

https://doi.org/10.26637/MJM0804/0149

A study on *r***-regular and** *l***-regular near-rings**

Marisetti Sowjanya^{1*}, A. Gangadhara Rao², P.M. Padmalatha³ and T. Radharani ⁴

Abstract

In this paper, by studying *r*-regular near-rings and *m*-regular near-rings, we proved some characterizations of *m*-regular near-rings, *r*-regular near-rings with IFP. We introduced the term *l*-regular near-ring and proved some results.

Keywords

m-regular near-ring, *r*-regular near-ring, *l*-regular near-ring, IFP.

AMS Subject Classification

16Y30.

¹*Department of Mathematics, Eluru College of Engineering* & *Technology, Eluru-534004, Andhra Pradesh, India.*

²*Department of Mathematics, V S R and N V R College, Tenali-522201, Andhra Pradesh, India.*

³*Department of Mathematics, JMJ College for Women, Tenali-522202, Andhra Pradesh, India.*

⁴*Department of Mathematics, Lakireddy Balireddy College of Engineering, Mylavaram-521230, Andhra Pradesh, India.*

***Corresponding author**: ¹ sowjanyachallari@gmail.com; ² raoag1967@gmail.com; ³padmalatha323@gmail.com;

4 radharanitammileti@gmail.com

Article History: Received **30** October **2020**; Accepted **22** December **2020** c 2020 MJM.

Contents

1. Introduction

Development of the concept of near-rings is highly shaped by the inventive research on Ring theory. In ring theory, Roos [\[14\]](#page-6-0) defined the concept of regularity and this notion was enforced and developed to Near-rings and several mathematicians gave a various characterization of near-rings such as Bell [\[2\]](#page-6-1), Steve Ligh [\[7\]](#page-6-2),YV Reddy and CVLN Murthy [\[13\]](#page-6-3), Ramakotaiah [\[10,](#page-6-4) [11\]](#page-6-5), Dheena [\[5\]](#page-6-6), S Suryanarayanan and N Ganesan [\[18\]](#page-6-7), Atagün, Akin and Kamacı, Hüseyin and Taştekin, İsmail and SEZGİN, Aslıhan [\[1\]](#page-5-2). Yong UK Cho [\[3\]](#page-6-8) and Christian Lompjerzy Matczuk [\[8\]](#page-6-9) developed the concept of semicentral idempotents for near-rings and rings. Especially, in ideal theory, Pairote Yiarayong [\[20\]](#page-6-10) developed a strong relationship on various kinds of prime ideals in nearrings. Wendt Gerhard [\[19\]](#page-6-11) investigated minimal ideals and primitivity in Right near-rings. Recently, S Ramkumar and T

Manikantan [\[12\]](#page-6-12) established the notion of the extension of a fuzzy soft set over a near-ring.

2. Preliminaries

For necessary definitions and basic results, the author follows [\[9\]](#page-6-13). In this Preliminaries section, We recall the required definitions and results as follows.

Definition 2.1. A triplet $(\mathfrak{K}, +, .)$ is referred to as The, Right *near-ring where*

- *1.* K *holds the properties of a "Group" under addition.*
- 2. \Re *holds the properties of a "Semi-group" under multiplication.*
- 3. $(t^1 + q^1) . s^1 = t^1 . s^1 + q^1 . s^1 , \forall t^1, q^1, s^1 \in \mathbb{R}$ (right dis*tributive law).*

Moreover in this paper, we consider Right nearring($\mathfrak{K}, +, \cdot$) and we designate a right near-ring as \mathfrak{K} unless and otherwise mentioned. We write $t^1 s^1$ to denote $t^1 . s^1$ for any two elements t^1 and s^1 in a near-ring \mathfrak{K} .

Example 2.2. Let $(\mathfrak{K}, +)$ where $\mathfrak{K} = \{i^1, p^1, q^1, r^1\}$ be a *Klein's four group with addition and product tables mentioned below is an example for a near-ring. [see Pilz, p408 (13)(0,7,13,9)]*

A study on *r***-regular and** *l***-regular near-rings — 2198[/2203](#page-6-14)**

Definition 2.13. *A non-zero element 't' in* K *is termed as nilpotent, if* ∃*k* ∈ K *which is greater than or equal to 2 such that* $t^k = 0$ *.*

Definition 2.14. *A subset* S *of* K *is referred to as "nil" if for all* $t \in \mathfrak{S}$ *are nilpotent.*

Definition 2.15. *The set* $(0 : \Delta) = \{t \in \Re / tx = 0, \forall x \in \Delta \}$, *where* ∆ *be a subset of* K*, is known as the annihilator of* ∆*.*

If $\Delta = {\delta}$, then $(0 : \Delta)$ is denoted by $(0 : \delta)$.

