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Abstract
In this paper, by studying r-regular near-rings and m-regular near-rings, we proved some characterizations of
m-regular near-rings, r-regular near-rings with IFP. We introduced the term l-regular near-ring and proved some
results.
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1. Introduction
Development of the concept of near-rings is highly shaped

by the inventive research on Ring theory. In ring theory,
Roos [14] defined the concept of regularity and this notion
was enforced and developed to Near-rings and several mathe-
maticians gave a various characterization of near-rings such
as Bell [2], Steve Ligh [7],YV Reddy and CVLN Murthy
[13], Ramakotaiah [10, 11], Dheena [5], S Suryanarayanan
and N Ganesan [18], Atagün, Akin and Kamacı, Hüseyin
and Taştekin, İsmail and SEZGİN, Aslıhan [1]. Yong UK
Cho [3] and Christian Lompjerzy Matczuk [8] developed the
concept of semicentral idempotents for near-rings and rings.
Especially, in ideal theory, Pairote Yiarayong [20] developed
a strong relationship on various kinds of prime ideals in near-
rings. Wendt Gerhard [19] investigated minimal ideals and
primitivity in Right near-rings. Recently, S Ramkumar and T

Manikantan [12] established the notion of the extension of a
fuzzy soft set over a near-ring.

2. Preliminaries
For necessary definitions and basic results, the author fol-

lows [9]. In this Preliminaries section, We recall the required
definitions and results as follows.

Definition 2.1. A triplet (K,+, .) is referred to as The, Right
near-ring where

1. K holds the properties of a ”Group” under addition.

2. K holds the properties of a ”Semi-group” under multi-
plication.

3.
(
t1 +q1

)
.s1 = t1.s1 + q1.s1,∀ t1,q1,s1 ∈ K (right dis-

tributive law).

Moreover in this paper, we consider Right near-
ring(K, +, .) and we designate a right near-ring as K unless
and otherwise mentioned. We write t1s1 to denote t1.s1 for
any two elements t1 and s1 in a near-ring K.

Example 2.2. Let (K,+) where K =
{

i1, p1,q1,r1
}

be a
Klein’s four group with addition and product tables men-
tioned below is an example for a near-ring. [see Pilz, p408
(13)(0,7,13,9)]
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Table 1. Addition table
+ i1 p1 q1 r1

i1 i1 p1 q1 r1

p1 p1 i1 r1 q1

q1 q1 r1 i1 p1

r1 r1 q1 p1 i1

Table 2. Product table
. i1 p1 q1 r1

i1 i1 i1 i1 i1

p1 i1 p1 q1 r1

q1 i1 i1 i1 i1

r1 i1 p1 q1 r1

Definition 2.3. Let K is referred to as ”Zero-symmetric near-
ring(ZSN)” if k0 = 0 ∀k ∈ K i.e. K= K0.

In the above example 2.2, (K,+, .) is a ZSN and we denote
it as K ∈ η0.

Definition 2.4. Let D be a subgroup of K is said to be K-
subgroup (K-SG) if KD⊆D.

If S,T ⊆ K then we define ST = {st/s ∈ S, t ∈ T}.
We, now designate a normal subgroup as NSG.

Definition 2.5. Let I be a NSG of (K,+) is referred to as the
left ideal of K, if ∀ t, p ∈ K, ∀s ∈ I, t(p+ s)− t p ∈ I.

Definition 2.6. Let I be a NSG of (K,+) is referred to as the
right ideal of K if IK⊆ I.

Definition 2.7. Let I be a NSG of (K,+) is referred to as
ideal(two-sided ideal)if it satisfies both the definitions of left
ideal and a right ideal of K.

Proposition 2.8. [9, proposition 1.34(c)]
For a K ∈ η0, every ideal is a K-SG of K.

Definition 2.9. Assume that F is a non-void subset in K. Then
{Ls/s∈ I } be the family of all left ideals which contain F.L =
∩s∈ILs is the smallest one among all left ideal containing F
can be referred as ”left ideal generated by F”.

