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Abstract. In this paper, we will study about Fractional-order partial differential equations in Mathematical Science and
we will introduce and analyse fractional calculus with an integral operator that contains the Caputo- Fabrizio’s fractional-
order derivative. The advanced method is an appropriate union of the new integral transform named as ‘Mohand transform’
and the homotopy perturbation method. Some numerical examples are used to communicate the generality and clarity of
the proposed method. We will also find the analytical solution of the linear and non-linear Klein-Gordan equation which
originate in quantum field theory. The homotopy perturbation Mohand transform method (HPMTM) is a merged form of
Mohand transform, homotopy perturbation method, and He’s polynomials. Some numerical examples are used to indicate the
generality and clarity of the proposed method.
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1. Introduction, Background and Preliminaries

Fractional calculus is an eminent phrase in each science and technology. Differential and crucial equations
represent and outline various phenomena of technological knowledge and mold the difficulty in a new
appearance. Fractional calculus is the generalization of regular differentiation and integration from linear to
non-linear order. It extend with derivatives of actual or complex order.
In 1695 L’Hospital enquires Leibnitz that Dnf could be what, if n is fractional. Leibnitz answers that it can be
expand in the form of infinite series, such as d1/2xy and distant between infinite series also geometric series, we
use only positive and negative integers in the finite series Leibniz also responded that xd{

1
2} = x

√
dx : x this is

a clear paradox.

S.F. Larcroin developed a formula from a case of integer order which starts withy = xm;m is a positive integer

dny
dxn = m!xm−n

(m−n)! ;m � n

Like this many other mathematicians gave their definitions and formula.Fractional calculus attracted some
mathematical minds like Fourier, Euler, Marquis de Laplace, and plenty of others due primarily to its
incontestable applications in such different fields of science and engineering. The literature is full-fledged by
generating, growing, working, modifications, and generalization of the facts, formulae, and definitions relating
to fractional calculus. A whole historical development and progress of fragmental calculus operators seem in
books of Kilbas, Srivastava, and Trujillo [1], Miller and Ross [2], Nishimoto [3], Oldham and Spanier [4],
Podlubny [5] and, Ross [6], etc.
In mathematical analysis, there are several fields wherever fractional calculus operators are usefully employed in
numerous branches like integral and differential equations, special functions, integral transforms, operational
calculus (see [6],[7]), etc. because it start to be used fractional calculus in various areas as numerous varieties of
operators came to light-weight and by the time they were got changed.
Mohand Transform is derived from the classical Fourier integral. Based on the mathematical simplicity of the
Mohand transform and its fundamental properties. Mohand transform was introduced by Mohand Mahgoub to
facilitate the process of solving ordinary and partial differential equations in the time domain. Typically, Fourier,
Laplace, Elzaki, Aboodh, kamal and Sumudu transforms are the convenient mathematical tools for solving
differential equations.
Mohand transform and some of its fundamental properties are also used to solve differential equations.

2. Mohand Transform

2.1. Definition

A new transform called the Mohand transform defined for function of exponential order we consider functions
in the set A defined by: For a given function in the set A, the constant M must be finite number,k1, k2 may be
finite or infinite.

A = {f(t) : ∃M,k1, k2 > 0.|f(t)| < Me
|t|
kj , ift ∈ (−1)j × [0,∞)} (2.1)

The Mohand transform denoted by the operator M (.) defined by the integral equations

M [f(t)] = R(v) = v2
∫ ∞
0

f(t)e−vt dt, t ≥ 0, k1 ≤ v ≤ k2 (2.2)
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The variable v in this transform is used to factor the variable t in the argument of the function f . this transform
has deeper Connection with the Laplace ,Elzaki, and Aboodh transform.
The purpose of this study is to show the applicability of this interesting new transform and its efficiency in
solving the linear differential equations.

2.2. Mohand Transform and Different Types of Results

Mohand Transform is derived from the classical Fourier integral based on the mathematical simplicity of the
Mohand transform with its fundamental properties.Mohand transform was introduced by MohandMahgoub to
facilitate the process of solving ordinary and partial differential equations in the time domain.Mohandtransform
defined for the function of exponential order we consider functions in the set A defined by:

A = f(t) :M,K1,K2 > 0.|f(t)| < Me
|t|
Kt if t ∈ (−1)j × [0,∞

)
where M must be finite number and K1,K2 may be finite or infinite, for a given function in set A.
The integral equation defines the operator M(.) which represents Mohand transform i.e

