

https://doi.org/10.26637/MJM0804/0147

Pathos edge semi-middle graph of a tree

K.C. Rajendra Prasad^{1*}, Venkanagouda M. Goudar² and K.M. Niranjan³

Abstract

In this communication, the pathos edge semi-middle graph of a tree is introduced. Its study is concentrated only on trees. We present a characterization of those graphs whose pathos edge semi-middle graph of a tree is planar, outerplanar and minimally nonouterplanar. Further, Also we establish a characterization of graphs whose pathos edge semi-middle graph of a trees are noneularian, hamiltonian and the graphs whose crossing number one and two.

Keywords

Crossing number, Middle graph, Planar, Semientire graph.

AMS Subject Classification

05C05, 05C07, 05C10, 05C38, 05C45.

¹*Research Scholar, UBDT College of Engineering, Davanagere, A Constituent College of Visvesvaraya Technological University, Belagavi. Department of Mathematics, Jain Institute of Technology, Davanagere-577003, Affiliated to Visvesvaraya Technological University, Belagavi, India.*

²*Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572105, India.*

³*Department of Mathematics, UBDT College of Engineering, Davanagere-577004, India.*

***Corresponding author**: 1 rajendraprasadkp@gmail.com; ²vmgouda@gmail.com; ³niranjankm64@gmail.com.

Article History: Received **25** August **2020**; Accepted **06** November **2020** c 2020 MJM.

Contents

1. Introduction

All graphs consider here are finite, undirected without loops or multiple edges. Any undefined term or notation in this paper may be found in Harary [\[2\]](#page-3-0).

The idea of pathos of a graph *G* has been introduced by [\[1\]](#page-3-1) as a collection of minimum number of edge disjoints open paths whose union is *G*. The path number of a graph *G* is the number of path of pathos. Stanton [\[4\]](#page-3-2) and Harary [\[2\]](#page-3-0) have calculated the path number of certain classes of graphs like trees and complete graphs.

The crossing number $C_r(G)$ of *G* is the least number of intersection of pairs of edges in any embedding of *G* in the plane. Obviously *G* is planar if and only if $C_r(G) = 0$. The *edgedegree* of an edge *uv* of a tree *T* is the sum of the degrees of *u* and *v*. The pathoslength is the number of edges that lie on a particular path *pⁱ* of pathos of *T*.

In [\[5\]](#page-3-3) Venkanagouda introduced the graph valued function, pathos vertex semientire graph of a tree. The present work focuses on the concept of the pathos edge semi-middle graph of a tree in this context. The pathos edge semi-middle graph of a tree denoted by $PM_e(T)$ is the graph whose vertex set is $V(T) \cup E(T) \cup R(T) \cup P_i(T)$ and two vertices of *PM*^{*e*}(*T*) are adjacent if and only if they corresponds to two adjacent edges of *T* or one corresponds to a vertex and other to an edge incident with it or one corresponds to edge and other to a region in which edge lie on the region or one corresponds to a vertex and other to a path of pathos in which vertex lies on the path of pathos since the system of pathos for a tree is not unique, the corresponding pathos edge semi-middle graph of a tree is also not unique. The tree *T* and its pathos edge semi-middle graph of a tree $PM_e(T)$ are shown in Fig.1.

2. Preliminaries.

Theorem 2.1. [\[3\]](#page-3-4) For any graph *G*, $M_e(G)$ is separable if *and only if G has a pendant vertex.*

Theorem 2.2. *[\[3\]](#page-3-4) For any graph G, p vertices, q edges and r regions then* $M_e(G)$ *has* $(p+q+r)$ *vertices and* $q+$ Σ_i^q $\frac{q}{i-1}\frac{1}{2}d(e_i)+\sum_{j=1}^r q_{r_j}$ edges. Where $d(e_i)$ is the edgedegree of *a edge eⁱ and qr^j is the number of edges lies on each region.*

Fig. 1.

Theorem 2.3. *[\[3\]](#page-3-4) For any graph G, Me*(*G*) *is planar if and only if G satiesfies the following conditions. i*) $\Delta(G) \leq 3$ *. ii*) *if deg*(v) = 3, *then v is a cutvertex.*

.

