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Introduction of color class dominating sets in
graphs
A. Vijayalekshmi1* and A. E. Prabha2

Abstract
Let G = (V,E) be a graph. In this paper, we define a new graph parameter called color class domination number
of G. A color class dominating set of G is a proper coloring C of G with the extra property that every color class
in C is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating
set if no proper subset of C is a color class dominating set of G. The color class domination number of G is the
minimum cardinality taken over all minimal color class dominating sets of G and is denoted by γχ(G). Here we
also obtain γχ(G) for Path graph, Cycle graph, Helm graph, Flower graph, Sunflower graph, Gear graph and
Sunlet graph.
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1. Introduction
All graphs considered in this paper are finite, undirected

graphs and we follow standard definitions of graph theory as
found in [3].

Let G = (V,E) be a graph of order p. The open neigh-
borhood N(v) of a vertex v ∈ V (G) consists of the set of
all vertices adjacent to v.The closed neighborhood of v is
N[v] = N(v)∪{v}. For a set S ⊆ V, the open neighborhood
N(S) is defined to be

⋃
v∈S N(v) and the closed neighborhood

of S is N[S] = N(S)∪ S. For any set H of vertices of G, the
induced sub graph < H > is the maximal sub graph of G with
vertex set H.

A subset S of V is called a dominating set if every vertex
in V − S is adjacent to some vertex in S. A dominating set
is a minimal dominating set if no proper subset of S is a
dominating set of G. The domination number γ(G) is the

minimum cardinality taken over all minimal dominating sets
of G. A γ-set is any minimal dominating set with cardinality
γ . A proper coloring of G is an assignment of colors to the
vertices of G such that adjacent vertices have different colors.
The smallest number of colors for which there exists a proper
coloring of G is called chromatic number of G and is denoted
by χ(G).

The join G1+G2 of Graphs G1 and G2 with disjoint vertex
sets V1 and V2 and edge sets E1 and E2 is the graph union G1∪
G2 together with each vertex in V1 is adjacent to every vertices
in V2. A path on n vertices denoted by Pn, is a connected
graph with all but two vertices have degree 2 and V (Pn) =
{vi/1≤ i≤ n} with vivi+1 ∈ E (Pn) for i < n. A cycle graph
is a graph on n≥ 3 vertices containing a single cycle through
all vertices and is denoted by Cn. The Complete graph Kp has
every pair of p vertices adjacent. A wheel graph on n+ 1
vertices is denoted by W1,n = K1 +Cn. The helm graph Hn
is the graph obtained from a wheel graph W1,n by adjoining
a pendant edge at each vertex of the cycle Cn. The flower
graph Fln is the graph obtained from a helm graph by joining
each pendant vertex to the central vertex of the helm. The
Sun flower graph S fn is the resultant graph obtained from the
flower graph of wheel W1,n by adding pendant edges to the
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central vertex. The Gear graph is a graph obtained by inserting
an extra vertex between each pair of adjacent vertices on the
wheel graph W1,n. The sunlet SCn graph on 2n vertices is
obtained by attaching n pendant edges to a cycle graph Cn

2. Main Results
We introduce a new concept, color class dominating sets

on graphs.

Definition 2.1. Let G be a graph. A color class dominating
set of G is a proper coloring C of G with the extra property
that every color classes in C is dominated by a vertex in G.
A color class dominating set is said to be a minimal color
class dominating set if no proper subset of C is a color class
dominating set of G. The color class domination number of G
is the minimum cardinality taken over all minimal color class
dominating sets of G and is denoted by γχ(G). This concept
is illustrated by the following example.

Figure 1

In figure 1, C1 = {v6,v8,v12} ,C2 = {v1,v5,v7} , C3 =
{v3} , C4 = {v2,v4} ,C5 = {v10} C6 = {v9,v11} . Then the
color classes Ci,1≤ i≤ 6 are dominated by vertices v7,v6,v2
(or v3 or v4) ,v3,v9 (or v10 or v11 ) and v10 respectively. So
γχ(G) = 6.