Definition 2.10. Assume that an ideal A of K is termed to
”principal ideal” if A is generated by one component.

If an ideal A which is generated by an element ‘a’, then
A is symbolized by 〈a〉.
If a left ideal A is generated by a single component ‘a’, then
A is symbolized by 〈a|.
If the right ideal A is generated by a single component ‘a’,
then A is symbolized by |a〉.

Definition 2.11. The center of a near-ring K is defined as
C= {x ∈ K/nx = xn,∀ n ∈ K}.

Elements in C are said to be central.

Definition 2.12. A component ‘ p ’ is termed as an idempotent
element of K if p2 = p, for p ∈ K.

Definition 2.13. A non-zero element ’t’ in K is termed as
nilpotent, if ∃k ∈ K which is greater than or equal to 2 such
that tk = 0.

Definition 2.14. A subset S of K is referred to as ”nil” if for
all t ∈S are nilpotent.

Definition 2.15. The set (0 : ∆) = {t ∈ K/tx = 0,∀ x ∈ ∆},
where ∆ be a subset of K, is known as the annihilator of ∆.

If ∆ = {δ}, then (0 : ∆) is denoted by (0 : δ ).

Corollary 2.16. [9, corollary 1.43 (a)] For any δ ∈K, (0 : δ )
is a ”left ideal” of K.

Corollary 2.17. [9, corollary 1.43 (b)] If ∆ is a K-SG of Γ,
then the annihilator (0 : ∆) is an ideal in K.

According to [2, 5, 9], let K is identified as Insertion of
Factors Property(IFP), supposing that ts = 0 =⇒ t ps = 0,
∀t,s, p ∈ K. The above-mentioned near-ring Example2.2 is an
example for IFP near-ring.

Proposition 2.18. [9, proposition 9.3] The following affir-
mations are equivalent:

• K has the insertion of factors property(IFP).

• (0 : s) is an ideal of K, ∀s ∈ K.

• Let I= (0 : S), for all subsets S of K, I is an ideal.

Definition 2.19. For each component k∈K, if k2 = 0⇒ k = 0,
then K is known as reduced near-ring.

Lemma 2.20. [5, lemma 2.8] For each d, l in K ∈ η0, which
is a reduced near-ring then dlt = dtl where t2 = t, t is in K.

Proposition 2.21. [9, proposition 9.37] If K ∈ η0 is having
no non-zero nilpotent components, then K satisfies the IFP.

Definition 2.22. For each component c∈K, if Kc =Kc2 then
K is known as ”left bi potent”.

Definition 2.23. For each component k ∈ K, there is a com-
ponent l in K such that k = klk, then K is known as ”regular
near-ring(RN)”.

Definition 2.24. For each component p ∈ K, there is a com-
ponent l in K such that p = l p2, then K is known as ”left
strongly regular near-ring(left SRN)”.

According to [15], for each component q ∈ K, there is a
component l which is an idempotent in K such that q = ql, l ∈
〈q|, then K is known as ”r-regular near-ring(r-RN)”.

Theorem 2.25. [15, Theorem 2.8] If K is r-RN with 1 and
has IFP then a = al implies a = la, where l is an idempotent
in K, l ∈ 〈a|.

Theorem 2.26. [15, Theorem 2.9] Let K be a r-RN which
satisfies IFP with 1 then K is reduced.
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Lemma 2.27. [9] [17] Let K ∈ η0 has IFP if and only if H
is an ideal where H= (0 : S), for all subsets S of K.

Lemma 2.28. [5, lemma 1]
If a near-ring K ∈ η0 is reduced then for any 0 6= a ∈ K

1. K\A(a) is reduced and the residue class a of a modA(a)
is a nonzero divisor where A(a) = {x ∈ K/xa = 0}.

2. k1k2...kn = 0 implies 〈k1〉〈k2〉...〈kn〉= 0 for any k1,k2, ...kn
in K.

Theorem 2.29. [5, Theorem 1]
Let a near-ring K be reduced. If S is a nonvoid multiplicative
subsemigroup of K such that 0 /∈S, then a completely prime
ideal V exists in K such that V∩S= /0.

