vector u is named to be space-
like, timelike or null, respectively. We know that a curve in
Minkowski 3−space R3

1
is called according to its velocity

vector. Therefore, a curve is said to spacelike, timelike or
null if its velocity vector is spacelike, timelike or null vec-
tor, respectively. Lastly, a surface is named non-degenerate
(or degenerate) if induced metric on its tangent plane is non
degenerate (or degenerate). As known, the most familiar
non-degenerate surfaces are pseudo-sphere

S2
1 = q−1(r2) = {p ∈ R3

1 :−p2
1 + p2

2 + p2
3 = r2}

and pseudo-hyperbolic space

H2
0 = q−1(−r2) = {p ∈ R3

1 :−p2
1 + p2

2 + p2
3 =−r2}

([12, 14]).
Let γ : I ⊂ R → R3

1 be a unit speed that is
< γ

′
(s),γ

′
(s) >= ε0 (ε0 being +1 or −1 according to γ is

spacelike or timelike, respectively), where s is said to the arc
length parameter. A unit speed curve γ(s) in R3

1 is called a
Frenet curve if it has a Frenet frame {T = γ

′
(s),N,B}, where

T is the unit tangent vector of γ , N is the unit principal normal
of γ and ε2B = T×N is the unit binormal vector of γ such that
ε2 =< B,B >= sign(B) =±1. The Frenet frame provides the
Frenet formulas given by T

′

N
′

B
′

=

 0 ε1κ 0
−ε0κ 0 ε2τ

0 −ε1τ 0

 T
N
B

 , (1.1)

where ε0 =< T,T >= sign(T ) = ±1, ε1 =< N,N >=
sign(N) = ±1. Also κ = κ(s) and τ = τ(s) are the curva-
ture and torsion of γ , respectively (see [12, 14]). By using
Frenet equations (1.1), we have

< γ(s),T >
′
= ε0 + ε1κ < γ(s),N >, (1.2)

< γ(s),N >
′
=−ε0κ < γ(s),T >+ε2τ < γ(s),B > (1.3)

and

< γ(s),B >
′
=−ε1τ < γ(s),N > . (1.4)

Now, we assume that γ is a null Frenet curve parameter-
ized by the pseudo-arc parameter s in R3

1. We choose the
T = γ

′
(s) and N = γ

′′
(s), then there exists only one null frame

{T,N,B} for which γ(s) is a framed null curve with Frenet
equations: T

′

N
′

B
′

=

 0 1 0
−τ 0 −1
0 τ 0

 T
N
B

 , (1.5)

such that

< T,T >=< B,B >=< T,N >=< B,N >= 0,
< T,B >=< N,N >= 1, (1.6)

where B = γ
′′′
(s)− τγ

′
(s) and τ = 1

2 < γ
′′′
(s),γ

′′′
(s) > is

called the lightlike curvature of γ (see [8, 10, 19]).

2. The characterization of some special
non-null Frenet curves in Minkowski

3-space
In this section, we derive a general differential equation

which satisfied by distance function for a unit speed Frenet
curve in
Minkowski 3−space R3

1. This differential equation plays
a major key to characterization of curves as pseudo-spherical
curve, rectifying curve and general helix. In line with our
purpose, we firstly give the following theorem.

Theorem 2.1. Let γ = γ(s) be a unit speed Frenet curve in
Minkowski 3−space R3

1. Then γ(s) satisfies the differential
equation given by

δε1ε2ρσh′′′+δε1ε2(ρσ
′+2ρ

′
σ)h′′+δ (ε1ε2(σρ

′)′

+ε0ε2
σ

ρ
+

ρ

σ
)h′+δε0ε2(

σ

ρ
)′h = ε0ε1ε2(σρ

′)′+ ε0
ρ

σ
,

(2.1)

where ρ = κ−1, σ = τ−1, h(s) = d(s)d′(s) and

δ = sign(γ(s)) =
< γ(s),γ(s)>
|< γ(s),γ(s)>|

=∓1.

Proof. The square distance function of an unit speed Frenet
curve γ = γ(s) is

d2(s) = δ 〈γ(s),γ(s)〉,

where δ = sign(γ(s)) =∓1. We begin with the derivative of
the square distance function with respect to s. Then

d(s)d′(s) = δ 〈γ(s),γ ′(s)〉. (2.2)

Substituting h(s) = d(s)d′(s) and γ ′(s) = T in (2.2), we write

h(s) = δ 〈γ(s),T 〉. (2.3)
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Differentiation of (2.3) with respect to s and using (1.2), we
obtain

h′(s) = δε0 +δε1κ〈γ(s),N〉

or

δε1ρ(h′(s)−δε0) = 〈γ(s),N〉. (2.4)

Similarly, we differentiate (2.4) with respect to s and using
(1.3), we have

δε1ρh
′′
(s)+δε1ρ

′
(h′(s)−δε0) =ε0κ〈γ(s),T 〉

+ε2τ〈γ(s),B〉
(2.5)

If we write Eq. (2.3) in (2.5), then we see that

δε1ε2ρσh
′′
(s)+δε1ε2σρ

′
h′(s)− ε0ε1ε2σρ

′

+δε0ε2
σ

ρ
h(s) = 〈γ(s),B〉.

