

https://doi.org/10.26637/MJM0804/0147

Pathos edge semi-middle graph of a tree

K.C. Rajendra Prasad^{1*}, Venkanagouda M. Goudar² and K.M. Niranjan³

Abstract

In this communication, the pathos edge semi-middle graph of a tree is introduced. Its study is concentrated only on trees. We present a characterization of those graphs whose pathos edge semi-middle graph of a tree is planar, outerplanar and minimally nonouterplanar. Further, Also we establish a characterization of graphs whose pathos edge semi-middle graph of a trees are noneularian, hamiltonian and the graphs whose crossing number one and two.

Keywords

Crossing number, Middle graph, Planar, Semientire graph.

Article History: Received 25 August 2020; Accepted 06 November 2020

AMS Subject Classification

05C05, 05C07, 05C10, 05C38, 05C45.

¹Research Scholar, UBDT College of Engineering, Davanagere, A Constituent College of Visvesvaraya Technological University, Belagavi. Department of Mathematics, Jain Institute of Technology, Davanagere-577003, Affiliated to Visvesvaraya Technological University, Belagavi, India.

² Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572105, India.

³Department of Mathematics, UBDT College of Engineering, Davanagere-577004, India.

*Corresponding author: ¹rajendraprasadkp@gmail.com; ²vmgouda@gmail.com; ³niranjankm64@gmail.com.

©2020 MJM.

Contents

1	Introduction
2	Preliminaries2190
3	Pathos edge semi-middle graph of a tree 2191
4	Conclusions2193
	References2193

1. Introduction

All graphs consider here are finite, undirected without loops or multiple edges. Any undefined term or notation in this paper may be found in Harary [2].

The idea of pathos of a graph G has been introduced by [1] as a collection of minimum number of edge disjoints open paths whose union is G. The path number of a graph G is the number of path of pathos. Stanton [4] and Harary [2] have calculated the path number of certain classes of graphs like trees and complete graphs.

The crossing number $C_r(G)$ of *G* is the least number of intersection of pairs of edges in any embedding of *G* in the plane. Obviously *G* is planar if and only if $C_r(G) = 0$. The *edgedegree* of an edge *uv* of a tree *T* is the sum of the degrees of *u* and *v*. The pathoslength is the number of edges that lie on a particular path p_i of pathos of *T*.

In [5] Venkanagouda introduced the graph valued function, pathos vertex semientire graph of a tree. The present work focuses on the concept of the pathos edge semi-middle graph of a tree in this context. The pathos edge semi-middle graph of a tree denoted by $PM_e(T)$ is the graph whose vertex set is $V(T) \cup E(T) \cup R(T) \cup P_i(T)$ and two vertices of $PM_e(T)$ are adjacent if and only if they corresponds to two adjacent edges of T or one corresponds to a vertex and other to an edge incident with it or one corresponds to edge and other to a region in which edge lie on the region or one corresponds to a vertex and other to a path of pathos in which vertex lies on the path of pathos since the system of pathos for a tree is not unique, the corresponding pathos edge semi-middle graph of a tree is also not unique. The tree T and its pathos edge semi-middle graph of a tree $PM_e(T)$ are shown in Fig.1.

2. Preliminaries.

Theorem 2.1. [3] For any graph G, $M_e(G)$ is separable if and only if G has a pendant vertex.

Theorem 2.2. [3] For any graph G, p vertices, q edges and r regions then $M_e(G)$ has (p+q+r) vertices and $q + \sum_{i=1}^{q} \frac{1}{2}d(e_i) + \sum_{j=1}^{r} q_{r_j}$ edges. Where $d(e_i)$ is the edgedegree of a edge e_i and q_{r_j} is the number of edges lies on each region.

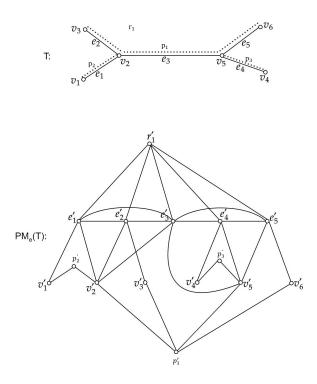


Fig. 1.