3. Characterization of ”r-regular
near-rings”.

The principal object ”m -regular near-ring” was cited by
G.Gopala Krishna Moorthy, R. Veega, and S. Geetha [6] and
proved some results. In this section, with a new idea, we
introduced ”m-regular near-ring with r-regular near-ring” and
gave some characterization.

According to [6] For each component k ∈ K, there is a
component l in K such that k = klmk where m≥ 1 is a fixed
integer, then K is known as ”m-regular near-ring(m-RN)”.

Lemma 3.1. [6, lemma 3.10] Let K be a m-RN, a ∈ K and
a = abma. Then

• The idempotents are abm and bma.

• abmK= aK & Kbma = Ka.

Let D subset of K then
√
D={x∈K/xk ∈D, f orsome k≥

1}

Definition 3.2. Let D be an ideal of K is known as Semi-
Prime Ideal(S-PI) supposing that for all ideals I of K, I2 ⊆D
implies I⊆D.

Theorem 3.3. Let K ∈ η0 be a m-RN, r-RN with unity, and
has IFP. Then C=

√
C where C is K-SG of K.

Proof. Assume that C is a K-SG of K.
Let p ∈ C implies p1 ∈ C which implies p ∈

√
C hence, we

get C⊆
√
C.

Now let p ∈
√
C⇒ pk ∈ C.

By using the definition of m-RN, lemma 3.1 and theorem 2.25,
we have p = plm p = p(lm p) = (lm p) p = lm p2

Now, p = lm pp = lm
(
lm p2

)
p = l2m p3 = · · · = l(k−1)m pk ⊆

KC⊆ C.
Hence, we get

√
C⊆ C.

Thus, C=
√
C where C is K-SG of a K.

Definition 3.4. For each component p, t in a m-RN K is re-
ferred to have IFP if pt = 0 then plmt = 0, for some l in K
and m≥ 1 is a fixed integer.

Theorem 3.5. If K ∈ η0 be a m-RN, r-RN in which all the
idempotents are central then K is reduced.

Proof. Suppose p ∈ K such that p2 = 0.
By using the definition of m-RN, and lemma 3.1, p = plm p =
lm p2 = lm0 = 0.
Therefore, K is reduced.

Theorem 3.6. If K ∈ η0 be a m-RN, r-RN in which all the
idempotents are central then K satisfies IFP.

Proof. Let t, p ∈ K such that t p = 0.
Now,(pt)2 = (pt)(pt) = p(t p) t = p0 = 0.
By the theorem 3.5, pt = 0.
For m≥ 1, a fixed integer, consider (tlm p)2 = (tlm p)(tlm p) =
tlm (pt) lm p = tlm0 = 0.
By the theorem 3.5, tlm p = 0.
Hence K has IFP.

Theorem 3.7. If K ∈ η0 be a m-RN, r-RN in which all the
idempotents are central then every K-SG is an ideal.

Proof. Let K be r-RN in which all idempotents are central.
By the definition of r-RN and By the theorem2.25, we have
a = ea,e2 = e,e ∈ 〈a|.
Let a∈K, Since, by the definition of m-RN, we have a= abma
where m ≥ 1, a fixed integer and By the lemma 3.1, bma is
idempotent.
Let bma = e then by using the lemma 3.1, Ke = Kbma = Ka.
Let F= {c− ce/c ∈ K}.
Claim: (0 : F) = {y ∈ K/sy = 0∀s ∈ F}= Ke.
Now, (c− ce)e = ce− ce2 = ce− ce = 0 ∀c ∈ K.
By the theorem 3.6, K has IFP, (c− ce)Ke = 0 ∀c⇒ Ke ∈
(0 : F).
Let y ∈ (0 : F)⇒ sy = 0, f orall s ∈ F.
⇒ syxmy = 0.
Now, yxm− (yxm)e ∈ F⇒ [yxm− (yxm)e]y = 0.
⇒ yxmy− yxmey = 0, f orall e ∈ 〈y|.
⇒ y− ye = 0⇒ y = ye ∈ Ke.
⇒ (0 : F)⊆ Ke.
Therefore, (0 : F) = Ke = Kbma = Ka.
By the lemma 2.27, (0 : F) become an ideal, for any subset of
F of K.
⇒ Ka become an ideal.
Thus, every K-SG is an ideal of K.