Corollary 2.16. *[\[9,](#page-6-13) corollary 1.43 (a)] For any* $\delta \in \mathcal{R}$, $(0:\delta)$ *is a "left ideal" of* K*.*

Corollary 2.17. *[\[9,](#page-6-13) corollary 1.43 (b)] If* ∆ *is a* K*-SG of* Γ*, then the annihilator* $(0 : \Delta)$ *is an ideal in R.*

According to $[2, 5, 9]$ $[2, 5, 9]$ $[2, 5, 9]$ $[2, 5, 9]$ $[2, 5, 9]$, let \mathfrak{K} is identified as Insertion of Factors Property(IFP), supposing that $ts = 0 \implies ts = 0$, $∀*t*, *s*, *p* ∈ *ℝ*. The above-mentioned near-ring Example 2.2 is an$ example for IFP near-ring.

Proposition 2.18. *[\[9,](#page-6-13) proposition 9.3] The following affirmations are equivalent:*

- K *has the insertion of factors property(IFP).*
- $(0 : s)$ *is an ideal of* $\mathfrak{K}, \forall s \in \mathfrak{K}$.
- Let $\mathfrak{I} = (0 : \mathfrak{S})$, for all subsets \mathfrak{S} of \mathfrak{K} , \mathfrak{I} *is an ideal.*

Definition 2.19. *For each component* $k \in \mathfrak{K}$, if $k^2 = 0 \Rightarrow k = 0$, *then* K *is known as reduced near-ring.*

Lemma 2.20. *[\[5,](#page-6-6) lemma 2.8] For each d, l in* $\mathfrak{K} \in \eta_0$ *, which is a reduced near-ring then dlt* = *dtl* where $t^2 = t$, t is in \Re .

Proposition 2.21. *[\[9,](#page-6-13) proposition 9.37] If* $\mathcal{R} \in \eta_0$ *is having no non-zero nilpotent components, then* K *satisfies the IFP.*

Definition 2.22. For each component $c \in \mathfrak{K}$, if $\mathfrak{K}c = \mathfrak{K}c^2$ then K *is known as "left bi potent".*

Definition 2.23. *For each component* $k \in \mathfrak{K}$ *, there is a component l* in \mathfrak{K} *such that* $k = k$ *lk, then* \mathfrak{K} *is known as "regular near-ring(RN)".*

Definition 2.24. *For each component* $p \in \mathcal{R}$ *, there is a component l in* \Re *such that* $p = lp^2$ *, then* \Re *is known as "left strongly regular near-ring(left SRN)".*

According to [\[15\]](#page-6-15), for each component $q \in \mathfrak{K}$, there is a component *l* which is an idempotent in \Re such that $q = ql, l \in$ $\langle q \rangle$, then $\hat{\mathcal{R}}$ is known as "*r*-regular near-ring(r-RN)".

Theorem 2.25. *[\[15,](#page-6-15) Theorem 2.8] If* K *is r-RN with 1 and has IFP then* $a = al$ *implies* $a = la$ *, where l is an idempotent in* \mathfrak{K} , $l \in \{a\}$.

Theorem 2.26. *[\[15,](#page-6-15) Theorem 2.9] Let* K *be a r-RN which satisfies IFP with 1 then* \Re *is reduced.*

Definition 2.3. Let $\hat{\mathcal{R}}$ is referred to as "Zero-symmetric near*ring(ZSN)*" *if* $k0 = 0$ $\forall k \in \mathbb{R}$ *i.e.* $\mathbb{R} = \mathbb{R}_0$.

In the above example [2.2,](#page-0-2) $(R, +, .)$ is a ZSN and we denote it as $\mathfrak{K} \in \eta_0$.

Definition 2.4. *Let* D *be a subgroup of* K *is said to be* K*subgroup* ($\mathfrak{K}\text{-}SG$) if $\mathfrak{K}\mathfrak{D}\subseteq\mathfrak{D}$.

If *S*, *T* \subseteq *R* then we define *ST* = {*st* /*s* \in *S*, *t* \in *T* }. We, now designate a normal subgroup as NSG.

Definition 2.5. Let \Im be a NSG of $(\Re, +)$ is referred to as the *left ideal of* \Re , *if* \forall *t*, $p \in \Re$, $\forall s \in \Im$, $t(p+s)-tp \in \Im$.

Definition 2.6. *Let* \Im *be a NSG of* $(\Re, +)$ *is referred to as the right ideal of* \Re *if* $\Im \Re \subseteq \Im$ *.*

Definition 2.7. Let \Im be a NSG of $(\Re, +)$ is referred to as *ideal(two-sided ideal)if it satisfies both the definitions of left ideal and a right ideal of* K*.*

Proposition 2.8. *[\[9,](#page-6-13) proposition 1.34(c)] For a* $\mathfrak{K} \in \eta_0$ *, every ideal is a* $\mathfrak{K}\text{-}SG$ *of* \mathfrak{K} *.*

Definition 2.9. *Assume that* F *is a non-void subset in* K*. Then* ${L_s/s \in I}$ *be the family of all left ideals which contain* $F.L =$ ∩*s*∈*IL^s is the smallest one among all left ideal containing* F *can be referred as "left ideal generated by* F*".*

Definition 2.10. Assume that an ideal $\mathfrak A$ of $\mathfrak K$ is termed to *"principal ideal" if* A *is generated by one component.*

If an ideal $\mathfrak A$ which is generated by an element '*a*', then $\mathfrak A$ is symbolized by $\langle a \rangle$.