Theorem 2.4. [\[3\]](#page-3-4) For any graph G, $M_e(G)$ is outerplanar if *and only if G is a path Pn.*

3. Pathos edge semi-middle graph of a tree

We begin with the following observations.

Observation 3.1. If *v* is a pendant vertex of a tree *T*, then the degree of a corresponding vertex v' in $PM_e(T)$ is even.

Observation 3.2. For any edge e_i in T with edgedegree n , the degree of the vertex e'_i which corresponds to e_i in $PM_e(T)$ is always $(n+1)$.

Observation 3.3. If the pathos length of the path of pathos p_i in T is n , then the degree of the corresponding pathosvertex in $PM_e(T)$ is $(n+1)$.

Observation 3.4. The $PM_e(T)$ is 5-minimally nonouterplanar if and only if $T = K_{1,3}$.

Theorem 3.1. *For any tree T*, $PM_e(T)$ *is always non-separable.*

Proof. Suppose *T* be any tree. Let $T : v_1, v_2, v_3, \ldots, v_n$. Further, $V[P\tilde{M}_e(T)] = \{v_1\}$ $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $\frac{1}{3}...v_n, e_1'$ $\frac{1}{1}, e_2^{\prime}$ e'_{2}, e'_{3} [']₃...*e*['] $n=1, r_1$ p'_{1}, p'_{1} $\binom{n}{1}, p'_2$ $\sum_{2}^{\prime},...p_{n}^{\prime}\}.$ By [Theorem 2.1,](#page-0-2) $M_e(G)$ is separable. In $PM_e(T)$, the pathosvertices are adjacent to v' , v₂ $v_2^{'}, v_3'$ $\int_3 \ldots \nu_n'$. Clearly $PM_e(T)$ has no

cutertex. Thus $PM_e(T)$ is non-separable. Hence the proof. \Box

Theorem 3.2. $T(p,q)$ *be any tree with r regions and k path of pathos, then* $PM_e(T)$ *has* $(p+q+r+\sum_{l=1}^{k} p_l)$ *vertices and* $q + \sum_{i=1}^{q}$ $\sum_{i=1}^{q} \frac{1}{2} d(e_i) + \sum_{j=1}^{r} q_{r_j} + \sum_{l=1}^{k} p_{v_l}$ edges. Where $d(e_i)$ is the *edgedegree of a edge eⁱ , qr^j is the number of edges lies on each region and pv^l is the number of vertices which lies on the path of pathos.*

Proof. By the definition of $PM_e(T)$, $V[PM_e(T)] = (p + q + q)$ $r + \sum_{l=1}^{k} p_l$). Further by [Theorem 2.2,](#page-0-3) $E[M_e(G)] = q + \sum_{i=1}^{q} p_i$ $\frac{q}{i=1}$ $\frac{1}{2}$ $d(e_i) + \sum_{j=1}^r q_{r_j}$. The degree of a pathosvertex is the sum of the number of vertices lies on the each path of pathos in *T* which is $\Sigma_{l=1}^k p_{v_l}$. The number of edges in $PM_e(T)$ is equal to the sum of edges in $M_e(G)$ and $\Sigma_{l=1}^k p_{\nu_l}$. Hence $E[PM_e(T)] = q + \sum_{i=1}^{q}$ $\sum_{i=1}^{q} \frac{1}{2} d(e_i) + \sum_{j=1}^{r} q_{r_j} + \sum_{l=1}^{k} p_{v_l}$ \Box

Theorem 3.3. For any tree T, $PM_e(T)$ is planar if and only *if* T *is a path or* $K_{1,3}$ *.*

Proof. Suppose $PM_e(T)$ is planar. Consider the star, $K_{1,4}$: *v*₁, *v*₂, *v*₃, *v*₄, *v*₅ and deg(*v*₁) = 4. Further *V*[*PM*_{*e*}(*T*)] = {*v*['] $\frac{1}{1}, \frac{1}{2}$ $\frac{1}{2}$ v. v'_{3}, v'_{4} v'_{4} , v'_{3} $\frac{1}{5}, e^{i}$ $, e'_{2}$ e'_{2}, e'_{3} e'_{3}, e'_{4} $'_{4}, r^{'}_{1}$ p'_{1}, p'_{1} $\frac{1}{1}, p_2^{'}$ Z_2 . By [Theorem 2.3,](#page-0-4) $M_e(K_{1,4})$ is non-planar. Clearly $PM_e(T)$ is also non-planar, a contradiction.

