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Pathos edge semi-middle graph of a tree
K.C. Rajendra Prasad1*, Venkanagouda M. Goudar2 and K.M. Niranjan3

Abstract
In this communication, the pathos edge semi-middle graph of a tree is introduced. Its study is concentrated
only on trees. We present a characterization of those graphs whose pathos edge semi-middle graph of a tree is
planar, outerplanar and minimally nonouterplanar. Further, Also we establish a characterization of graphs whose
pathos edge semi-middle graph of a trees are noneularian, hamiltonian and the graphs whose crossing number
one and two.
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1. Introduction
All graphs consider here are finite, undirected without

loops or multiple edges. Any undefined term or notation in
this paper may be found in Harary [2].
The idea of pathos of a graph G has been introduced by [1]
as a collection of minimum number of edge disjoints open
paths whose union is G. The path number of a graph G is the
number of path of pathos. Stanton [4] and Harary [2] have
calculated the path number of certain classes of graphs like
trees and complete graphs.
The crossing number Cr(G) of G is the least number of in-
tersection of pairs of edges in any embedding of G in the
plane. Obviously G is planar if and only if Cr(G) = 0. The
edgedegree of an edge uv of a tree T is the sum of the degrees
of u and v. The pathoslength is the number of edges that lie
on a particular path pi of pathos of T .

In [5] Venkanagouda introduced the graph valued function,
pathos vertex semientire graph of a tree. The present work
focuses on the concept of the pathos edge semi-middle graph
of a tree in this context. The pathos edge semi-middle graph
of a tree denoted by PMe(T ) is the graph whose vertex set
is V (T )∪E(T )∪R(T )∪Pi(T ) and two vertices of PMe(T )
are adjacent if and only if they corresponds to two adjacent
edges of T or one corresponds to a vertex and other to an
edge incident with it or one corresponds to edge and other to
a region in which edge lie on the region or one corresponds
to a vertex and other to a path of pathos in which vertex lies
on the path of pathos since the system of pathos for a tree is
not unique, the corresponding pathos edge semi-middle graph
of a tree is also not unique. The tree T and its pathos edge
semi-middle graph of a tree PMe(T ) are shown in Fig.1.

2. Preliminaries.
Theorem 2.1. [3] For any graph G, Me(G) is separable if
and only if G has a pendant vertex.

Theorem 2.2. [3] For any graph G, p vertices, q edges
and r regions then Me(G) has (p+ q+ r) vertices and q+
Σ

q
i=1

1
2 d(ei)+Σr

j=1qr j edges. Where d(ei) is the edgedegree of
a edge ei and qr j is the number of edges lies on each region.
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Fig. 1.
.

Theorem 2.3. [3] For any graph G, Me(G) is planar if and
only if G satiesfies the following conditions. i)4(G)≤ 3. ii)
if deg(v) = 3, then v is a cutvertex.

Theorem 2.4. [3] For any graph G, Me(G) is outerplanar if
and only if G is a path Pn.

3. Pathos edge semi-middle graph of a
tree

We begin with the following observations.

Observation 3.1. If v is a pendant vertex of a tree T , then the
degree of a corresponding vertex v

′
in PMe(T ) is even.

Observation 3.2. For any edge ei in T with edgedegree n,
the degree of the vertex e

′
i which corresponds to ei in PMe(T )

is always (n+1).

Observation 3.3. If the pathos length of the path of pathos
pi in T is n, then the degree of the corresponding pathosvertex
in PMe(T ) is (n+1).

Observation 3.4. The PMe(T ) is 5-minimally nonouterpla-
nar if and only if T = K1,3.

Theorem 3.1. For any tree T , PMe(T ) is always non-separable.

Proof. Suppose T be any tree. Let T : v1,v2,v3, ...vn. Further,
V [PMe(T )]= {v

′
1,v

′
2,v

′
3...v

′
n,e

′
1,e

′
2,e

′
3...e

′
n−1,r

′
1, p

′
1, p

′
2, ...p

′
n}.

By Theorem 2.1, Me(G) is separable. In PMe(T ), the pathosver-
tices are adjacent to v

′
1,v

′
2,v

′
3...v

′
n. Clearly PMe(T ) has no

cutertex. Thus PMe(T ) is non-separable. Hence the proof.