If a left ideal $\mathfrak A$ is generated by a single component '*a*', then $\mathfrak A$ is symbolized by $\langle a|$.

If the right ideal A is generated by a single component '*a*', then $\mathfrak A$ is symbolized by $|a\rangle$.

Definition 2.11. *The center of a near-ring* K *is defined as* $\mathfrak{C} = \{x \in \mathfrak{K}/nx = xn, \forall n \in \mathfrak{K}\}.$

Elements in $\mathfrak C$ are said to be central.

Definition 2.12. *A component ' p ' is termed as an idempotent element of* \Re *if* $p^2 = p$ *, for* $p \in \Re$ *.*

Lemma 2.27. *[\[9\]](#page-6-13) [\[17\]](#page-6-16) Let* $\mathcal{R} \in \eta_0$ *has IFP if and only if* \mathcal{R} *is an ideal where* $\mathfrak{H} = (0 : \mathfrak{S})$ *, for all subsets* \mathfrak{S} *of* \mathfrak{K} *.*

Lemma 2.28. *[\[5,](#page-6-6) lemma 1] If a near-ring* $\mathfrak{K} \in \eta_0$ *is reduced then for any* $0 \neq a \in \mathfrak{K}$

- *1.* $\mathbb{R} \setminus A(a)$ is reduced and the residue class \overline{a} of a mod $A(a)$ *is a nonzero divisor where* $A(a) = \{x \in \mathbb{R} / xa = 0\}.$
- 2. $k_1k_2...k_n = 0$ *implies* $\langle k_1 \rangle \langle k_2 \rangle \dots \langle k_n \rangle = 0$ *for any* $k_1, k_2, \dots k_n$ *in* K*.*

Theorem 2.29. *[\[5,](#page-6-6) Theorem 1]*

Let a near-ring \Re be reduced. If \Im *is a nonvoid multiplicative subsemigroup of* \Re *such that* $0 \notin \mathfrak{S}$ *, then a completely prime ideal* \mathfrak{V} *exists in* \mathfrak{K} *such that* $\mathfrak{V} \cap \mathfrak{S} = \emptyset$ *.*

3. Characterization of "*r***-regular near-rings".**

The principal object "*m* -regular near-ring" was cited by G.Gopala Krishna Moorthy, R. Veega, and S. Geetha [\[6\]](#page-6-17) and proved some results. In this section, with a new idea, we introduced "*m*-regular near-ring with *r*-regular near-ring" and gave some characterization.

According to [\[6\]](#page-6-17) For each component $k \in \mathfrak{K}$, there is a component *l* in \Re such that $k = k l^m k$ where $m \ge 1$ is a fixed integer, then $\hat{\mathcal{R}}$ is known as "*m*-regular near-ring(m-RN)".

Lemma 3.1. *[\[6,](#page-6-17) lemma 3.10] Let* \mathbb{R} *be a m-RN,* $a \in \mathbb{R}$ *and* $a = ab^m a$. Then

- *The idempotents are ab^m and bma.*
- $ab^m \mathfrak{K} = a\mathfrak{K} \& \mathfrak{K} b^m a = \mathfrak{K} a.$

Let $\mathfrak D$ subset of $\mathfrak K$ then $\sqrt{\mathfrak D} = \{x \in \mathfrak K / x^k \in \mathfrak D, for some $k \geq 0\}$$ 1}

Definition 3.2. Let \mathfrak{D} be an ideal of \mathfrak{R} is known as Semi-*Prime Ideal(S-PI) supposing that for all ideals* \mathfrak{I} *of* $\mathfrak{K}, \mathfrak{I}^2 \subseteq \mathfrak{D}$ *implies* $\mathfrak{I} \subseteq \mathfrak{D}$ *.*

Theorem 3.3. *Let* $\mathcal{R} \in \eta_0$ *be a m-RN, r-RN with unity, and has IFP. Then* $\mathfrak{C} = \sqrt{\mathfrak{C}}$ *where* \mathfrak{C} *is* $\mathfrak{K}\text{-}SG$ *of* \mathfrak{K} *.*

Proof. Assume that $\mathfrak C$ is a $\mathfrak K$ -SG of $\mathfrak K$. Let $p \in \mathfrak{C}$ implies $p^1 \in \mathfrak{C}$ which implies $p \in \sqrt{\mathfrak{C}}$ hence, we get $\mathfrak{C} \subseteq \sqrt{\mathfrak{C}}$.

Subset $p \in \sqrt{\mathfrak{C}} \Rightarrow p^k \in \mathfrak{C}$.