Theorem 3.8. If K ∈ η0 be a m-RN, r-RN in which all the
idempotents are central then K is semi-prime near-ring.

Proof. Let us define an ideal D in K such that pt ∈ D for
p, t ∈ K.
Let F be K-SG of K.
Then by the theorem 3.7, F is an ideal of K and suppose that
D2 ⊆ F.
Since K is zero-symmetric, KD⊆D.
If p ∈D, then p = ptm p ∈DKD⊆DD⊆D2 ⊆ F.
⇒D⊆ F.
So, any K-SG of K is a S-PI.
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Specifically, {0} is a S-PI and hence K is a semi-prime near-
ring.

Example 3.9. Let us define K on Z6 = {0,1,2,3,4,5} with
addition and product tables.[see Pilz, p409 (24)(3, 5, 5, 3, 1,
1)]
Addition is modulo 6.

Table 3. Product table
. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 3 5 5 3 1 1
2 0 4 4 0 2 2
3 3 3 3 3 3 3
4 0 2 2 0 4 4
5 3 1 1 3 5 5

Then (K,+, .) is a r-RN and also m-RN.

4. Characterization of ”l-regular
near-rings”.

On studying the concepts of r-regular near-ring in [15,
16], the term l-regular near-ring was introduced. Yong Uk
Cho [4] introduced semicentral idempotents and developed
some results in the concept of reducibility in near-ring and
we extended this notion of semicentral idempotent to the
generalized regular near-rings namely r-regular near-ring(r-
RN) and l-regular near-rings(l-RN).
We introduce the term ”l-regular near-ring(l-RN)” as follows:

Definition 4.1. For each element q ∈ K, there is a component
l which is an idempotent in K such that q = lq, l ∈ |q〉, then K
is known as ”l-regular near-ring(l-RN)”.

Definition 4.2. For each element p2 = p ∈ K is referred to
be left semicentral idempotent(left-SCI) if Kp = pKp.

Definition 4.3. For each element q2 = q ∈ K is referred to be
right semicentral idempotent(right-SCI) if qK= qKq.

Definition 4.4. For each element e2 = e ∈ K is referred to be
central idempotent(CI) if ek = ke for all k ∈ K.

Theorem 4.5. Let K ∈ η0, r-RN with 1 and has IFP. Then
every left-SCI is right-SCI.

Proof. Since by the theorem 2.25, q = qe implies q = eq for
all q ∈ K.
Let K ∈ η0,r-RN with 1 and has IFP.
Now for each q ∈ K ∃ e2 = e ∈ K such that q = qe,e ∈ 〈q| ⊆
〈q〉.
Since (1− e)e = 0 =⇒ (1− e)qe = 0 ∀q ∈ K.
=⇒ qe− eqe = 0 =⇒ qe = eqe =⇒ e is left-SCI .
By the theorem 2.25, qe = eqe = eq =⇒ eqe = eq =⇒ e
is right-SCI.
Thus, every left-SCI is right-SCI.

Corollary 4.6. Let K ∈ η0, r-RN with 1 and has IFP. Then K
is central.

Theorem 4.7. Let K ∈ η0 be l-RN with 1 and has IFP. Then
for any idempotent is left-SCI.

Proof. Let K ∈ η0, l-RN with 1 and has IFP.
Now for each q ∈ K ∃ e2 = e ∈ K such that q = eq,e ∈ |q〉 ⊆
〈q〉.
Since (1− e)e = 0 =⇒ (1− e)qe = 0 ∀q ∈ K.
=⇒ qe− eqe = 0 =⇒ qe = eqe =⇒ e is left-SCI.
Thus, for any idempotent is left semicentral idempotent(left-
SCI).