Theorem 2.3. [3] For any graph G, $M_e(G)$ is planar if and only if G satiesfies the following conditions. i) $\triangle(G) \leq 3$. ii) if deg(v) = 3, then v is a cutvertex.

Theorem 2.4. [3] For any graph G, $M_e(G)$ is outerplanar if and only if G is a path P_n .

3. Pathos edge semi-middle graph of a tree

We begin with the following observations.

Observation 3.1. If v is a pendant vertex of a tree T, then the degree of a corresponding vertex v' in $PM_e(T)$ is even.

Observation 3.2. For any edge e_i in T with edgedegree n, the degree of the vertex e'_i which corresponds to e_i in $PM_e(T)$ is always (n+1).

Observation 3.3. If the pathos length of the path of pathos p_i in *T* is *n*, then the degree of the corresponding pathosvertex in $PM_e(T)$ is (n + 1).

Observation 3.4. The $PM_e(T)$ is 5-minimally nonouterplanar if and only if $T = K_{1,3}$.

Theorem 3.1. For any tree T, $PM_e(T)$ is always non-separable.

Proof. Suppose *T* be any tree. Let $T: v_1, v_2, v_3, ..., v_n$. Further, $V[PM_e(T)] = \{v'_1, v'_2, v'_3..., v'_n, e'_1, e'_2, e'_3..., e'_{n-1}, r'_1, p'_1, p'_2, ..., p'_n\}$. By Theorem 2.1, $M_e(G)$ is separable. In $PM_e(T)$, the pathosvertices are adjacent to $v'_1, v'_2, v'_3..., v'_n$. Clearly $PM_e(T)$ has no cutertex. Thus $PM_e(T)$ is non-separable. Hence the proof.

Theorem 3.2. T(p,q) be any tree with r regions and k path of pathos, then $PM_e(T)$ has $(p+q+r+\sum_{l=1}^{k}p_l)$ vertices and $q+\sum_{i=1}^{q}\frac{1}{2}d(e_i)+\sum_{j=1}^{r}q_{r_j}+\sum_{l=1}^{k}p_{v_l}$ edges. Where $d(e_i)$ is the edgedegree of a edge e_i , q_{r_j} is the number of edges lies on each region and p_{v_l} is the number of vertices which lies on the path of pathos.

Proof. By the definition of $PM_e(T)$, $V[PM_e(T)] = (p+q+r+\Sigma_{l=1}^k p_l)$. Further by Theorem 2.2, $E[M_e(G)] = q + \Sigma_{i=1}^q \frac{1}{2}$ $d(e_i) + \Sigma_{j=1}^r q_{r_j}$. The degree of a pathosvertex is the sum of the number of vertices lies on the each path of pathos in T which is $\Sigma_{l=1}^k p_{v_l}$. The number of edges in $PM_e(T)$ is equal to the sum of edges in $M_e(G)$ and $\Sigma_{l=1}^k p_{v_l}$. Hence $E[PM_e(T)] = q + \Sigma_{i=1}^q \frac{1}{2} d(e_i) + \Sigma_{j=1}^r q_{r_j} + \Sigma_{l=1}^k p_{v_l}$.

Theorem 3.3. For any tree T, $PM_e(T)$ is planar if and only if T is a path or $K_{1,3}$.

Proof. Suppose $PM_e(T)$ is planar. Consider the star, $K_{1,4}$: v_1, v_2, v_3, v_4, v_5 and $deg(v_1) = 4$. Further $V[PM_e(T)] = \{v'_1, v'_2, v'_3, v'_4, v'_5, e'_1, e'_2, e'_3, e'_4, r'_1, p'_1, p'_2\}$. By Theorem 2.3, $M_e(K_{1,4})$ is non-planar. Clearly $PM_e(T)$ is also non-planar, a contradiction.