By using the definition of m-RN, lemma [3.1](#page-2-1) and theorem [2.25,](#page-1-0) we have $p = pl^m p = p(l^m p) = (l^m p) p = l^m p^2$ Now, $p = l^m p p = l^m (l^m p^2) p = l^{2m} p^3 = \cdots = l^{(k-1)m} p^k \subseteq$ \mathfrak{KCEC} . Hence, we get $\sqrt{\mathfrak{C}} \subseteq \mathfrak{C}$. Thus, $\mathfrak{C} = \sqrt{\mathfrak{C}}$ where \mathfrak{C} is $\mathfrak{K}\text{-}\mathrm{SG}$ of a \mathfrak{K} . \Box

Definition 3.4. *For each component p*,*t in a m-RN* K *is referred to have IFP if pt* = 0 *then* $pl^{m}t = 0$ *, for some l in* \mathfrak{K} *and* $m \geq 1$ *is a fixed integer.*

Theorem 3.5. *If* $\mathcal{R} \in \eta_0$ *be a m-RN, r-RN in which all the idempotents are central then* K *is reduced.*

Proof. Suppose $p \in \mathbb{R}$ such that $p^2 = 0$. By using the definition of m-RN, and lemma [3.1,](#page-2-1) $p = pl^m p =$ $l^m p^2 = l^m 0 = 0.$ \Box Therefore, \mathfrak{K} is reduced.

Theorem 3.6. *If* $\mathcal{R} \in \eta_0$ *be a m-RN, r-RN in which all the idempotents are central then* K *satisfies IFP.*

Proof. Let $t, p \in \mathbb{R}$ such that $tp = 0$. Now, $(pt)^{2} = (pt)(pt) = p(tp)t = p0 = 0.$ By the theorem [3.5,](#page-2-2) $pt = 0$. For $m \ge 1$, a fixed integer, consider $(t l^m p)^2 = (t l^m p) (t l^m p) =$ $t l^{m} (pt) l^{m} p = t l^{m} 0 = 0.$ By the theorem [3.5,](#page-2-2) $tl^{m}p = 0$. Hence $\mathfrak K$ has IFP. \Box

Theorem 3.7. *If* $\mathcal{R} \in \eta_0$ *be a m-RN, r-RN in which all the idempotents are central then every* K*-SG is an ideal.*

Proof. Let \Re be r-RN in which all idempotents are central. By the definition of r-RN and By the theore[m2.25,](#page-1-0) we have $a = ea, e^2 = e, e \in \langle a |$.

Let $a \in \mathfrak{K}$, Since, by the definition of m-RN, we have $a = ab^m a$ where $m \geq 1$, a fixed integer and By the lemma [3.1,](#page-2-1) $b^m a$ is idempotent.

Let $b^m a = e$ then by using the lemma [3.1,](#page-2-1) $\Re e = \Re b^m a = \Re a$. Let $\mathfrak{F} = \{c - ce/c \in \mathfrak{K}\}.$ Claim: $(0: \mathfrak{F}) = \{y \in \mathfrak{K}/sy = 0 \forall s \in \mathfrak{F}\} = \mathfrak{K}e.$ Now, $(c - ce) e = ce - ce^2 = ce - ce = 0 \forall c \in \mathcal{R}$. By the theorem [3.6,](#page-2-3) $\hat{\mathcal{R}}$ has IFP, $(c - ce) \hat{\mathcal{R}}e = 0 \ \forall c \Rightarrow \hat{\mathcal{R}}e \in$ $(0:\mathfrak{F}).$ Let $y \in (0 : \mathfrak{F}) \Rightarrow sy = 0$, *forall* $s \in \mathfrak{F}$. \Rightarrow *syx^my* = 0. Now, $yx^m - (yx^m) e \in \mathfrak{F} \Rightarrow [yx^m - (yx^m) e] y = 0.$ \Rightarrow $yx^m y - yx^m ey = 0$, *forall e* $\in \langle y |$. ⇒ *y*−*ye* = 0 ⇒ *y* = *ye* ∈ K*e*. \Rightarrow $(0:\mathfrak{F}) \subseteq \mathfrak{K}e$. Therefore, $(0: \mathfrak{F}) = \mathfrak{K}e = \mathfrak{K}b^m a = \mathfrak{K}a$. By the lemma [2.27,](#page-2-4) $(0:\mathfrak{F})$ become an ideal, for any subset of \mathfrak{F} of \mathfrak{K} . ⇒ K*a* become an ideal.

 \Box Thus, every $\mathfrak{K}\text{-SG}$ is an ideal of \mathfrak{K} .

Theorem 3.8. *If* $\mathcal{R} \in \eta_0$ *be a m-RN, r-RN in which all the idempotents are central then* $\hat{\mathcal{R}}$ *is semi-prime near-ring.*

Proof. Let us define an ideal \mathcal{D} in \mathcal{R} such that $pt \in \mathcal{D}$ for $p, t \in \mathfrak{K}$.

Let $\mathfrak F$ be $\mathfrak K$ -SG of $\mathfrak K$.

Then by the theorem [3.7,](#page-2-5) \mathfrak{F} is an ideal of \mathfrak{K} and suppose that $\mathfrak{D}^2 \subseteq \mathfrak{F}.$

Since \mathfrak{K} is zero-symmetric, $\mathfrak{K} \mathfrak{D} \subset \mathfrak{D}$.

If $p \in \mathfrak{D}$, then $p = pt^m p \in \mathfrak{DRD} \subseteq \mathfrak{DD} \subseteq \mathfrak{D}^2 \subseteq \mathfrak{F}$. $\Rightarrow\mathfrak{D}\subseteq\mathfrak{F}.$ So, any $\mathcal{R}\text{-SG}$ of \mathcal{R} is a S-PI.