Conversely,

Case 1. Suppose $T = P_n : v_1, v_2, v_3, \dots, v_n, n \ge 2$. Further, $V[PM_e(T)] = \{v_1^{\prime\prime}\}$ v'_{1}, v'_{2} v'_{2}, v'_{3} $\sum_{i=1}^{n}$, $\sum_{i=1}^{n}$ $\frac{7}{1}, e_2$ $\bar{e}_1^{\prime}, \bar{e}_2^{\prime}$ 3 ...*e* 0 $\sum_{n=1}^{7}$, \sum_{1}^{7} $\frac{1}{1}, p_1'$ $\left\{ \right\}$. By [The](#page-1-1)[orem 2.4,](#page-1-1) $M_e(P_n)$ is outerplanar. In $PM_e(P_n)$, p_1 ['] i_1 is adjacent to v_1' y'_{1}, y'_{2} v'_{2}, v'_{3} $\int_{3}^{7} ... v_n'$ of $M_e(P_n)$. Clearly $PM_e(P_n)$ is planar. **Case 2.** Suppose $T = K_{1,3} : v_1, v_2, v_3, v_4$ and $deg(v_1) = 3$. Further $V[PM_e(K_{1,3})] = \{v_1^{\prime\prime}\}$ $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} v'_{3}, v'_{4} $\frac{1}{4}, e^{i}$ $, e'_{2}$ e'_{2}, e'_{3} r_3', r_1' p'_{1}, p'_{2} $\frac{1}{1}, p_2'$ $\left\{ \right\}$. By [Theorem 2.3,](#page-0-4) $M_e(K_{1,3})$ is planar. By Observation 3.4, $PM_e(K_{1,3})$ is 5 minimally non-outerplanar. Clearly $PM_e(K_{1,3})$ is planar.

$$
\qquad \qquad \Box
$$

Proposition 3.1. The $PM_e(T)$ of a *T* is 1-minimally nonouterplanar if and only if $T = P_3$.

Theorem 3.4. *For any tree T, PMe*(*T*) *is outerplanar if and only if T is a path P*2*.*

Proof. Consider a tree *T* is not a path P_2 . Let $T = P_3$: *v*₁, *v*₂, *v*₃. Further, *V*[$PM_e(P_3)$] = {*v*[[] $\frac{1}{1}, \frac{1}{v}$ v'_{2}, v'_{3} $\frac{1}{3}, e^{i}$ $\frac{1}{1}, e_2'$ r_2', r_1' p'_{1}, p'_{2} $\left\{ \cdot \right\}$. By [Proposition 3.1,](#page-1-2) *PMe*(*P*3) is 1-minimally nonouterplanar, a contradiction.

Conversely, Suppose $T = P_2$, then $PM_e(P_2) = C_4(P_{n_1})$. Since $C_4(P_{n_1})$ is outerplanar. It follows that $PM_e(P_2)$ is outerplanar. □

Proposition 3.2. The *PMe*(*T*) of a *T* is 3-minimally nonouterplanar if and only if $T = P_4$.

Theorem 3.5. *PM*_{*e*}(*T*) *of a connected graph T is* $(2k-1)$ *minimally non-outerplanar* $k \geq 1$ *if and only if* T *is* P_{k+2} *.*