Conversely,

Case 1. Suppose $T = P_n$; $v_1, v_2, v_3, ..., v_n, n \ge 2$. Further, $V[PM_e(T)] = \{v'_1, v'_2, v'_3, ..., v'_n, e_1, e_2, e_3, ..., e'_{n-1}, r'_1, p'_1\}$. By Theorem 2.4, $M_e(P_n)$ is outerplanar. In $PM_e(P_n)$, p'_1 is adjacent to $v'_1, v'_2, v'_3, ..., v'_n$ of $M_e(P_n)$. Clearly $PM_e(P_n)$ is planar. **Case 2.** Suppose $T = K_{1,3}: v_1, v_2, v_3, v_4$ and $\deg(v_1) = 3$. Further $V[PM_e(K_{1,3})] = \{v'_1, v'_2, v'_3, v'_4, e'_1, e'_2, e'_3, r'_1, p'_1, p'_2\}$. By

Theorem 2.3, $M_e(K_{1,3})$ is planar. By Observation 3.4, $PM_e(K_{1,3})$ is 5 minimally non-outerplanar.Clearly $PM_e(K_{1,3})$ is planar.

Proposition 3.1. The $PM_e(T)$ of a *T* is 1-minimally non-outerplanar if and only if $T = P_3$.

Theorem 3.4. For any tree T, $PM_e(T)$ is outerplanar if and only if T is a path P_2 .

Proof. Consider a tree *T* is not a path *P*₂. Let $T = P_3$: v_1, v_2, v_3 . Further, $V[PM_e(P_3)] = \{v'_1, v'_2, v'_3, e'_1, e'_2, r'_1, p'_1\}$. By Proposition 3.1, $PM_e(P_3)$ is 1-minimally nonouterplanar, a contradiction.

Conversely, Suppose $T = P_2$, then $PM_e(P_2) = C_4(P_{n_1})$. Since $C_4(P_{n_1})$ is outerplanar. It follows that $PM_e(P_2)$ is outerplanar.

Proposition 3.2. The $PM_e(T)$ of a *T* is 3-minimally nonouterplanar if and only if $T = P_4$.

Theorem 3.5. $PM_e(T)$ of a connected graph T is (2k-1) minimally non-outerplanar $k \ge 1$ if and only if T is P_{k+2} .

Proof. Suppose *T* is P_{k+2} , $k \ge 1$ to establish the result, we apply mathematical induction on k. Consider k = 1 then by Proposition 3.1, is 1-minimally non-outerplanar. Consider the result is valid for k = m, therefore if T is P_{m+2} then $PM_e(T)$ is (2m-1)-minimally non-outerplanar. Suppose k = m+1then T is P_{m+3} . We now prove that $PM_e(T)$ is 2(m+1)-1minimally non-outerplanar. Let $T = P_{m+3}$ and v_1 be an end vertex of T. Let $T_1 = T - v_1 = P_{m+2}$. By inductive hypothesis, $PM_{\ell}(T_1)$ is (2m-1)-minimally non-outerplanar. Let $e_i = (v_i, v_i)$ be an end edge, r_i be the region and p_1 be the pathosvertex of T_1 . Then e_i is an end edge incident with the cutvertex v_i . The vertices e'_i, r'_i, v'_i and p'_i in $PM_e(T_1)$ are on the boundary of the exterior region. Now join the vertex v_1 to the vertex v_i of T_1 such that the resulting graph is T. Let $e_i = (v_i, v_1)$ be an endedge, p_i be the pathosvertex and r_i be the region of T. The formation of $PM_e(T)$ is an extension of $PM_e(T_1)$ with additional vertices e_j and v_1 such that e'_j adjacent with e'_i, v'_j, v'_1 and r'_1 . Similarly p'_i is adjacent with v'_i, v'_j and v'_1 . Clearly v'_i is an inner vertex of $PM_e(T)$, but it not an inner vertex of $PM_e(T_1)$. Thus $PM_e(T)$ is [2(m+1)-1]minimally non-outerplanar.

Conversely, assume $PM_e(T)$ is (2k-1) minimally non-outerplar then by Theorem 3.3, $PM_e(T)$ is planar. Thus T is a path. Suppose T is a path. We obtain the following cases.

Case 1. Suppose $T = P_{k+1}, k \ge 1$. In particular if k = 1 then $T = P_2$ by the Theorem 3.4, $PM_e(P_2)$ is outerplanar, a contradiction.