M [f(X)] = R(v) = v2
∫ ∞
0

evtf(t)dt, t ≥ 0,K1 ≤ v ≤ K2 (2.3)

The variable v in this transform is used to factor the variable t in the argument of the function f.
If R1(t) and R2(t) represents Mohand transform for functions F1(t) and F2(t) respectively,then Mohand
transform of their convolution F1(t) ∗ F2(t) is given by

M(F1(t) ∗ F2(t)) =
1
v2MF1(t)MF2(t)

M(F1(t) ∗ F2(t)) =
1

v2
R1(t)R2(t) (2.4)

where F1(t) ∗ F2(t) is defined by

F1(t) ∗ F2(t) =

∫ t

0

F1(t− x)F2(t)dt =

∫ t

0

F1(t)F2(t− x)dt (2.5)

Caputo fractional time derivative

Dβ
t (h(t)) =

M(β)

1− β

∫ t

α

h′(x)e[−β(
t−x
1−β )]dx (2.6)

M(α) is function of normalization such as M(0) =M(1) = 1.

M{Dβ
t (h(t))} =

M(β)

1− β
v2
∫ ∞
0

e−vt
∫ t

α

h′(x)e[−β(
t−x
1−β )]dxdt (2.7)
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We use the convolution property of Mohand transform is defined as

M{Dβ
t (h(t))} =

M(β)
1−β [M(h′(x))] ∗M [e−

βt
1−β ]

M{Dβ
t (h(t))} =

M(β)
1−β [vR(v)− h(0)v2] v2

v−( −β1−β )

M{Dβ
t (h(t))} =M(β)[vR(v)− h(0)v2] v2

v+(β(1−v))

The solution of Caputo-Fabrizio fractional derivative is:

M{Dβ
t (h(t))} =

M(β)
{
v3M [h(t)]− v4h(0)

}
v + β(1− v)

(2.8)

3. HPMTM for the model

In this section, we will study Klein-Gordon equation and its application by using homotopy perturbation Mohand
transform method.

3.1. Solution of Klein-Gordon equation:

Klein-Gordon equation is

utt(x, t)− uxx(x, t) + au(x, t) = g(x, t) (3.1)

with initial condition

u(x, 0) = h(x), ut(x, 0) = f(x) (3.2)

Taking the Mohand transform on both sides ofequ. (2.1), we get

M [utt(x, t)] =M [uxx(x, t)− au(x, t)] +M [g(x, t)] (3.3)

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(0)− v2u(0) =M [uxx(x, t)− au(x, t)] +M [g(x, t)] (3.4)

On simplifying and initial conditions, we get

R(x, v) = f(x) + vh(x) +
1

v2
M [uxx(x, t)− au(x, t)] +

1

v2
M [g(x, t)] (3.5)

Taking inverse Mohand transform on both sides ofequ. (2.5), we get

u(x, t) = G(x, t) +M−1[
1

v2
M [uxx(x, t)− au(x, t)]] (3.6)

where G(x,t) represents the term arising from the function and the specified initial conditions.
Using the HPM method, we get

u(x, t) =

∞∑
n=0

pnun(x, t) (3.7)
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Putting the equation (2.6) in equ. (2.7), we get

∞∑
n=0

pnun(x, t) = G(x, t) + p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)− a
∞∑
n=0

pnun(x, t)

]])
(3.8)

On collecting the coefficients of exponents of p

p0 : u0(x, t) = G(x, t)

p1 : u1(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u0(x, t)− au0(x, t)

]])
(3.9)

p2 : u2(x, t) =
(
M−1

[
1
v2M

[
∂2

∂x2u1(x, t)− au1(x, t)
]])

p3 : u3(x, t) =
(
M−1

[
1
v2M

[
∂2

∂x2u2(x, t)− au2(x, t)
]])

.

.

.

and similarly,

pn : un(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u(n−1)(x, t)− au(n−1)(x, t)

]])
(3.10)

Hence, the solution is:

u(x, t) = lim
N→∞

N∑
n=0

un(x, t) (3.11)

3.2. Study of Mohand Transform Homotopy Perturbation Method (MTHPM)

Let a general non-linear non-homogeneous partial differential equation

Du(x, t) + Ru(x, t) + Nu(x, t) = g(x, t) (3.12)

With the initial conditions

u(x, 0) = h(x), ut(x, 0) = f(x) (3.13)

where D is the linear differential operator of order 2, R is a linear differential operator of less than D; N is the
general nonlinear differential operator and is the source term.