(2.6)

Finally, by differentiating (2.6) with respect to s, using (1.4)
and (2.4) we find

δε1ε2ρσh′′′(s)+δε1ε2(ρσ)′h′′(s)+δε1ε2(σρ
′)′h′(s)

+δε1ε2σρ
′h′′(s)− ε0ε1ε2(σρ

′)′+δε0ε2(
σ

ρ
)′h(s)

+δε0ε2
σ

ρ
h′(s) =−δτρ(h′(s)−δε0).

(2.7)

If we arrange Eq. (2.7), then we obtain the required differen-
tial equation (2.1).

2.1 Some conclusions regarding characterizations
of pseudo-spherical curves and rectifying curves

Now, we can give the following consequences of Theorem 2.1
for characterization of pseudo-spherical curves and rectifying
curves.

Corollary 2.2. A unit speed Frenet curve γ in Minkowski
3−space R3

1 is a pseudo-spherical curve if and only if γ satis-
fies the differential equation

ε1ε2(σρ
′)′+

ρ

σ
= 0. (2.8)

Proof. Let γ be a unit speed pseudo-spherical curve that is γ

lies on the pseudo-sphere or the pseudo-hyperbolic space of
radius r. Then

< γ(s),γ(s)>= δ r2

which implies the square distance function d2(s) = r2. So we
see that h = dd′ = 0. Substituting h = 0 and h

′
= h

′′
= h

′′′
= 0

in the differential equation (2.1), we find Eq. (2.8).
Conversely, let γ be a unit speed Frenet curve which satis-

fies Eq. (2.8). Multiplying with 2σρ
′

both sides of Eq. (2.8)
gives

2ε1ε2(σρ
′
)(σρ

′)′+2ρρ
′
= 0. (2.9)

By integrating (2.9), we obtain

ε1ε2(σρ
′)2 +ρ

2 = const.,

that is, γ is unit speed pseudo-spherical curve implies from
[15–18].

Corollary 2.3. A unit speed Frenet curve γ in Minkowski
3−space R3

1 is a rectifying curve if and only if γ satisfies the
differential equation

(s+ c)
(

σ

ρ

)′
+

σ

ρ
= 0, (2.10)

for some constant c.

Proof. We assume that γ is a unit speed rectifying curve that
is the position vector of γ lies in the rectifying plane of γ .
Then the square distance function is given by

d2(s) =| ε0s2 + c1s+ c2 | (2.11)

for some constants c1, c2. By differentiating Eq. (2.11) and
using h(s) = d(s)d′(s), we find

h(s) = δε0(s+ c),

where c =
ε0c1

2
. Substituting h(s) = δε0(s+ c), h′(s) = δε0

and h′′(s) = h′′′(s) = 0 in Eq. (2.1), we have Eq. (2.10).
Conversely, assume that a unit speed Frenet curve γ satis-

fies Eq. (2.10). Then by integrating (2.10), we find

(s+ c)(
σ

ρ
) = c

for every constant c. Hence we see that

τ

κ
= as+b

where a = 1
c and b = c

c . This implies that γ is a rectifying
curve from [11].

Corollary 2.4. A unit speed Frenet curve γ with δ = +1
(δ =−1, resp.) in Minkowski 3−space R3

1 satisfies

ε1〈γ(s),N〉2 + ε2〈γ(s),B〉2 = c2 (2.12)

for a constant c if and only if either γ is a pseudo-spherical
curve or γ is a rectifying curve.

Proof. We suppose that γ is a unit speed Frenet curve with
δ =+1 (δ =−1, resp.) which satisfies the condition (2.12).
Taking into consideration the condition (2.12), we see that the
square distance function of γ is

δd2(s) = ε0〈γ(s),T 〉2 + c2. (2.13)

By differentiating (2.13) with respect to s and using
h(s) = d(s)d

′
(s), (2.2), (1.1) and (2.3), we find

h(s)(1−δε0h
′
(s)) = 0.
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Hence either h(s) = 0 or h
′
(s) = ε0δ that is h(s) = δε0(s+b)

for constant b. As a conclusion either γ is a pseudo-spherical
curve or γ is a rectifying curve.