Case 2. Suppose $T = P_{k+3}$, in particular if k = 1 then $T = P_4$ by Proposition 3.2, $PM_e(P_4)$ is 3-minimally non-outerplanar, a contradiction. Hence *T* is P_{k+2} .

Theorem 3.6. For any tree T, $PM_e(T)$ has crossing number one if and only if T is $K_{1,3}(P_{n_1}, P_{n_2})$ where $n_1, n_2 \ge 1$.

Proof. Suppose $PM_e(T)$ has crossing number one, then $PM_e(T)$ is non-planar. By the Theorem 3.3 we have $T = K_{1,n}$, $n \ge 4$. We now consider the following cases.

Case 1. Assume that $T = K_{1,n}$ for $n = 4 : v_1, v_2, v_3, v_4, v_5$ and $\deg(v_i) = 4$. Further, $V[PM_e(K_{1,n})] = \{v'_1, v'_2, v'_3, v'_4, v'_5, e'_1, e'_2, e'_3, e'_4, r'_1, p'_1, p'_2\}$. In $M_e(K_{1,n})$, $C_r[M_e(K_{1,4})] = 2$. Hence $PM_e(K_{1,n})$ has crossing number at least two, a contradiction.

Case 2. Assume that $T = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$, $n_1, n_2, n_3 \ge 1$. By Theorem 3.3, $PM_e(K_{1,3})$ is non-planar. The graph *T* contains two path of pathos and their corresponding to two pathosvertices p'_1, p'_2 in $PM_e(T)$. These two vertices also joined by the vertices and gives crossing number two, a contradiction.

Conversely, Suppose $T = K_{1,3}(P_{n_1}, P_{n_2})$, $n_1, n_2 \ge 1$. By Theorem 3.3, $PM_e(T)$ is non-planar. $K_{1,3}(P_{n_1}, P_{n_2})$ contains two path of pathos p_1 and p_2 such that p_1 lies in the interior region and p_2 lies in the exterior region. In $PM_e(T)$, two pathosvertices joined by the vertices gives crossing number one. Hence $PM_e(T)$ has crossing number one.

Theorem 3.7. For any tree T, $PM_e(T)$ has crossing number two if and only if T is $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$, where $n_1, n_2, n_3 \ge 1$.

Proof. Suppose $PM_e(T)$ has crossing number two. Assume that $T = K_{1,4} : v_1, v_2, v_3, v_4, v_5$ and $deg(v_1) = 4$. Further, $V[PM_e(T)] = \{v'_1, v'_2, v'_3, v'_4, v'_5, e'_1, e'_2, e'_3, e'_4, r'_1, p'_1, p'_2\}$. In $M_e(T), C_r[M_e(K_{1,4})] = 2$. In $PM_e(T)$, pathosvertices joined by v'_1, v'_2, v'_5 for p'_1 and v'_2, v'_3, v'_4 for p'_2 , gives crossing number three. Which is a contradiction.

Conversely, suppose $T = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3}), n_1, n_2, n_3 \ge 1$: $v_1, v_2, v_3, ..., v_n$. Further, $V[PM_e(T)] = \{v'_1, v'_2, v'_3..., v'_n, e'_1, e'_2, e'_3$ $...e'_{n-1}, p'_1, p'_2, r'_1\}$. By Theorem 3.6, Case 2, $C_r[PM_e(T)] = 2$. Hence $PM_e(T)$ has crossing number two.

Theorem 3.8. For any tree T, $PM_e(T)$ is always noneulerian.

Proof. Let *T* be a non-trivial tree. We consider the following cases.

Case 1.Suppose *T* be a path. If n = 3, both edges having edgedegree odd, by Observation 3.2, both vertices have even degree in $PM_e(T)$. But the pathosvertex p'_1 is adjacent to v'_1, v'_2, v'_3 and v'_2, p'_1 to get odd degree. Hence $PM_e(T)$ is noneulerian. If $n \ge 3$, then the internal edges having edgedegree even. By Observation 3.2, the corresponding vertices in $PM_e(T)$ have odd degree. Then $PM_e(T)$ is noneulerian.