Proof. Suppose *T* is $P_{k+2}, k \geq 1$ to establish the result, we apply mathematical induction on k . Consider $k = 1$ then by [Proposition 3.1,](#page-1-2) is 1-minimally non-outerplanar. Consider the result is valid for $k = m$, therefore if *T* is P_{m+2} then $PM_e(T)$ is $(2m−1)$ -minimally non-outerplanar. Suppose $k = m+1$ then *T* is P_{m+3} . We now prove that $PM_e(T)$ is $2(m+1)-1$ minimally non-outerplanar. Let $T = P_{m+3}$ and v_1 be an end vertex of *T*. Let $T_1 = T - v_1 = P_{m+2}$. By inductive hypothesis, $PM_e(T_1)$ is $(2m - 1)$ -minimally non-outerplanar. Let $e_i = (v_i, v_j)$ be an end edge, r_i be the region and p_1 be the pathosvertex of T_1 . Then e_i is an end edge incident with the cutvertex v_i . The vertices e_i' i ['], r_i' $i^{\prime}, \nu^{'}$ \sum_{i} and \sum_{i} \int_{i} in $PM_e(T_1)$ are on the boundary of the exterior region. Now join the vertex v_1 to the vertex v_j of T_1 such that the resulting graph is T . Let $e_j = (v_j, v_1)$ be an endedge, p_i be the pathosvertex and r_i be the region of *T*. The formation of $PM_e(T)$ is an extension of *PM*^{*e*}(*T*₁) with additional vertices e_j and v_1 such that *e*^{\prime} *j* adjacent with e'_{i} i_i , v' $j^{\prime}, \nu_{1}^{'}$ r_1' and r_1' p'_1 . Similarly p'_i $\frac{1}{i}$ is adjacent with v_i' i_i , v' *j* and v' \int_1 . Clearly v'_1 *j* is an inner vertex of $PM_e(T)$, but it not an inner vertex of $PM_e(T_1)$. Thus $PM_e(T)$ is $[2(m+1)-1]$ minimally non-outerplanar.

then by [Theorem 3.3,](#page-1-3) $PM_e(T)$ is planar. Thus *T* is a path. Suppose *T* is a path. We obtain the following cases.

Case 1. Suppose $T = P_{k+1}, k \ge 1$. In particular if $k = 1$ then $T = P_2$ by the [Theorem 3.4,](#page-1-4) $PM_e(P_2)$ is outerplanar, a contradiction.

Case 2. Suppose $T = P_{k+3}$, in particular if $k = 1$ then $T = P_4$ by [Proposition 3.2,](#page-1-5) *PMe*(*P*4) is 3-minimally non-outerplanar, a contradiction. Hence *T* is P_{k+2} . \Box

Theorem 3.6. *For any tree T, PMe*(*T*) *has crossing number one if and only if* T *is* $K_{1,3}(P_{n_1}, P_{n_2})$ *where* $n_1, n_2 \geq 1$ *.*

Proof. Suppose $PM_e(T)$ has crossing number one, then $PM_e(T)$ is non-planar. By the [Theorem 3.3](#page-1-3) we have $T = K_{1,n}$, $n \ge 4$. We now consider the following cases.

Case 1. Assume that $T = K_{1,n}$ for $n = 4 : v_1, v_2, v_3, v_4, v_5$ and $deg(v_i) = 4$. Further, $V[PM_e(K_{1,n})] = \{v_1\}$ y'_{1}, y'_{2} v'_{2}, v'_{3} v'_{3}, v'_{4} $\frac{1}{4}, \frac{1}{4}$ $\frac{1}{5}, e_1$ $\frac{1}{1}, e_2'$ e_2, e_3' ,
3, *e* 0 n_4', r_1' p'_{1}, p'_{2} $\frac{1}{1}, p_2'$ Z_2 . In $M_e(K_{1,n}), C_r[M_e(K_{1,4})] = 2$. Hence $PM_e(K_{1,n})$ has crossing number at least two, a contradiction.

Case 2. Assume that $T = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$, $n_1, n_2, n_3 \ge 1$. By [Theorem 3.3,](#page-1-3) $PM_e(K_{1,3})$ is non-planar. The graph *T* contains two path of pathos and their corresponding to two pathosvertices p' $\frac{1}{1}, p_2^{'}$ $\frac{1}{2}$ in $PM_e(T)$. These two vertices also joined by the vertices and gives crossing number two, a contradiction.