In the above theorems 4.5, 4.7 and corollary 4.6, the con-
cepts of unity and reducibility is essential.

Example 4.8. Consider a near-ring on the group
Z6 = {0,1,2,3,4,5} with addition and product table given
below.[see Pilz, p410 (53)(0, 1, 4, 3, 4, 1)]
Addition is modulo 5.

Table 4. Product table
. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 4 3 4 1
2 0 2 2 0 2 2
3 0 3 0 3 0 3
4 0 4 4 0 4 4
5 0 5 2 3 2 5

This near-ring is r-RN and also l-RN.
This near-ring is ZSN, reduced without unity.
It is clear that the idempotent elements 2 and 5 are not central.
This near-ring K is right-SCI but not left-SCI. (for an element
1 ∈ K such that 2.1 6= 1.2.1).

Example 4.9. Any regular near-ring(RN) is r-RN and l-RN.
Let us consider K on the group Z5 = {0,1,2,3,4} with addi-
tion and product tables. [see Pilz, p408, (7)(0, 1, 4, 1, 4)]
Addition is modulo 5.

Table 5. Product table
. 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 4 3 2 1
3 0 1 2 3 4
4 0 4 3 2 1

Then (K,+, .) is a RN.

Remark 4.10. In the above mentioned example 4.9, the near-
ring K is left-SCI but not right-SCI(for an element 1 ∈ K such
that 2.1 6= 2.1.2).
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Theorem 4.11. For a near-ring K is l-RN then K= Kl.

Proof. By the definition of l-RN, then l = el, since e2 =
e,e ∈ |l〉.
=⇒ l ∈ Kl ∀l ∈ K.
Therefore K= Kl.

Theorem 4.12. For a near-ring K is l-RN then (0 : u) =
(0 : Ku) = (0 : K) ,∀u ∈ K

Proof. Since K is l-RN, u ∈ Ku.
Let x ∈ (0 : Ku).
Now xKu = 0 =⇒ xu = 0 =⇒ (0 : Ku)⊆ (0 : u).
Let x ∈ (0 : u) then xu = 0
=⇒ xKu = 0 =⇒ x ∈ (0 : Ku) =⇒ (0 : u)⊆ (0 : Ku).
Therefore (0 : u) = (0 : Ku).
By the theorem 4.11, (0 : u) = (0 : Ku) = (0 : K).

Theorem 4.13. Let a near-ring K be l-RN. Then every princi-
pal ideal is generated by an idempotent.

Proof. Let c ∈ K. Consider a principal ideal generated by c,
〈c〉.
If K is l-RN,c = uc,u2 = u,u ∈ |c〉 ⊆ 〈c〉 =⇒ 〈u〉 ⊆ 〈c〉.
c = uc ∈ 〈u〉 =⇒ 〈c〉 ⊆ 〈u〉.
Therefore 〈c〉= 〈u〉.

Example 4.14. Let us consider K on Z6 = {0,1,2,3,4,5}
with addition and product table given below.[see Pilz, p409
(24)(3, 5, 5, 3, 1, 1)]
Addition is modulo 6.

Table 6. Product table
. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 3 5 5 3 1 1
2 0 4 4 0 2 2
3 3 3 3 3 3 3
4 0 2 2 0 4 4
5 3 1 1 3 5 5

The only ideals of K are {0}, {0,2,4} and {0,1,2,3,4,5}.
This near-ring (K,+, .) is both r-RN and l-RN.

Theorem 4.15. Let a near-ring K be l-RN. Then K has no
nonzero nil ideals.

Proof. Suppose A be a nonzero nil ideal in K.
Let 0 6= a ∈ A and a = ea,e ∈ |a〉,e2 = e.
By the theorem 4.13, e ∈ 〈e〉= 〈a〉 ⊆ A.
=⇒ ′e′ is nilpotent, which is a conflict to ’e’ is idempotent.
Thus, K has no nonzero nil ideals.

Theorem 4.16. For a near-ring K ∈ η0 is l-RN and every
K-subgroup is an ideal of K then K is left SRN.