Theorem 3.2. T (p,q) be any tree with r regions and k path
of pathos, then PMe(T ) has (p+q+ r+Σk

l=1 pl) vertices and
q+Σ

q
i=1

1
2 d(ei)+Σr

j=1qr j +Σk
l=1 pvl edges. Where d(ei) is the

edgedegree of a edge ei, qr j is the number of edges lies on
each region and pvl is the number of vertices which lies on
the path of pathos.

Proof. By the definition of PMe(T ), V [PMe(T )] = (p+ q+
r+Σk

l=1 pl). Further by Theorem 2.2, E[Me(G)] = q+Σ
q
i=1

1
2

d(ei) + Σr
j=1qr j . The degree of a pathosvertex is the sum

of the number of vertices lies on the each path of pathos
in T which is Σk

l=1 pvl . The number of edges in PMe(T ) is
equal to the sum of edges in Me(G) and Σk

l=1 pvl . Hence
E[PMe(T )] = q+Σ

q
i=1

1
2 d(ei)+Σr

j=1qr j +Σk
l=1 pvl .

Theorem 3.3. For any tree T , PMe(T ) is planar if and only
if T is a path or K1,3.

Proof. Suppose PMe(T ) is planar. Consider the star, K1,4 :
v1,v2,v3,v4,v5 and deg(v1)= 4. Further V [PMe(T )]= {v

′
1,v

′
2,

v
′
3,v

′
4,v

′
5,e

′
1,e

′
2,e

′
3,e

′
4,r

′
1, p

′
1, p

′
2}. By Theorem 2.3, Me(K1,4)

is non-planar. Clearly PMe(T ) is also non-planar, a contradic-
tion.
Conversely,
Case 1. Suppose T = Pn : v1,v2,v3, ...vn,n ≥ 2. Further,
V [PMe(T )]= {v

′
1,v

′
2,v

′
3, ...v

′
n,e

′
1,e

′
2,e

′
3...e

′
n−1,r

′
1, p

′
1}. By The-

orem 2.4, Me(Pn) is outerplanar. In PMe(Pn), p
′
1 is adjacent

to v
′
1,v

′
2,v

′
3...v

′
n of Me(Pn). Clearly PMe(Pn) is planar.

Case 2. Suppose T = K1,3 : v1,v2,v3,v4 and deg(v1) = 3. Fur-
ther V [PMe(K1,3)] = {v

′
1,v

′
2,v

′
3,v

′
4,e

′
1,e

′
2,e

′
3,r

′
1, p

′
1, p

′
2}. By

Theorem 2.3, Me(K1,3) is planar. By Observation 3.4, PMe(K1,3)
is 5 minimally non-outerplanar.Clearly PMe(K1,3) is planar.

Proposition 3.1. The PMe(T ) of a T is 1-minimally non-
outerplanar if and only if T = P3.

Theorem 3.4. For any tree T , PMe(T ) is outerplanar if and
only if T is a path P2.

Proof. Consider a tree T is not a path P2. Let T = P3 :
v1,v2,v3. Further, V [PMe(P3)] = {v

′
1,v

′
2,v

′
3,e

′
1,e

′
2,r

′
1, p

′
1}. By

Proposition 3.1, PMe(P3) is 1-minimally nonouterplanar, a
contradiction.
Conversely, Suppose T = P2, then PMe(P2) =C4(Pn1). Since
C4(Pn1) is outerplanar. It follows that PMe(P2) is outerpla-
nar.

Proposition 3.2. The PMe(T ) of a T is 3-minimally non-
outerplanar if and only if T = P4.

Theorem 3.5. PMe(T ) of a connected graph T is (2k− 1)
minimally non-outerplanar k ≥ 1 if and only if T is Pk+2.
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Proof. Suppose T is Pk+2,k ≥ 1 to establish the result, we
apply mathematical induction on k. Consider k = 1 then by
Proposition 3.1, is 1-minimally non-outerplanar. Consider the
result is valid for k = m, therefore if T is Pm+2 then PMe(T )
is (2m− 1)-minimally non-outerplanar. Suppose k = m+ 1
then T is Pm+3. We now prove that PMe(T ) is 2(m+1)−1
minimally non-outerplanar. Let T = Pm+3 and v1 be an end
vertex of T . Let T1 = T − v1 = Pm+2. By inductive hypoth-
esis, PMe(T1) is (2m− 1)-minimally non-outerplanar. Let
ei = (vi,v j) be an end edge, ri be the region and p1 be the
pathosvertex of T1. Then ei is an end edge incident with the
cutvertex vi. The vertices e