Conversely, if a unit speed Frenet curve γ is a pseudo-
spherical curve or γ is a rectifying curve, then γ satisfies
(2.12).

2.2 A new characterization of general helix
We gives a new characterization of general helix by using
Theorem 2.1.

Theorem 2.5. A unit speed Frenet curve γ in Minkowski
3−space R3

1 is a general helix if and only if the function
h(s) = d(s)d

′
(s) with respect to arc length parameter s satis-

fies the differential equation

ε1δ (ρh′)′+
(

ε2
ρ

σ2 + ε0
1
ρ

)
δh= ε0ε1ρ

′+ε2
ρ

σ2 (ε0s+b),

(2.14)

where d2(s) = δ < γ(s),γ(s) >, ρ = κ−1, σ = τ−1 and
δ = sign(γ(s)) =±1.

Proof. Let γ be a general helix with a vector u lying on the
axis of γ . Assume, without loss of generality, that < u,u>= ε ,
where ε =−1,0,1. Then

〈T,u〉= c

for constant c and

〈N,u〉= 0.

On the other hands, we can write

u = ε0〈u,T 〉T + ε2〈u,B〉B

and

ε = ε0c2 + ε2〈u,B〉2.

Hence we get

〈u,B〉=
√

εε2− ε0ε2c2.

and we deduce that

u = ε0cT + ε2

√
εε2− ε0ε2c2B. (2.15)

Differentiating (2.15) with respect to s and using the Frenet
equations (1.1) we find

ε0κc = ε2τ

√
εε2− ε0ε2c2. (2.16)

Since

〈γ(s),u〉′ = c,

we get

〈γ(s),u〉= cs+ c1 (2.17)

for constant c1. Substituting (2.15) in (2.17) and using (2.3),
we have

δh(s) = ε0s+b− ε0ε2
√

εε2− ε0ε2c2

c
〈γ(s),B〉, (2.18)

where b =
ε0c1

c
. By differentiating (2.18) with respect to s

and using (1.4) and (2.16), we obtain

ε1ρ
(
δh′(s)− ε0

)
= 〈γ(s),N〉.

Again by differentiating with respect to s of above the equation
and using (1.3), (2.3) and (2.18), we get

ε1δρh′′(s)+ ε1ρ
′(δh′(s)− ε0) =− ε0κδh(s)+ ε2τ〈γ(s),B〉

=
ε0c(ε0s+b)

σ
√

ε2ε− ε0ε2c2

−ε0δh(
1
ρ
+

c

σ
√

εε2− ε0ε2c2
).

(2.19)

On the other hand, from Eq. (2.16) we see that

ρ

σ
=

ε0ε2c√
εε2− ε0ε2c2

. (2.20)

Substituting (2.20) in (2.19), we obtain (2.14).
Conversely, assume that a unit speed Frenet curve γ sat-

isfies Eq. (2.14). We multiply both sides of Eq. (2.14) by σ

and differentiate with respect to s. Then we get

ε1ε2δσρh′′′+ε1ε2δ (2σρ
′+σ

′
ρ)h′′+ ε2δ

[
ε1(σρ

′)′

+

(
ε2

ρ

σ
+ ε0

σ

ρ

)]
h′+ ε2δ

(
ε2

ρ

σ
+ ε0

σ

ρ

)′
h

−ε0ε1ε2(σρ
′)′ = ε0

ρ

σ
+
(

ρ

σ

)′
(ε0s+b).

(2.21)

By comparing (2.21) with (2.1), we see that(
ρ

σ

)′
(δh− ε0s−b) = 0.

If h(s) = δ (ε0s+b), then (2.14) reduces to

ε0

(
1
ρ

)
(ε0s+b) = 0

which implies 1
ρ
= 0 that is κ = 0. Because γ is a unit

speed Frenet curve, it is impossible. Thus
(

ρ

σ

)′
= 0, that is

τ

κ
= const. Consequently, a unit speed Frenet curve γ is a

general helix.
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2.3 A new characterization of non-null pseudo-spherical
curves with respect to centrode and co-centrode

Let γ be a unit speed Frenet curve in Minkowski 3−space R3
1.

The centrode ∂ and the co-centrode ∂ ∗ of γ are given by the
Darboux vector

∂ = τT +κB (2.22)

and the co-Darboux vector

∂
∗ =−ε0κT + ε2τB, (2.23)

respectively. We can clearly see that the co-Darboux vector is
equal to the derivative of the principal normal vector N of γ

that is N
′
= ∂ ∗ and {N, ∂ , ∂ ∗} become an orthogonal frame

along γ .
By differentiating (2.22) and using the Frenet equations

(1.1) yields

∂
′ = τ

′T +κ
′B.