Proof. Suppose that K is l-RN and every K-subgroup is an
ideal of K.
By proposition 2.8, a = ea,e2 = e,e ∈ |a〉 ⊆ 〈a〉= Ka.
=⇒ e = na, f orsome n ∈ K.
Therefore a = ea = naa = na2 for some n ∈ K.
Hence K is left SRN.

Theorem 4.17. For a near-ring K ∈ η0 is l-RN with 1 then K
is reduced.

Proof. Let t ∈K and t2 = 0 =⇒ t ∈ (0 : t) =⇒ 〈t〉 ⊆ (0 : t).
Suppose K is l-RN, then t = et,e2 = e,e ∈ |t〉 ⊆ 〈t〉 ⊆
(0 : t) =⇒ et = 0.
Therefore t = 0.
Hence K is reduced.

Theorem 4.18. For a near-ring K∈ η0 is l-RN with 1 and has
IFP then d = ed implies d = de where ’e’ is an idempotent.

Proof. Suppose K is l-RN with 1 and has IFP.
Now d ∈ K ∃e2 = e ∈ K 3 d = ed,e ∈ |d〉 ⊆ 〈d〉.
Since (1− e)e = 0 =⇒ (1− e)de = 0 ∀d ∈ K =⇒ de−
ede = 0 =⇒ de = ede = ed = d [ by the lemma 2.20].
Therefore d = ed implies d = de.

Definition 4.19. Let K is referred to as weakly regular near-
ring(WRN) if A2 = A for every ideal A of K.

Definition 4.20. Let an ideal D of K is referred to as ”Com-
pletely Prime Ideal(CPI) if kl ∈D implies k ∈D or l ∈D.

Definition 4.21. Let an ideal D of K is referred to as ”3-
Prime Ideal(3-PI) if kn1l ∈D implies k ∈D or l ∈D for every
n1 ∈ K.

Theorem 4.22. Let a near-ring K be l-RN. Then K is WRN.

Proof. Let D be an ideal of K and a ∈D.
a = ea,e2 = e,e ∈ |a〉 ⊆ 〈a〉 ⊆D⊆D.D=D2.
But D2 ⊆D, therefore D=D2.
Thus, K is WRN.

Theorem 4.23. Let a near-ring K be l-RN. Then K has no
nonzero nilpotent ideal.

Proof. Suppose J be a nonzero nilpotent ideal in K.
Then Jk = (0) for some k which is greater than or equal to 2.
By the theorem 4.22, every ideal in a K is idempotent i,e.,
J = J2.
Jk = Jk−2J = Jk−4J2J = Jk−4JJ = Jk−4J2 = Jk−4J = ....
Continuing in this way we get J = (0).
It is a contradiction.
Thus K has no nonzero nilpotent ideal.

Theorem 4.24. Let a near-ring K be l-RN with left unity then
every CPI is a maximal.
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Proof. Let C be a CPI of K
Suppose C⊂M⊆ K then ∃a ∈M\C
Now a = ea,e2 = e,e ∈ |a〉 ⊆ 〈a〉 ⊆M =⇒ e ∈M.
(1− e)a = 0 ∈ C =⇒ 1− e ∈ C⊂M =⇒ 1− e ∈M.
Let c ∈ K then c = 1.c = (1− e+ e)c = (1− e)c+ ec ∈M.
Therefore K=M.
Hence C is a maximal ideal.

Theorem 4.25. Let K be a l-RN with left unity and has IFP
then every 3-PI is maximal.

Proof. Let C be a 3-PI of K.
Assume C⊂M⊆ K.
Let c ∈M\C.
Now c = ec,e2 = e,e ∈ |c〉 ⊆ 〈c〉.
(1− e)c = 0.
Since K has IFP, (1− e)nc = 0∀n ∈ K.
(1− e)Kc = 0⊆ C =⇒ 1− e ∈ C⊆M =⇒ 1− e ∈M.
For any x in K,x = ex+(1− e)x ∈M.
Therefore K=M.
Thus C is maximal ideal.

Theorem 4.26. If a near-ring K is l-RN then every ideal I of
K is l-RN.