′
i,r
′
i,v
′
j and p

′
i in PMe(T1) are on

the boundary of the exterior region. Now join the vertex v1
to the vertex v j of T1 such that the resulting graph is T . Let
e j = (v j,v1) be an endedge, pi be the pathosvertex and ri be
the region of T . The formation of PMe(T ) is an extension of
PMe(T1) with additional vertices e j and v1 such that e

′
j adja-

cent with e
′
i,v
′
j,v
′
1 and r

′
1. Similarly p

′
i is adjacent with v

′
i,v
′
j

and v
′
1. Clearly v

′
j is an inner vertex of PMe(T ), but it not

an inner vertex of PMe(T1).Thus PMe(T ) is [2(m+ 1)− 1]-
minimally non-outerplanar.
Conversely, assume PMe(T ) is (2k−1) minimally non-outerplanar,
then by Theorem 3.3, PMe(T ) is planar. Thus T is a path. Sup-
pose T is a path. We obtain the following cases.
Case 1. Suppose T = Pk+1,k ≥ 1. In particular if k = 1 then
T = P2 by the Theorem 3.4, PMe(P2) is outerplanar, a contra-
diction.
Case 2. Suppose T = Pk+3, in particular if k = 1 then T = P4
by Proposition 3.2, PMe(P4) is 3-minimally non-outerplanar,
a contradiction. Hence T is Pk+2.

Theorem 3.6. For any tree T , PMe(T ) has crossing number
one if and only if T is K1,3(Pn1 ,Pn2) where n1,n2 ≥ 1.

Proof. Suppose PMe(T ) has crossing number one, then PMe(T )
is non-planar. By the Theorem 3.3 we have T = K1,n, n≥ 4.
We now consider the following cases.
Case 1. Assume that T = K1,n for n = 4 : v1,v2,v3,v4,v5 and
deg(vi)= 4. Further, V [PMe(K1,n)]= {v

′
1,v

′
2,v

′
3,v

′
4,v

′
5,e

′
1,e

′
2,e

′
3,

e
′
4,r

′
1, p

′
1, p

′
2}. In Me(K1,n), Cr[Me(K1,4)]= 2. Hence PMe(K1,n)

has crossing number at least two, a contradiction.
Case 2. Assume that T = K1,3(Pn1 ,Pn2 ,Pn3), n1,n2,n3 ≥ 1.
By Theorem 3.3, PMe(K1,3) is non-planar. The graph T
contains two path of pathos and their corresponding to two
pathosvertices p

′
1, p

′
2 in PMe(T ). These two vertices also

joined by the vertices and gives crossing number two, a con-
tradiction.
Conversely, Suppose T = K1,3(Pn1 ,Pn2), n1,n2 ≥ 1. By The-
orem 3.3, PMe(T ) is non-planar. K1,3(Pn1 ,Pn2) contains two
path of pathos p1 and p2 such that p1 lies in the interior region
and p2 lies in the exterior region. In PMe(T ), two pathosver-
tices joined by the vertices gives crossing number one. Hence
PMe(T ) has crossing number one.

Theorem 3.7. For any tree T , PMe(T ) has crossing number
two if and only if T is K1,3(Pn1 ,Pn2 ,Pn3), where n1,n2,n3 ≥ 1.

Proof. Suppose PMe(T ) has crossing number two. Assume
that T =K1,4 : v1,v2,v3,v4,v5 and deg(v1)= 4. Further, V [PMe

(T )]= {v′1,v
′
2,v

′
3,v

′
4,v

′
5,e

′
1,e

′
2,e

′
3,e

′
4,r

′
1, p

′
1, p

′
2}. In Me(T ),Cr[

Me(K1,4)] = 2. In PMe(T ), pathosvertices joined by v
′
1,v

′
2,v

′
5

for p
′
1 and v

′
2,v

′
3,v

′
4 for p

′
2, gives crossing number three. Which

is a contradiction.
Conversely, suppose T = K1,3(Pn1 ,Pn2 ,Pn3), n1,n2,n3 ≥ 1 :
v1,v2,v3, ...vn. Further, V [PMe(T )] = {v

′
1,v

′
2,v

′
3...v

′
n,e

′
1,e

′
2,e

′
3

...e
′
n−1, p

′
1, p

′
2,r

′
1}. By Theorem 3.6, Case 2, Cr[PMe(T )] = 2.