Conversely, Suppose $T = K_{1,3}(P_{n_1}, P_{n_2}), n_1, n_2 \ge 1$. By [The](#page-1-3)[orem 3.3,](#page-1-3) $PM_e(T)$ is non-planar. $K_{1,3}(P_{n_1}, P_{n_2})$ contains two path of pathos p_1 and p_2 such that p_1 lies in the interior region and p_2 lies in the exterior region. In $PM_e(T)$, two pathosvertices joined by the vertices gives crossing number one. Hence *PMe*(*T*) has crossing number one. \Box

Theorem 3.7. *For any tree T, PMe*(*T*) *has crossing number two if and only if T is* $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$ *, where* $n_1, n_2, n_3 \geq 1$ *.*

Proof. Suppose $PM_e(T)$ has crossing number two. Assume that $T = K_{1,4} : v_1, v_2, v_3, v_4, v_5$ and $\deg(v_1) = 4$. Further, $V[PM_e]$ (T)] = {*v*² y'_{1}, y'_{2} v'_{2}, v'_{3} v'_{3}, v'_{4} $\frac{1}{4}, \frac{1}{4}$ $\frac{1}{5}, e_1$ $\frac{1}{1}, e_2'$ e_2, e_3' $, e'_{4}$ $'_{4}, r^{'}_{1}$ $\frac{1}{1}, p_1'$ $\frac{1}{1}, p_2'$ Z_2 . In $M_e(T)$, C_r [$M_e(K_{1,4})$ = 2. In *PM*^{*e*}(*T*), pathosvertices joined by *v*^{*v*} $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} 5 for p' $\frac{1}{1}$ and v'_2 v'_{2}, v'_{3} v'_{3}, v'_{4} $\frac{1}{4}$ for p_2' σ_2 , gives crossing number three. Which is a contradiction.

Conversely, suppose $T = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$, $n_1, n_2, n_3 \ge 1$: *v*₁, *v*₂, *v*₃, ...*v*_{*n*}. Further, $V[PM_e(T)] = \{v_1$ $\frac{7}{1}, \frac{7}{1}$ $\frac{v}{2}, \frac{v}{2}$ $\frac{1}{3}...v_n, e_1'$ $, e'_{i}$ e'_{2}, e'_{3} 3 $\ldots e'$ n_{n-1} , *p*² $\frac{1}{1}, p_2'$ r'_{2}, r'_{1} $\{S_1\}$. By [Theorem 3.6,](#page-2-1) Case 2, $C_r[PM_e(T)] = 2$. Hence $PM_e(T)$ has crossing number two. П

Theorem 3.8. *For any tree T,* $PM_e(T)$ *is always noneulerian.*

Proof. Let *T* be a non-trivial tree. We consider the following cases.

Conversely, assume *PM*_{*e*}(*T*) is (2*k*−1) minimally non-outerplanar_{DM} (*T*) have add darge. Then *PM*(*T*) is papaularian **Case 1.** Suppose *T* be a path. If $n = 3$, both edges having edgedegree odd, by Observation 3.2, both vertices have even degree in $PM_e(T)$. But the pathosvertex p_1 ['] i_1 is adjacent to v $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $\frac{1}{3}$ and v'_2 $_{2}^{\prime}, p_{1}^{\prime}$ I_1 to get odd degree. Hence $PM_e(T)$ is noneulerian. If $n \geq 3$, then the internal edges having edgede-*PMe*(*T*) have odd degree. Then *PMe*(*T*) is noneulerian.

> **Case 2.** Suppose $T = K_{1,n} : v_1, v_2, v_3, \ldots, v_n$. Further $V[PM_e($ $[K_{1,n})] = \{v_1^{'}$ v'_{1}, v'_{2} v'_{2}, v'_{3} v'_1, \ldots, v'_n, e'_1 $\frac{1}{1}, e_2'$ e_2', e_3' $'_{3},...e'_{n}$ r'_{n-1}, r'_{n} p'_{1}, p'_{2} $\frac{1}{1}, p_2'$ $\{p'_{1},...,p'_{n}\}.$ If *n* is odd then each edge having edgedegree even. In $PM_e(T)$, the corresponding vertices having degree odd, which is noneulerian. If *n* is even then each edge having edgedegree odd. By observation 3.2, In $PM_e(T)$ the corresponding vertices e'_i *i* having even degree. By definition of $PM_e(T)$, e_1 $\frac{1}{1}, e_2'$ $e_2^{\prime}, e_3^{\prime}$ [']₃,...*e*[']₁ *n*−1 is adjacent to r_1' r_1 gives a vertex r_1' $_1$ having even degree. Also v' $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $\alpha'_{3}, \ldots \alpha'_{n}$ adjacent to p'_{3} $\frac{1}{1}, p_2'$ $\frac{1}{2}$ gives a vertices p' $\frac{1}{1}, p_2'$ $\frac{1}{2}$ having odd degree or vice-versa. Hence $PM_e(T)$ is noneulerian. \Box