Applying the Mohand transform on both sides ofequ. (2.12), we get
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M [Du(x, t)] =M [g(x, t)]−M [Ru(x, t) + Nu(x, t)] (3.14)

Using the property of Mohand transform, we have

[
v2R(x, v)− v3u(x, 0)− v2(x, 0)

]
=M [g(x, t)]−M [Ru(x, t) + Nu(x, t)] (3.15)

After the simplification and initial conditions, we get

R(x, v) = vh(x) + f(x) +
1

v2
M [g(x, t)]− 1

v2
M [Ru(x, t) + Nu(x, t)] (3.16)

Taking inverse Mohand transform on both sides of equ. (2.16), we get

u(x, t) = G(x, t)−M−1
[
1

v2
M [Ru(x, t) + Nu(x, t)]

]
(3.17)

where G(x,t) represents the term arising from the function and the specified initial conditions.

Now we use the HPM

u(x, t) =

∞∑
n=0

pnun(x, t) (3.18)

and the non-linear term can be written as

Nu(x, t) =
∞∑
n=0

pnHn(x, t) (3.19)

where is Hn(x, t) He’s polynomials and given by

Hn (u0, u1, u2, .....un) =
1

n!

∂2

∂p2

[
N

∞∑
n=0

piui

]
p=0 (3.20)

Substituting the equ. (2.19) and equ. (2.18) in equ. (2.17), we get

∞∑
n=0

pnun(x, t) = G(x, t)− p

(
M−1

[
1

v2
M

[
R

∞∑
n=0

pnun(x, t) +N

∞∑
n=0

pnHn(u)

]])
(3.21)

On collecting the coefficient of exponents of p

p0 : u0(x, t) = G(x, t)

p1 : u1(x, t) = −M−1
[
1

v2
M [Ru0(x, t) +H0(u)]

]
(3.22)

p2 : u2(x, t) = −M−1
[

1
v2M [Ru1(x, t) +H1(u)]

]
p3 : u3(x, t) = −M−1

[
1
v2M [Ru2(x, t) +H2(u)]

]
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.

.

.

and similarly,

pn : un(x, t) = −M−1
[
1

v2
M [Run−1(x, t) +Hn−1(u)]

]
(3.23)

Hence, the solution is

u(x, t) = lim
N→∞

N∑
n=0

un(x, t) (3.24)

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + .......un(x, t) (3.25)

4. Applications of the MTHPM

In this part, we applythe Mohand transform homotopy perturbation method (MTHPM) to solve the linear and
nonlinear Klein-Gordon equation.

Example 1: Consider the linear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u(x, t) = 0 (4.1)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = x (4.2)

Taking Mohand transform on both sides of equ. (3.1), we get

M [utt(x, t)] =M [uxx(x, t)− u(x, t)] (4.3)

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(0)− v2u′(0) =M [uxx(x, t)− u(x, t)] (4.4)

On simplifying and above initial conditions, we get

R(x, v) = x+
1

v2
M [uxx(x, t)− u(x, t)] (4.5)

Taking inverse Mohand transform on both sides of equ. (3.5), we get

u(x, t) = xt+M−1[
1

v2
M [uxx(x, t)− u(x, t)]] (4.6)
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Now we use the HPM and the non-linear term then we get

∞∑
n=0

pnun(x, t) = xt+M−1[
1

v2
M [

∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(x, t)]] (4.7)

Collecting the coefficients of exponents of p

p0 : u0(x, t) = xt

p1 : u1(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u0(x, t)− u0(x, t)

]]
= −xt

3

3!
(4.8)

p2 : u2(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u1(x, t)− u1(x, t)

]]
= −xt

5

5!
(4.9)

p3 : u3(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u2(x, t)− u2(x, t)

]]
= −xt

7

7!
(4.10)

.

.

.

Similarly, we can obtain further values.

Hence the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

= x

[(
− t

7

7!
+
t5

5!
− t3

3!
+ t...

)
....
]

= xsint (4.11)

Example 2: Consider the linear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u(x, t) = 2sinx (4.12)

With the initial conditions

u(x, 0) = sinx, ut(x, 0) = 1 (4.13)

Applyingthe Mohand transform on both sides of equ. (3.14), we get

M [utt(x, t)] =M [uxx(x, t)− u(x, t)] +M [2sinx] (4.14)

8
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Figure 1: The Graph of u(x, t) = xsint, t > 0. −∞ ≤ x ≤ ∞

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) =M [uxx(x, t)− u(x, t)] + 2sinx(v) (4.15)

After the simplification and above initial conditions, we get

R(x, v) = vsinx+ 1 + 2sinx
1

v
+

1

v2
M [uxx(x, t)− u(x, t)] (4.16)