Case 2. Suppose $T = K_{1,n} : v_1, v_2, v_3, ..., v_n$. Further $V[PM_e(K_{1,n})] = \{v'_1, v'_2, v'_3, ..., v'_n, e'_1, e'_2, e'_3, ..., e'_{n-1}, r'_1, p'_1, p'_2, ..., p'_n\}$. If n is odd then each edge having edgedegree even. In $PM_e(T)$, the corresponding vertices having degree odd, which is noneulerian. If n is even then each edge having edgedegree odd. By observation 3.2, In $PM_e(T)$ the corresponding vertices e'_i having even degree. By definition of $PM_e(T), e'_1, e'_2, e'_3, ..., e'_{n-1}$ is adjacent to r'_1 gives a vertex r'_1 having even degree. Also $v'_1, v'_2, v'_3, ..., v'_n$ adjacent to p'_1, p'_2 gives a vertices p'_1, p'_2 having odd degree or vice-versa. Hence $PM_e(T)$ is noneulerian. \Box

Theorem 3.9. For any tree T, $PM_e(T)$ is hamiltonian if and only if T is $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$ where $n_1, n_2, n_3 \ge 0$ or $B_{2,2}$ or subdivision of any edge in $B_{2,2}$.

Proof. Let *T* be any tree. We have the following cases. **Case 1.** Suppose $T = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3}), n_1, n_2, n_3 \ge 0: v_1, v_2, v_3, \dots v_n$. Further, $V[PM_e(T)] = \{v'_1, v'_2, v'_3, \dots v'_n, e'_1, e'_2, e'_3, \dots e'_{n-1}, p'_1, p'_2, r'_1\}$. Then there exists a cycle $r'_1, e'_1, v'_1, p'_1, \dots e'_{n-1}, v'_n, p'_2, r'_1$. Which includes all the vertices of $PM_e(T)$. Hence $PM_e(T)$ is hamiltonian.

Case 2. suppose $T = B_{2,2}$ or subdivision of any edge in $B_{2,2}$: $v_1, v_2, v_3, ..., v_n$. Further $V[PM_e(T)] = \{v'_1, v'_2, v'_3, ..., v'_n, e'_1, e'_2, e'_3, ..., e'_{n-1}, r'_1, p'_1, p'_2, p'_3\}$. By Theorem 3.1, $PM_e(T)$ is always nonseparable. Then there exists a hamiltonian cycle. Which includes all the vertices of $PM_e(T)$. Hence $PM_e(T)$ is hamiltonian.

Conversely, Suppose $T = P_n : v_1, v_2, v_3, ..., v_n$. Further, $V[PM_e(T)] = \{v'_1, v'_2, v'_3, ..., v'_n, e'_1, e'_2, e'_3..., e'_{n-1}, r'_1, p'_1\}$. By Theorem 3.1, $PM_e(T)$ is always non-separable. Then there exists a hamiltonian path. Hence $PM_e(T)$ is nonhamiltonian.

4. Conclusions

In this paper we obtained the new graph valued function called pathos edge semi-middle graph of a tree. We studied the characterization of graphs whose pathos edge semi-middle graph of a tree is planar, outerplanar, crossing number one and two. Further, we obtain $PM_e(T)$ is noneulerian and hamiltonian.

References

- ^[1] Harary F. Annals of Newyork. Academy of sciences,:175,198, 1977.
- ^[2] Harary F. Graph Theory. *Addison-Wesley Reading Mass.*,:72,107, 1969.
- [3] Niranjan K M, Rajendra Prasad K C and Venkanagouda M. Goudar. Edge Semi-Middle Graph of a Graph(Submitted).
- [4] Stanton RG, Cowan DD and James LO. Graph Theory and Computation of Graphs and its applications. *Proceedings of the Louisiana Conference on Combinatorics*,:112, 1970.
- [5] Venkanagouda M. Goudar. Pathos Vertex Semientire Graph of a tree. *International Journal of Applied Mathematical Research.*, 1(4):666–670, 2012.