Specifically, $\{0\}$ is a S-PI and hence $\mathcal R$ is a semi-prime nearring. \Box

Example 3.9. *Let us define* \Re *on* $Z_6 = \{0, 1, 2, 3, 4, 5\}$ *with addition and product tables.[see Pilz, p409 (24)(3, 5, 5, 3, 1, 1)]*

Addition is modulo 6.

Table 3. Product table						
	0		2	3	4	5
θ	0	0	0	0	0	0
	3	5	5	3		
$\overline{2}$	0	4	4	0	2	$\overline{2}$
$\overline{3}$	3	3	3	3	3	3
4	0	2	2	0	4	
$\overline{5}$	3			κ	5	5

Then $(R, +, .)$ is a r-RN and also m-RN.

4. Characterization of "*l***-regular near-rings".**

On studying the concepts of *r*-regular near-ring in [\[15,](#page-6-15) [16\]](#page-6-18), the term *l*-regular near-ring was introduced. Yong Uk Cho [\[4\]](#page-6-19) introduced semicentral idempotents and developed some results in the concept of reducibility in near-ring and we extended this notion of semicentral idempotent to the generalized regular near-rings namely *r*-regular near-ring(r-RN) and *l*-regular near-rings(l-RN).

We introduce the term "*l*-regular near-ring(l-RN)" as follows:

Definition 4.1. *For each element* $q \in \mathcal{R}$ *, there is a component l* which is an idempotent in \Re such that $q = lq, l \in |q\rangle$, then \Re *is known as "l-regular near-ring(l-RN)".*

Definition 4.2. *For each element* $p^2 = p \in \mathbb{R}$ *is referred to be left semicentral idempotent(left-SCI) if* $\Re p = p \Re p$.

Definition 4.3. For each element $q^2 = q \in \mathfrak{K}$ is referred to be *right semicentral idempotent(right-SCI) if* $q\hat{\mathbf{x}} = q\hat{\mathbf{x}}q$ *.*

Definition 4.4. For each element $e^2 = e \in \mathfrak{K}$ is referred to be *central idempotent(CI) if ek* = *ke for all* $k \in \mathcal{R}$ *.*

Theorem 4.5. *Let* $\mathfrak{K} \in \eta_0$, *r-RN with 1 and has IFP. Then every left-SCI is right-SCI.*

Proof. Since by the theorem [2.25,](#page-1-0) $q = qe$ implies $q = eq$ for all $q \in \mathfrak{K}$.

Let $\mathfrak{K} \in \eta_0$, r-RN with 1 and has IFP.

Now for each $q \in \mathfrak{K} \sqsupseteq e^2 = e \in \mathfrak{K}$ such that $q = qe, e \in \langle q | \subseteq$ $\langle q \rangle$.

Since $(1-e)e = 0$ \implies $(1-e)qe = 0 \forall q \in \mathfrak{K}$.

 $\implies qe - eqe = 0 \implies qe = eqe \implies e$ is left-SCI. By the theorem [2.25,](#page-1-0) $qe = eqe = eq \implies eqe = eq \implies e$

is right-SCI.

Thus, every left-SCI is right-SCI. \Box

Corollary 4.6. *Let* $\mathcal{R} \in \eta_0$, *r-RN with 1 and has IFP. Then* \mathcal{R} *is central.*

Theorem 4.7. *Let* $\mathfrak{K} \in \eta_0$ *be l-RN with 1 and has IFP. Then for any idempotent is left-SCI.*

Proof. Let $\mathfrak{K} \in \eta_0$, l-RN with 1 and has IFP. Now for each $q \in \mathfrak{K} \sqsupseteq e^2 = e \in \mathfrak{K}$ such that $q = eq, e \in |q\rangle \subseteq$ $\langle q \rangle$. Since $(1-e)e = 0$ \implies $(1-e)qe = 0 \forall q \in \mathcal{R}$. $\implies qe - eqe = 0 \implies qe = eqe \implies e$ is left-SCI. Thus, for any idempotent is left semicentral idempotent(left-SCI). \Box

In the above theorems [4.5,](#page-3-1) [4.7](#page-3-2) and corollary [4.6,](#page-3-3) the concepts of unity and reducibility is essential.

Example 4.8. *Consider a near-ring on the group* $Z_6 = \{0, 1, 2, 3, 4, 5\}$ *with addition and product table given below.[see Pilz, p410 (53)(0, 1, 4, 3, 4, 1)] Addition is modulo 5.*

4 0 4 4 0 4 4 $5 \mid 0 \mid 5 \mid 2 \mid 3 \mid 2 \mid 5$

This near-ring is r-RN and also l-RN. This near-ring is ZSN, reduced without unity. It is clear that the idempotent elements 2 and 5 are not central. This near-ring $\hat{\mathcal{R}}$ is right-SCI but not left-SCI. (for an element $1 \in \mathfrak{K}$ such that $2.1 \neq 1.2.1$).