Taking inverse Mohand transform on both sides of equ. (3.18), we get

u(x, t) = sinx + t2sinx + t+M−1
[
1

v2
M [uxx(x, t)− u(x, t)]

]
(4.17)

Now we use the HPM and the non-linear term then we get

∞∑
n=0

pnun(x, t) = sinx + t+ t2sinx + p

(
M−1

[
1

v2
M [

[
∂2

∂x2

∞∑
n=0

pnun(x, t)]−
∞∑
n=0

pnun(u)

]])
(4.18)

Collecting the coefficients of exponents of p

p0 : u0(x, t) = sinx+ t+ t2sinx (4.19)
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p1 : u1(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u0(x, t)− u0(x, t)

]]
= −

[
t3

3!
+
t4

3!
sinx + t2sinx

]
(4.20)

p2 : u2(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u1(x, t)− u1(x, t)

]]
=

[
t5

5!
+ 8

t6

6!
sinx +

t4

3!
sinx

]
(4.21)

p3 : u3(x, t) =M−1
[
1

v2
M

[
∂2

∂x2
u2(x, t)− u2(x, t)

]]
= −

[
t7

7!
+ 8

t6

6!
sinx + 16

t8

8!
sinx

]
(4.22)

.

.

.

Similarly, we can obtain further values.

Hence the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

= sinx +

[
− t

7

7!
+
t5

5!
− t3

3!
+ t

]
= sinx+ sint (4.23)

Example 3: Consider the following nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = t2x2 (4.24)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = x (4.25)

Applyingthe Mohand transform on both sides of equ. (3.29), we get

M [utt(x, t)] =M
[
uxx(x, t)− u2(x, t)

]
+M

[
t2x2

]
(4.26)

Using the convolution property of Mohand transform, we get
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Figure 2: The Graph of u(x, t) = sinx+ sint, t > 0. −∞ ≤ x ≤ ∞

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) = 2x2
1

v
+M

[
uxx(x, t)− u2(x, t)

]
(4.27)

On simplifying and above initial conditions, we get

R(x, v) = x+ 2x2
1

v3
+

1

v2
M
[
uxx(x, t)− u2(x, t)

]
(4.28)

Taking inverse Mohand transform on both sides of equ. (3.33), we get

u(x, t) = xt +
x2

12
t4 +

1

v3
+M−1

[
1

v2
M
[
uxx(x, t)− u2(x, t)

]]
(4.29)

Now we use the HPM and the non-linear then we get

∞∑
n=0

pnun(x, t) = xt +
x2

12
t4 +

1

v3
+ p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(u)

]])
(4.30)

whereHn(u) is represents the He’s polynomial of nonlinear terms. The first few components of He’s polynomials
are given by

H0(u) = (u0)
2 (4.31)

H1(u) = 2u0u1 (4.32)

11
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H2(u) = 2u0u2 + (u1)
2 (4.33)

.

.

.

Equating the multipliers of exponents of p

p0 : u0(x, t) = xt +
x2

12
t4 (4.34)

p1 : u1(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u0(x, t)−H0(u)

]])
=

[
t10x4

12960
− t7x3

252
+

t6

180
− t4x2

12

]
(4.35)

p2 : u2(x, t) =

(
M−1

[
1

v2
M

[
∂2

∂x2
u1(x, t)−H1(u)

]])
=

[
t16x6

18662400
+

383t13x5

15921360
− t12x2

71280
+

11t10x4

45360
+
t7x3

252
− t6

180
− 11xt9

22680

]
(4.36)

.

.

.

similarly, we can obtain further values.

Hence, the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

u(x, t) = xt (4.37)

Example 4: Consider the following nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = 2x2 − 2t2 + t4x4 (4.38)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = 0 (4.39)

Applying the Mohand transform on both sides of equ. (3.45), we get

M [utt(x, t)] =M
(
2x2 − 2t2 + t4x4

)
+M

[
uxx(x, t)− u2(x, t)

]
(4.40)
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Figure 3: The Graph of u(x, t) = xt, t > 0. −∞ ≤ x ≤ ∞

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) = 2x2v − 4

v
+

24x4

v3
+M

[
uxx(x, t)− u2(x, t)

]
(4.41)

On simplification and above initial conditions, we get

R(x, v) =
2x2

v
− 4

v3
+

24x4

v5
+

1

v2
M [uxx(x, t)− u(x, t)] (4.42)

Taking inverse Mohand transform on both sides ofequ. (3.49), we get

u(x, t) = t2x2 − t4

6
+
x4

30
t6 +M−1

[
1

v2
M [uxx(x, t)− u(x, t)]

]
(4.43)

Now we use the HPM and the non-linear term we get

∞∑
n=0

pnun(x, t) = t2x2 − t4

6
+
x4

30
t6 + p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(u)

]])
(4.44)

whereHn(u) is represents the He’s polynomial of nonlinear terms. The first few components of He’s polynomials
are given by

H0(u) = (u0)
2 (4.45)

H1(u) = 2u0u1 (4.46)

H2(u) = 2u0u2 + (u1)
2 (4.47)

13
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.