Proof. Suppose K is l-RN, then a = ea,e2 = e,e ∈ |a〉.
Assume that I is an ideal K.
Let a ∈ I then a = ea, e ∈ |a〉 ⊆ I.
Therefore I is l-RN.

Theorem 4.27. For a near-ring K ∈ η0 with identity,

1. K is l-RN and has IFP.

2. K is reduced and every CPI is maximal.

are equivalent.

Proof. (1) =⇒ (2)
Suppose K is l-RN.
By theorem 4.17, K is reduced and by theorem 4.24, it is
proved.
(2) =⇒ (1)
Suppose K ∈ η0 is reduced and every CPI is maximal.
Since K ∈ η0 is reduced, ab = 0 =⇒ ba = 0.
Consider nba = n(ba) = n0 = 0 =⇒ (nb)a = 0 =⇒ anb =
0 ∀n ∈ K.
Therefore K has IFP.
Let 0 6= a ∈ K, by the lemma 2.28, K = K \A(a) is reduced
and a is not a zero divisor.
Also, every CPI of K is a maximal ideal in K.
Let Q be the multiplicative subsemigroup generated by an
element a− t a where t ∈ |a〉.
If not, by the theorem 2.29, there exists a CPI P with P∩Q =
/0.
Suppose |a〉 ⊆ P then a ∈ P.
=⇒ a− ta ∈ P.
=⇒ a− t a ∈ P ∩Q, it is a contradiction to the fact that
P ∩Q = /0.

Suppose |a〉 6⊆ P and P is maximal, we have K = P+ |a〉.
1 = α + t where α ∈ P, t ∈ |a〉.
a = α a + t a.
=⇒ a− t a = α a ∈ P.
=⇒ a−t a∈P ∩ Q, it is a contradiction to the fact, P ∩ Q=
/0.
Thus 0 ∈ Q.
Now 0 = (a− t1 a)(a − t2 a) · · ·(a− tn a) =

(
1 − ti

)
a, ti ∈

|a〉
Since a is not zero divisor,

(
1 − ti

)
= 0 =⇒ 1 = ti, t ∈ |a〉.

Hence (1− t)∈A(a) =⇒ (1 − t)a = 0, t ∈ |a〉,t2 = t =⇒
a = ta, t2 = t, t ∈ |a〉.
Therefore K is l-RN.

Definition 4.28. Let a near-ring K is referred to as ”Left
Quasi Duo(LQD)” if every maximal left ideal of K is two-
sided ideal.

Theorem 4.29. For a near-ring K ∈ η0 is the LQD with left
unity 1, K is l-RN then K = 〈q〉+(0 : q).

Proof. Since K is l-RN, then q = tq, t2 = t, t ∈ |q〉 ⊆ 〈q〉.
=⇒ q ∈ 〈q〉q.
Then Kq⊆ K〈q〉q⊆ 〈q〉q.
And we have 〈q〉q⊆ Kq.
Therefore Kq = 〈q〉q.
Suppose that K 6= 〈q〉+(0 : q).
Then there exists a maximal left ideal C such that 〈q〉+
(0 : q)⊆ C.
Since K is LQD, C is a two-sided ideal.
Since q ∈ C, 〈q〉q ⊆ Cq⊆ Kq = 〈q〉q.
Therefore Cq = 〈q〉q.
Therefore Kq = 〈q〉q = Cq.
Therefore s ∈ 〈q〉 such that q = sq,s ∈ 〈q〉
=⇒ (1− s)q = 0 =⇒ 1− s ∈ (0 : q).
Therefore 1 = s+(1− s) ∈ 〈q〉+(0 : q)⊆ C.
It is a contradiction.
Therefore K= 〈q〉+(0 : q).

5. Conclusion
In mathematics, several researchers are working on alge-

bra. Recently as an application of near-rings, mathematicians
used planar near-rings, near-rings of polynomials, and other
near-rings to expand designs and codes. In this publication,
we made an effort to develop the concept of regular near-rings
and generalized regular near-rings.
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