Example 4.9. *Any regular near-ring(RN) is r-RN and l-RN.* Let us consider \Re on the group $Z_5 = \{0, 1, 2, 3, 4\}$ with addi*tion and product tables. [see Pilz, p408, (7)(0, 1, 4, 1, 4)] Addition is modulo 5.*

Then $(\mathfrak{K}, +, .)$ is a RN.

Remark 4.10. *In the above mentioned example [4.9,](#page-3-4) the nearring* $\hat{\mathcal{R}}$ *is left-SCI but not right-SCI(for an element* $I \in \hat{\mathcal{R}}$ *such that* $2.1 \neq 2.1.2$ *).*

Theorem 4.11. *For a near-ring* $\hat{\mathcal{R}}$ *is l-RN then* $\hat{\mathcal{R}} = \hat{\mathcal{R}}l$ *.*

Proof. By the definition of 1-RN, then $l = el$, since e^2 = $e, e \in |l\rangle$. =⇒ *l* ∈ K*l* ∀*l* ∈ K. Therefore $\mathfrak{K} = \mathfrak{K}l$. \Box

Theorem 4.12. For a near-ring $\hat{\mathcal{R}}$ is l-RN then $(0 : u)$ = $(0: \mathfrak{K}u) = (0: \mathfrak{K}), \forall u \in \mathfrak{K}$

Proof. Since \mathcal{R} is 1-RN, $u \in \mathcal{R}u$. Let $x \in (0 : \mathfrak{K}u)$. Now $x\mathfrak{K}u = 0 \implies xu = 0 \implies (0: \mathfrak{K}u) \subseteq (0:u)$. Let $x \in (0 : u)$ then $xu = 0$ $\implies x\mathfrak{K}u = 0 \implies x \in (0: \mathfrak{K}u) \implies (0:u) \subseteq (0: \mathfrak{K}u).$ Therefore $(0:u) = (0: \mathfrak{K}u)$. By the theorem [4.11,](#page-4-0) $(0 : u) = (0 : \mathbb{R}u) = (0 : \mathbb{R})$. \Box

Theorem 4.13. *Let a near-ring* K *be l-RN. Then every principal ideal is generated by an idempotent.*

Proof. Let $c \in \mathfrak{K}$. Consider a principal ideal generated by c, $\langle c \rangle$. If \mathfrak{K} is 1-RN, $c = uc, u^2 = u, u \in |c\rangle \subseteq \langle c \rangle \implies \langle u \rangle \subseteq \langle c \rangle$. $c = uc \in \langle u \rangle \implies \langle c \rangle \subseteq \langle u \rangle.$

Therefore $\langle c \rangle = \langle u \rangle$. \Box

Example 4.14. Let us consider \mathfrak{K} on $Z_6 = \{0, 1, 2, 3, 4, 5\}$ *with addition and product table given below.[see Pilz, p409 (24)(3, 5, 5, 3, 1, 1)] Addition is modulo 6.*

Table 6. Product table

The only ideals of \mathfrak{K} are $\{0\}$, $\{0,2,4\}$ and $\{0,1,2,3,4,5\}$. This near-ring $(\mathcal{R}, +, .)$ is both r-RN and l-RN.

Theorem 4.15. *Let a near-ring* K *be l-RN. Then* K *has no nonzero nil ideals.*

Proof. Suppose *A* be a nonzero nil ideal in \Re . Let $0 \neq a \in A$ and $a = ea, e \in |a\rangle, e^2 = e$. By the theorem [4.13,](#page-4-1) $e \in \langle e \rangle = \langle a \rangle \subseteq A$. $\implies 'e'$ is nilpotent, which is a conflict to '*e*' is idempotent. Thus, $\mathcal R$ has no nonzero nil ideals. \Box

Theorem 4.16. *For a near-ring* $\mathcal{R} \in \eta_0$ *is l-RN and every* K*-subgroup is an ideal of* K *then* K *is left SRN.*

Proof. Suppose that $\hat{\mathcal{R}}$ is 1-RN and every $\hat{\mathcal{R}}$ -subgroup is an ideal of $\mathfrak K$. By proposition [2.8,](#page-1-1) $a = ea, e^2 = e, e \in |a\rangle \subseteq \langle a \rangle = \Re a$. \implies *e* = *na*, *f* or *some* $n \in \mathfrak{K}$. Therefore $a = ea = naa = na^2$ for some $n \in \mathfrak{K}$. Hence $\mathfrak K$ is left SRN. \Box

Theorem 4.17. *For a near-ring* $\mathcal{R} \in \eta_0$ *is l-RN with 1 then* \mathcal{R} *is reduced.*

Proof. Let $t \in \mathbb{R}$ and $t^2 = 0 \implies t \in (0 : t) \implies \langle t \rangle \subseteq (0 : t)$. Suppose \Re is 1-RN, then $t = et, e^2 = e, e \in |t\rangle \subseteq \langle t \rangle \subseteq$ $(0 : t) \implies et = 0.$ Therefore $t = 0$. \Box Hence $\mathfrak K$ is reduced.