.

.

Equating the multipliers of exponents of p

p0 : u0(x, t) = t2x2 − t4

6
+
x4

30
t6 (4.48)

p1 : u1(x, t) =

(
1

M

[
1

v2
M

[
∂2

∂x2
u0(x, t)−H0u

]])
=

[
−532224t14x8

14!
+

4032t11x4

39916800
− 2688t10x6

3628800
+

288t8x2

40320
− 20t8

40320
+

24t7x2

5040
− t6x4

30
+
t6

6

]
(4.49)

.

.

.

similarly, we can obtain further values.

Hence, the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

u(x, t) = x2t2 (4.50)

Example 5: Consider the following nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = 6xt
(
x2 − t2

)
+ t6x6 (4.51)

With the initial conditions

u(x, 0) = 0, ut(x, 0) = x (4.52)

Applyingthe Mohand transform on both sides of equ. (3.60), we get

M [utt(x, t)] =M
[
uxx(x, t)− u2(x, t)

]
+M

[
6xt
(
x2 − t2

)
+ t6x6

]
(4.53)

Using the convolution property of Mohand transform, we get

v2R(x, v)− v3u(x, 0)− v2u′(x, 0) = 6x3 − 36x

v2
+

720x6

v5
+M

[
uxx(x, t)− u2(x, t)

]
(4.54)

On simplification and above initial conditions, we get

R(x, v) =
6x3

v2
− 36x

v4
+

720x6

v7
+

1

v2
M
[
uxx(x, t)− u2(x, t)

]
(4.55)

14
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Figure 4: The Graph of u(x, t) = x2t2, t > 0. −∞ ≤ x ≤ ∞

Taking inverse Mohand transform on both sides ofequ. (3.64), we get

u(x, t) =
6x3

v2
− 36x

v4
+

720x6

v7
++M−1

[
1

v2
M [uxx(x, t)− u(x, t)]

]
(4.56)

Now we use the HPM and the non-linear term we get

∞∑
n=0

pnun(x, t) = t3x3 − 3xt5

10
+
t8x6

56
+ p

(
M−1

[
1

v2
M

[
∂2

∂x2

∞∑
n=0

pnun(x, t)−
∞∑
n=0

pnHn(u)

]])
(4.57)

whereHn(u) is represents the He’s polynomial of nonlinear terms. The first few components of He’s polynomials
are given by

H0(u) = (u0)
2 (4.58)

H1(u) = 2u0u1 (4.59)

H2(u) = 2u0u2 + (u1)
2 (4.60)

.

.

.
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Equating the multipliers of exponents of p

p0 : u0(x, t) = t3x3 − 3xt5

10
+
t8x6

56
(4.61)

p1 : u1(x, t) =

(
1

M

[
1

v2
M

[
∂2

∂x2
u0(x, t)−H0u

]])
=

[
t18x12

653616
− 3t15x7

19600
+
t13x9

4368
+

3t12x2

4400
− 53t10x4

4200
+
t8x6

56
+

3xt5

10

]
(4.62)

...

similarly, we can obtain further values.

Hence, the u(x,t) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ......

u(x, t) = x3t3 (4.63)

Figure 5: The Graph of u(x, t) = x3t3, t > 0. −∞ ≤ x ≤ ∞
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5. Concluding Remarks and Observations

we have discussed the history, some definitions of fractional calculus, Riemann-Liouville
differential and integral operator. We also knowing the Mittag-Leffler function and Caputo and
Fabrizio fractional-order derivative. In this paper, we discussed some of the integral transforms (like
Laplace Transform, Fourier Transform, and Mohand Transform). Homotopy perturbation Mohand
transform method has been successfully operated to evaluating the linear and nonlinear
Klein-Gordon equations with initial conditions. The method is good and simple to solve. In
conclusion, the MTHPM may be considered as a nice simplification in numerical techniques and
might find wide applications.
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