So ∂
′

is always orthogonal to the co-centrode ∂ ∗ if and only if

τ
′
κ− τκ

′
= 0

which implies that γ is a general helix. Therefore we can
statement that the Frenet curve γ is a general helix if and only
if ∂

′
is always orthogonal to the co-centrode ∂ ∗.

Now, we give the following a new characterization of non-
null pseudo-spherical curves with respect to the centrode ∂

and the co-centrode ∂ ∗ co-centrode.

Theorem 2.6. Let γ be a unit speed Frenet curve in Minkowski
3−space R3

1. γ is a pseudo-spherical curve if and only if

τ

κ
= ε2
〈γ(s),∂ ∗〉
〈γ(s),∂ 〉

with ε0τ
2 + ε2κ

2 6= 0. (2.24)

Proof. Let γ be a unit speed Frenet curve in Minkowski
3−space R3

1. Because {N, ∂ , ∂ ∗} is orthogonal along γ , by
using (2.22) and (2.23) the position vector of γ(s) can be
written

γ(s) = ε1〈γ(s),N〉N + ε3
〈γ(s),∂ 〉
‖∂‖

∂ + ε4
〈γ(s),∂ ∗〉
‖∂ ∗‖

∂
∗.

where ε3 = sign(∂ ) =±1 and ε4 = sign(∂ ∗) =±1. Then the
square distance function of γ satisfies

δd2 = ε1〈γ(s),N〉2+
ε3

‖∂‖2 〈γ(s),∂ 〉
2+

ε4

‖∂ ∗‖2 〈γ(s),∂
∗〉2.

(2.25)

If we take derivative of (2.25) with respect to s and use the
Frenet equations (1.1), then we have

δdd′ =ε1〈γ(s),N〉〈γ(s),∂ ∗〉−
〈∂ ,∂ ′〉
‖∂‖4 〈γ(s),∂ 〉

2

+
ε3

‖∂‖2 〈γ(s),∂ 〉(ε0τ + 〈γ(s),∂ ′〉)

−〈∂
∗,∂ ∗

′〉
‖∂ ∗‖4 〈γ(s),∂

∗〉2

+
ε4

‖∂ ∗‖2 〈γ(s),∂
∗〉(−κ + 〈γ(s),∂ ∗′〉).

(2.26)

On the other hand, from (2.22), (2.23) and (1.1) we get

〈γ(s),∂ ′〉=τ
′〈γ(s),T 〉+κ

′〈γ(s),B〉,

〈γ(s),∂ ∗′〉=ε0κ
′〈γ(s),T 〉− ε1(ε0κ

2 + ε2τ
2)〈γ(s),N〉

+ ε2τ
′〈γ(s),B〉.

(2.27)

Substituting (2.22), (2.23) and (2.27) in (2.26), we arrive

δdd′ =− ε0ττ ′+ ε2κκ ′

‖∂‖4 (τ2〈γ(s),T 〉2 +κ
2〈γ(s),B〉2

+2κτ〈γ(s),T 〉〈γ(s),B〉)

−ε0κκ ′+ ε2ττ ′

‖∂ ∗‖4 (κ2〈γ(s),T 〉2

+τ
2〈γ(s),B〉2−2ε0ε2κτ〈γ(s),T 〉〈γ(s),B〉)

+
1

ε0τ2 + ε2κ2 (ε0τ
2〈γ(s),T 〉+ ττ

′〈γ(s),T 〉2

+ε0κτ〈γ(s),B〉+κκ
′〈γ(s),B〉2)

+
1

ε0κ2 + ε2τ2 (ε0κ
2〈γ(s),T 〉+κκ

′〈γ(s),T 〉2

−ε2κτ〈γ(s),B〉+ ττ
′〈γ(s),B〉2).

By a long direct computation, we find

δdd′ =
ε0

ε0τ2 + ε2κ2 (τ〈γ(s),∂ 〉− ε2κ〈γ(s),∂ ∗〉)

which implies that γ is a pseudo-spherical curve if and only if
(2.24) holds.

3. The characterization of some special
null Frenet curves in Minkowski 3-space

Theorem 3.1. Let γ = γ(s) be a null Frenet curve in Minkowski
3−space R3

1. Then γ(s) satisfies the differential equation given
by

h′′′+
2
σ

h
′
+

(
1
σ

)′
h+δ = 0, (3.1)

where σ = τ−1 , h(s) = d(s)d′(s) and δ = sign(γ(s)) =∓1.