> Theorem 3.9. *For any tree T, PMe*(*T*) *is hamiltonian if and only if T is* $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$ *where* $n_1, n_2, n_3 \ge 0$ *or* $B_{2,2}$ *or subdivision of any edge in B*2,2*.*

> *Proof.* Let *T* be any tree. We have the following cases. **Case 1.** Suppose $T = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3}), n_1, n_2, n_3 \ge 0$: v_1, v_2 , $v_3,...v_n$. Further, $V[PM_e(T)] = \{v_1\}$ $\frac{7}{1}, \frac{7}{12}$ $\frac{7}{2}, \frac{7}{2}$ v'_1, \ldots, v'_n, e'_n $\frac{1}{1}, e_2'$ n'_{2}, e'_{3} ,
3, ... e['] n_{n-1} , *p*² $\frac{1}{1}, p_2^{'}$ r'_{2}, r'_{1} r_1' }. Then there exists a cycle r_1' e_1', e_1' $\frac{1}{1}, \frac{1}{2}$ \int_{1}^{7} , p_{1}^{7} $\bar{i}_1,...e'_{n}$,
_{n−1}, v'_n, p'_2 r'_{2}, r'_{1} $\sum_{i=1}^{n}$. Which includes all the vertices of $PM_e(T)$. Hence $PM_e(T)$ is hamiltonian.

> **Case 2.** suppose $T = B_{2,2}$ or subdivision of any edge in $B_{2,2}$: *v*₁, *v*₂, *v*₃, ...*v*_{*n*}. Further $V[PM_e(T)] = \{v_1^{\prime\}}$ $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} v'_1, \ldots, v'_n, e'_1 $\frac{1}{1}, e_2'$ $e_2^{\prime}, e_3^{\prime}$,
3, $\ldots e'$ n_{n-1} , r_1' p'_{1}, p'_{2} $\frac{1}{1}, p_2'$ $_{2}^{\prime}, p_{2}^{\prime}$ S_3 . By [Theorem 3.1,](#page-1-6) *PM*_{*e*}(*T*) is always nonseparable. Then there exists a hamiltonian cycle. Which includes all the vertices of $PM_e(T)$. Hence $PM_e(T)$ is hamiltonian.

Conversely, Suppose $T = P_n : v_1, v_2, v_3, \ldots, v_n$. Further, $V[PM_e($ *T*)] = {*v*['] $\frac{1}{1}, \frac{1}{2}$ $v_2^{\prime}, v_3^{\prime}$ $\frac{1}{3}, \ldots, \frac{1}{n}, e'_{n}$ $\frac{1}{1}, e_2^{\prime}$ e'_{2}, e'_{3} $\frac{1}{3}...e_{n}^{'}$ n_{n-1} , *r*[']₁ p'_{1}, p'_{2} $\binom{1}{1}$. By [Theorem 3.1,](#page-1-6) $PM_e(T)$ is always non-separable. Then there exists a hamiltonian path. Hence *PMe*(*T*) is nonhamiltonian. П

4. Conclusions

In this paper we obtained the new graph valued function called pathos edge semi-middle graph of a tree. We studied the characterization of graphs whose pathos edge semi-middle graph of a tree is planar, outerplanar, crossing number one and two. Further, we obtain $PM_e(T)$ is noneulerian and hamiltonian.

References

- [1] Harary F. Annals of Newyork. *Academy of sciences*,:175,198, 1977.
- [2] Harary F. Graph Theory. *Addison-Wesley Reading Mass.*,:72,107, 1969.
- [3] Niranjan K M, Rajendra Prasad K C and Venkanagouda M. Goudar. Edge Semi-Middle Graph of a Graph(Submitted).
- [4] Stanton RG, Cowan DD and James LO. Graph Theory and Computation of Graphs and its applications. *Proceedings of the Louisiana Conference on Combinatorics*,:112, 1970.
- [5] Venkanagouda M. Goudar. Pathos Vertex Semientire Graph of a tree. *International Journal of Applied Mathematical Research.*, 1(4):666–670, 2012.