Theorem 2.2. Let G be a graph of order p without isolated
vertices. Then

(i) χ(G)≤ γχ(G)

(ii) max{χ(G),γ(G)} ≤ γχ(G)≤ p.

Proof. Since γχ -coloring of G is a proper coloring, χ(G)≤
γχ(G). Now, let be a γχ -coloring of G. Then for each color
class Ci,1≤ i≤ γχ(G), there exist a vertex vi ∈V such that
Ci is dominated by vi. Let S =

{
v1,v2, . . . ,vγχ

}
, where vi ∈

Ci,1 ≤ i ≤ γχ(G). Now, we have to show that S is a γ-set.
Let y ∈V −S. Then y ∈ Ci for some i,1≤ i≤ γχ(G). By the
definition of γχ -coloring of G,y is adjacent to the vertex vi
of S. Then S is a γ-set. Therefore γ(G) ≤ γχ(G). since G is
a graph of order p,G can be colored with at most p colors.
Hence, max{χ(G),γ(G)} ≤ γχ(G)≤ p.

Proposition 2.3. For the Wheel graph W1,n, n≥ 3,

γχ (W1,n) =

{
3 if n is even
4 if n is odd

Theorem 2.4. Let G be Pn or Cn. Then for n > 3,

γχ (Pn) = γχ (Cn) =


n
2 if n≡ 0(mod 4)
n
2 +1 if n≡ 2(mod 4)⌊ n

2

⌋
+1 if n≡ 1,3(mod 4)

Proof. Let V (Pn) = {vi/1≤ i≤ n} and vivi+1 ∈ E (Pn) for
i < n. Let n > 4. Let C be a γχ -coloring of Pn. We consider
three cases.
Case(i): n≡ 0(mod 4). For = 1,2, . . . , n

4 , let

Hi =< v4i−3,v4i−2,v4i−1,v4i >

be the vertex induced sub graph of Pn. Then for each i,1 ≤
i ≤ n

4 assign two distinct colors, say, 2i− 1,2i to the ver-
tices {v4i−3,v4i−1} and {v4i−2,v4i} respectively, we get a γχ -
coloring of Pn. So γχ (Pn) =

2n
4 = n

2 .
Case (ii): n ≡ 2(mod4) since n− 2 ≡ 0(mod4),Pn is ob-
tained from Pn−2 followed by P2. So γχ (Pn) = γχ (Pn−2)+
γχ (P2) =

n
2 +1.

Case (iii): n ≡ 1,3(mod4). When n ≡ 1(mod4), since n−
1 ≡ 0(mod4),Pn is obtained from Pn−1 followed by P1. So
γχ (Pn)= γχ (Pn−1)+γχ (P1)=

⌊ n
2

⌋
+1. When n≡ 3(mod 4),

as above γχ (Pn) = γχ (Pn−3)+ γχ (P3) =
⌊ n

2

⌋
+ 1. This γχ -

coloring is true for Cn also.

Theorem 2.5. For the Helm graph G = Hn,n≥ 3,γχ (Hn) =
n.

Proof. Let Hn be a helm graph with

V (Hn) = {v}∪{vi/1≤ i≤ n}∪{ui/1≤ i≤ n} .

Assign colors 1, 2 and n to the vertices {v1,un} ,{u1,v2,vn}
and {vn−1,v} respectively. Assign color i(3≤ i≤ n−1) to the
vertices {vi,ui−1} . The color classes C1,C2,Cn are dominated
by vn,v1,vn−1 respectively. Also the color class Ci(3 ≤ i ≤
n−1) dominated by the vertex vi−1. Hence γχ (Hn) = n.

Example 2.6.