Theorem 4.18. *For a near-ring* $\mathcal{R} \in \eta_0$ *is l-RN with 1 and has IFP then* $d = ed$ *implies* $d = de$ *where 'e' is an idempotent.*

Proof. Suppose $\hat{\mathcal{R}}$ is 1-RN with 1 and has IFP. Now $d \in \mathfrak{K} \,\exists e^2 = e \in \mathfrak{K} \ni d = ed, e \in |d\rangle \subseteq \langle d \rangle.$ Since $(1-e)e = 0 \implies (1-e)de = 0 \forall d \in \mathfrak{K} \implies de$ $ede = 0 \implies de = ede = ed = d$ [by the lemma [2.20\]](#page-1-2). Therefore $d = ed$ implies $d = de$. \Box

Definition 4.19. Let $\hat{\mathbf{R}}$ is referred to as weakly regular near*ring(WRN) if* $A^2 = A$ *for every ideal* A *of* \mathcal{R} *.*

Definition 4.20. *Let an ideal* D *of* K *is referred to as "Completely Prime Ideal(CPI) if kl* $\in \mathcal{D}$ *implies k* $\in \mathcal{D}$ *or l* $\in \mathcal{D}$ *.*

Definition 4.21. *Let an ideal* D *of* K *is referred to as "3- Prime Ideal*(3-PI) *if* kn^1 *l* \in *D implies* $k \in$ *D or* $l \in$ *D for every* $n^1 \in \mathfrak{K}.$

Theorem 4.22. Let a near-ring \mathcal{R} be l-RN. Then \mathcal{R} is WRN.

Proof. Let \mathfrak{D} be an ideal of \mathfrak{K} and $a \in \mathfrak{D}$. $a = ea, e^2 = e, e \in |a\rangle \subseteq \langle a \rangle \subseteq \mathfrak{D} \subseteq \mathfrak{D}.\mathfrak{D} = \mathfrak{D}^2.$ But $\mathfrak{D}^2 \subseteq \mathfrak{D}$, therefore $\mathfrak{D} = \mathfrak{D}^2$. Thus, \mathfrak{K} is WRN.

Theorem 4.23. *Let a near-ring* K *be l-RN. Then* K *has no nonzero nilpotent ideal.*

Proof. Suppose J be a nonzero nilpotent ideal in \Re . Then $J^k = (0)$ for some k which is greater than or equal to 2. By the theorem [4.22,](#page-4-2) every ideal in a $\mathfrak K$ is idempotent i,e., $J = J^2$. $J^k = J^{k-2}J = J^{k-4}J^2J = J^{k-4}JJ = J^{k-4}J^2 = J^{k-4}J = \dots$ Continuing in this way we get $J = (0)$. It is a contradiction. \Box Thus $\mathfrak K$ has no nonzero nilpotent ideal.

Theorem 4.24. *Let a near-ring* K *be l-RN with left unity then every CPI is a maximal.*

 \Box

Proof. Let $\mathfrak C$ be a CPI of $\mathfrak K$ Suppose $\mathfrak{C} \subset \mathfrak{M} \subseteq \mathfrak{K}$ then $\exists a \in \mathfrak{M} \setminus \mathfrak{C}$ Now $a = ea, e^2 = e, e \in |a\rangle \subseteq \langle a \rangle \subseteq \mathfrak{M} \implies e \in \mathfrak{M}.$ $(1-e)a = 0 \in \mathfrak{C} \implies 1-e \in \mathfrak{C} \subset \mathfrak{M} \implies 1-e \in \mathfrak{M}.$ Let *c* ∈ R then *c* = 1.*c* = $(1 - e + e)c$ = $(1 - e)c + ec$ ∈ M. Therefore $\mathfrak{K} = \mathfrak{M}$. Hence $\mathfrak C$ is a maximal ideal.

Theorem 4.25. *Let* K *be a l-RN with left unity and has IFP then every 3-PI is maximal.*

Proof. Let $\mathfrak C$ be a 3-PI of $\mathfrak K$. Assume $\mathfrak{C} \subset \mathfrak{M} \subset \mathfrak{K}$. Let $c \in \mathfrak{M} \setminus \mathfrak{C}$. Now $c = ec, e^2 = e, e \in |c\rangle \subseteq \langle c \rangle$. $(1-e)c = 0.$ Since \Re has IFP, $(1-e)$ *nc* = 0∀*n* ∈ \Re . $(1-e)$ $Rc = 0 ⊆ \mathfrak{C} \implies 1-e \in \mathfrak{C} \subseteq \mathfrak{M} \implies 1-e \in \mathfrak{M}.$ For any *x* in $\mathfrak{K}, x = e x + (1 - e)x \in \mathfrak{M}$. Therefore $\mathfrak{K} = \mathfrak{M}$. Thus $\mathfrak C$ is maximal ideal. \Box

Theorem 4.26. *If a near-ring* K *is l-RN then every ideal I of* K *is l-RN.*

Proof. Suppose \Re is 1-RN, then $a = ea, e^2 = e, e \in |a\rangle$. Assume that I is an ideal \mathfrak{K} . Let $a \in I$ then $a = ea, e \in |a\rangle \subseteq I$. Therefore *I* is l-RN. \Box

Theorem 4.27. *For a near-ring* $\mathfrak{K} \in \eta_0$ *with identity,*

1. \mathfrak{K} *is l-RN and has IFP.*

2. K *is reduced and every CPI is maximal.*

are equivalent.