2141
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Proof. We take derivative of the square distance function

d2(s) = δ < γ(s),γ(s)>

with respect to s. Then we arrive

h(s) = δ < γ(s),T > . (3.2)

By differentiating (3.2) with respect to s and using (1.5), (1.6)
we have

h′(s) = δ 〈γ(s),N〉. (3.3)

Similarly, differentiating (3.3) with respect to s and using
(1.5), (1.6) get

h
′′
(s) =−δτ〈γ(s),T 〉−δ 〈γ(s),B〉. (3.4)

Substitution (3.2) in (3.4), we obtain

h
′′
(s)+

1
σ

h(s) =−δ 〈γ(s),B〉. (3.5)

Finally, if we take derivative of (3.5) with respect to s and us-
ing (3.3), (1.5) and (1.6), then we find the differential equation
(3.1).

We simply see the following consequences from
Theorem 3.1.

Corollary 3.2. ([14, 18]) There is no null Frenet curve lies
pseudo-sphere in Minkowski 3−space R3

1.

Corollary 3.3. ([11]) A null Frenet curve γ in Minkowski
3−space R3

1 is a rectifying curve if and only if γ satisfies the
differential equation

1
σ

= as+b,

for some constants a and b.

3.1 A new characterization of null general helix
Note that a null Frenet curve parametrized by the pseudo-arc
parameter is called a null helix if its lightlike curvature is
constant. A null Frenet curve parametrized by the pseudo-arc
parameter is a null general helix if and only if it is a null helix
([10]).

Now, we gives a new characterization of null general helix.

Theorem 3.4. A null Frenet curve γ parametrized by the
pseudo-arc parameter s in Minkowski 3−space R3

1 is a null
general helix if and only if the function h(s) = d(s)d

′
(s) with

respect to pseudo-arc parameter s satisfies the differential
equation

δh
′′
(s)+

2
σ

δh(s)+ s+ c̃ = 0, (3.6)

where d2(s) = δ < γ(s),γ(s) >, σ = τ−1 and
δ = sign(γ(s)) =±1.

Proof. Let a null Frenet curve γ parametrized by the pseudo-
arc parameter s be a null general helix. So there exists a vector
u ∈ R3

1 such that < T,u > is constant. Here we assume, with-
out loss of generality, that < u,u >= ε , where ε = −1,0,1.
Then

〈T,u〉= c

for constant c 6= 0 and

〈N,u〉= 0.

Therefore, we can write

u = 〈u,B〉T + cB

which implies that

ε = 2c〈u,B〉.

Hence we find

〈u,B〉= ε

2c

and we deduce that

u =
ε

2c
T + cB. (3.7)

Differentiating (3.7) with respect to s and using the Frenet
equations (1.5) we find

τ =− ε

2c2 . (3.8)

On the other hand, from

〈γ(s),u〉′ = c,

we get

〈γ(s),u〉= cs+ c1 (3.9)

for constant c1. Substituting (3.7) in (3.9) and using (3.2),
(3.5) and (3.8), we obtain (3.6).

Conversely, we suppose that a null Frenet curve γ parametrized
by the pseudo-arc parameter s satisfies Eq. (3.6). By differen-
tiating (3.6) with respect to s, we get

h
′′′
(s)+(

2
σ
)
′
h(s)+

2
σ

h
′
(s)+δ = 0 (3.10)

By comparing (3.10) with (3.1), we have(
1
σ

)′
h(s) = 0.

Since h(s) can not be zero,
(

1
σ

)′
= 0, that is τ = const.

Consequently, a null Frenet curve γ is a null general helix.
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3.2 An other characterization of null general helix
with respect to centrode and co-centrode

Let γ be a null Frenet curve in Minkowski 3−space R3
1. The

centrode ∂ and the co-centrode ∂ ∗ of γ are given by the Dar-
boux vector

∂ =−τT +B (3.11)

[19] and the co-Darboux vector

∂
∗ =−τT −B,

respectively. We can clearly see that the co-Darboux vector is
equal to the derivative of the principal normal vector N of γ

that is N
′
= ∂ ∗.

By differentiating (3.11) and using the Frenet equations
(1.5) yields

∂
′ =−τ

′T.

So ∂
′

is always orthogonal to the co-centrode ∂ ∗ if and only if

τ
′
= 0

which implies that γ is a null general helix. Therefore we can
give the following other characterization of null general helix
with respect to the centrode ∂ and the co-centrode ∂ ∗.

Corollary 3.5. γ is a null general helix in Minkowski 3−space
R3

1 if and only if ∂
′

is always orthogonal to the co-centrode
∂ ∗.
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