Figure 2
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Theorem 2.7. (i) If G is a flower graph Fln, n≥ 3,

γχ (Fln) =
{

3 if n is even
4 if n is odd

(ii) If G is a sunflower graph S fn,n≥ 3,

γχ (S fn) =

{
3 if n is even
4 if n is odd

Proof. (i)
By the definition of flower graph, Fln is obtained from a helm
graph by joining each pendant vertex to the central vertex.
Let V (Fln) = {v1,v2, . . . ,v2n+1} , where v1 be the central ver-
tex, vi(2 ≤ i ≤ n+ 1) be the vertices on the cycle Cn and
v j(n+2≤ i≤ 2n+1) be the vertices on the pendant edges of
Hn such that vi(2≤ i≤ n+1) is adjacent to vn+i and v1. We
Consider two cases:
Case (i): n is even. Let C = {C1,C2,C3} be a proper coloring
of Fln in which C1 = {v1} ,C2 = {v2,v4, . . . ,vn}∪{vn+3,vn+5,
. . . ,v2n+1}, C3 = {v3,v5, . . . ,vn+1}∪ {vn+2,vn+4, . . . ,v2n} .
Then the color class C1 dominated by the vertex v2 and the
color classes C2 and C3 are dominated by the vertex v1.
Case (ii): n is odd. Let C = {C1,C2,C3,C4} be a proper
coloring of Fln in which C1 = {v1} ,C2 = {v2,v4, . . . ,vn−1}∪
{vn+3,vn+5, . . . ,v2n} ,C3 = {v3,v5, . . . ,vn}∪{vn+2,vn+4, . . . ,
v2n+1} and C4 = {vn+1} . Then the color class C1 dominated
by the vertex v2 and the color classes C2,C3 and C4 dominated
by the vertex v1. Therefore, the coloring C is a γχ -coloring
of Fln and hence

γχ (Fln) =
{

3 if n is even
4 if n is odd

Figure 3. n odd and n even

(ii)
Let G be a sunflower graph S fn.Then G is a flower graph with
pendant edges attached to the central vertex. As in Theorem
(2.7(i)), we assign the same proper coloring of Fln with color
2 to the pendant vertices {v2n+2,v2n+3, . . . ,v3n+1} and we get
the γχ -coloring of S fn. Hence

γχ (S fn) =

{
3 if n is even
4 if n is odd

Figure 4. n odd and n even

Theorem 2.8. The gear graph Gn has γχ (Gn) =
⌈ n

2

⌉
+1.

Proof. Let

V (Gn) = {u}∪{u1,u2, . . . ,un}∪{v1,v2, . . . ,vn} ,

where v is the central vertex and deg(ui) = 3 and deg(vi) =
2,1 ≤ i ≤ n. Assign distinct colors say, i,1 ≤ i ≤

⌈ n
2

⌉
− 1

to the vertices {v2i−1,v2i} respectively. Also assign distinct
colors say,

⌈ n
2

⌉
and

⌈ n
2

⌉
+1 to the vertices {u1,u2, . . . ,un} and

{v,vn} when n is odd and {u1,u2, . . . ,un} and {v,vn−1,vn}
when n is even respectively, we get a γχ -coloring. Hence,

γχ (Gn) =
⌈n

2

⌉
+1.

Example 2.9.

Figure 5. n odd and n even

Theorem 2.10. The Sunlet graph SCn has γχ (SCn) = n.

Proof. Let

V (SCn) = {u1,u2, . . . ,un,v1,v2, . . . ,vn}

with deg(ui) = 3(1≤ i≤ n) and deg(vi) = 1(1≤ i≤ n). We
consider two cases:
Case (i). When n is even, assume color i, where i= 1,3,5, . . . ,
n−1 to the vertices {ui,vi+1} and color j, where j = 2,4, . . . ,n
to the vertices

{
u j,v j−1

}
respectively, we get the γχ -coloring

of SCn.
Case(ii). When n is odd, assign colors 1,2 and n to the ver-
tices {u1,vn} ,{u2,un,v1} and {vn−1} respectively. Also as-
sign color i(3≤ i≤ n−1) to the vertices {ui,vi−1} , we get a
γχ -coloring. Thus γχ (SCn) = n.

2188
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Example 2.11.

Figure 6. n odd and n even
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