Hence PMe(T ) has crossing number two.

Theorem 3.8. For any tree T , PMe(T ) is always noneulerian.

Proof. Let T be a non-trivial tree. We consider the following
cases.
Case 1.Suppose T be a path. If n = 3, both edges having
edgedegree odd, by Observation 3.2, both vertices have even
degree in PMe(T ). But the pathosvertex p

′
1 is adjacent to

v
′
1,v

′
2,v

′
3 and v

′
2, p

′
1 to get odd degree. Hence PMe(T ) is

noneulerian. If n≥ 3, then the internal edges having edgede-
gree even. By Observation 3.2, the corresponding vertices in
PMe(T ) have odd degree. Then PMe(T ) is noneulerian.
Case 2. Suppose T = K1,n : v1,v2,v3, ...vn. Further V [PMe(

K1,n)] = {v
′
1,v

′
2,v

′
3, ...v

′
n,e

′
1,e

′
2,e

′
3, ...e

′
n−1,r

′
1, p

′
1, p

′
2, ...p

′
n}. If

n is odd then each edge having edgedegree even. In PMe(T ),
the corresponding vertices having degree odd, which is noneu-
lerian. If n is even then each edge having edgedegree odd. By
observation 3.2, In PMe(T ) the corresponding vertices e

′
i hav-

ing even degree. By definition of PMe(T ), e
′
1,e

′
2,e

′
3, ...e

′
n−1

is adjacent to r
′
1 gives a vertex r

′
1 having even degree. Also

v
′
1,v

′
2,v

′
3, ...v

′
n adjacent to p

′
1, p

′
2 gives a vertices p

′
1, p

′
2 having

odd degree or vice-versa. Hence PMe(T ) is noneulerian.

Theorem 3.9. For any tree T , PMe(T ) is hamiltonian if and
only if T is K1,3(Pn1 ,Pn2 ,Pn3) where n1,n2,n3 ≥ 0 or B2,2 or
subdivision of any edge in B2,2.

Proof. Let T be any tree. We have the following cases.
Case 1. Suppose T =K1,3(Pn1 ,Pn2 ,Pn3), n1,n2,n3≥ 0 : v1,v2,

v3, ...vn. Further, V [PMe(T )] = {v
′
1,v

′
2,v

′
3, ...v

′
n,e

′
1,e

′
2,e

′
3, ...

e
′
n−1, p

′
1, p

′
2,r

′
1}. Then there exists a cycle r

′
1,e

′
1,v

′
1, p

′
1, ...e

′
n−1,

v
′
n, p

′
2,r

′
1. Which includes all the vertices of PMe(T ). Hence

PMe(T ) is hamiltonian.
Case 2. suppose T = B2,2 or subdivision of any edge in B2,2 :
v1,v2,v3, ...vn. Further V [PMe(T )]= {v

′
1,v

′
2,v

′
3, ...v

′
n,e

′
1,e

′
2,e

′
3,

...e
′
n−1,r

′
1, p

′
1, p

′
2, p

′
3}. By Theorem 3.1, PMe(T ) is always

nonseparable. Then there exists a hamiltonian cycle. Which
includes all the vertices of PMe(T ). Hence PMe(T ) is hamil-
tonian.
Conversely, Suppose T = Pn : v1,v2,v3, ...vn. Further, V [PMe(

T )]= {v′1,v
′
2,v

′
3, ...v

′
n,e

′
1,e

′
2,e

′
3...e

′
n−1,r

′
1, p

′
1}. By Theorem 3.1,

PMe(T ) is always non-separable. Then there exists a hamilto-
nian path. Hence PMe(T ) is nonhamiltonian.
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4. Conclusions
In this paper we obtained the new graph valued function

called pathos edge semi-middle graph of a tree. We studied
the characterization of graphs whose pathos edge semi-middle
graph of a tree is planar, outerplanar, crossing number one and
two. Further, we obtain PMe(T ) is noneulerian and hamilto-
nian.
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