Proof. (1) \implies (2) Suppose $\hat{\mathcal{R}}$ is 1-RN.

By theorem [4.17,](#page-4-3) $\hat{\mathcal{R}}$ is reduced and by theorem [4.24,](#page-4-4) it is proved.

 $(2) \implies (1)$

Suppose $\mathfrak{K} \in \eta_0$ is reduced and every CPI is maximal.

Since $\mathfrak{K} \in \eta_0$ is reduced, $ab = 0 \implies ba = 0$.

Consider $nba = n(ba) = n0 = 0 \implies (nb)a = 0 \implies anb = 0$ $0 \forall n \in \mathfrak{K}.$

Therefore $\mathfrak K$ has IFP.

Let $0 \neq a \in \mathfrak{K}$, by the lemma [2.28,](#page-2-6) $\overline{K} = \mathfrak{K} \setminus A(a)$ is reduced and \bar{a} is not a zero divisor.

Also, every CPI of \overline{K} is a maximal ideal in \overline{K} .

Let Q be the multiplicative subsemigroup generated by an element $\overline{a} - \overline{t} \ \overline{a}$ where $\overline{t} \in |a\rangle$.

If not, by the theorem [2.29,](#page-2-7) there exists a CPI \overline{P} with $\overline{P} \cap Q =$ \emptyset .

Suppose $|a\rangle \subset \overline{P}$ then $\overline{a} \in \overline{P}$.

=⇒ *a*−*ta* ∈ *P*.

 $\implies \overline{a} - \overline{t} \ \overline{a} \in \overline{P} \cap Q$, it is a contradiction to the fact that *P* ∩ $Q = ∅$.

Suppose $|a\rangle \nsubseteq \overline{P}$ and \overline{P} is maximal, we have $\overline{K} = \overline{P} + |a\rangle$. $\overline{1} = \overline{\alpha} + \overline{t}$ where $\overline{\alpha} \in \overline{P}, \overline{t} \in |a\rangle$. $\overline{a} = \overline{\alpha} \overline{a} + \overline{t} \overline{a}.$ $\implies \overline{a} - \overline{t} \ \overline{a} = \overline{\alpha} \ \overline{a} \in \overline{P}.$ $\implies \overline{a} - \overline{t} \ \overline{a} \in \overline{P} \cap Q$, it is a contradiction to the fact, $\overline{P} \cap Q =$ \emptyset . Thus $\overline{0} \in Q$. Now $\overline{0} = (\overline{a} - \overline{t_1} \ \overline{a}) (\overline{a} - \overline{t_2} \ \overline{a}) \cdots (\overline{a} - \overline{t_n} \ \overline{a}) = (\overline{1} - \overline{t_i}) \ \overline{a}, \ \overline{t_i} \in$ $|a\rangle$ Since \overline{a} is not zero divisor, $(\overline{1} - \overline{t_i}) = 0 \implies \overline{1} = \overline{t_i}, t \in \{a\}.$ Hence $(1-t) \in A(a) \implies (1-t)a = 0, t \in |a\rangle, t^2 = t \implies$ $a = ta, t^2 = t, t \in |a\rangle.$ Therefore \Re is 1-RN. \Box

Definition 4.28. *Let a near-ring* K *is referred to as "Left Quasi Duo(LQD)" if every maximal left ideal of* $\hat{\mathcal{R}}$ *is twosided ideal.*

Theorem 4.29. *For a near-ring* $\mathfrak{K} \in \eta_0$ *is the LQD with left unity 1,* \Re *is l-RN then* $\Re = \langle q \rangle + (0 : q)$ *.*

Proof. Since \Re is 1-RN, then $q = tq$, $t^2 = t$, $t \in |q\rangle \subseteq \langle q \rangle$. $\implies q \in \langle q \rangle q.$ Then $\Re q \subseteq \Re \langle q \rangle q \subseteq \langle q \rangle q$. And we have $\langle q \rangle q \subseteq \mathfrak{K}q$. Therefore $\Re q = \langle q \rangle q$. Suppose that $\mathfrak{K} \neq \langle q \rangle + (0 : q)$. Then there exists a maximal left ideal $\mathfrak C$ such that $\langle q \rangle$ + $(0: q) \subseteq \mathfrak{C}.$ Since $\hat{\mathcal{R}}$ is LQD, $\hat{\mathcal{C}}$ is a two-sided ideal. Since $q \in \mathfrak{C}, \langle q \rangle q \subseteq \mathfrak{C}q \subseteq \mathfrak{R}q = \langle q \rangle q.$ Therefore $\mathfrak{C}q = \langle q \rangle q$. Therefore $\Re q = \langle q \rangle q = \mathfrak{C}q$. Therefore $s \in \langle q \rangle$ such that $q = sq, s \in \langle q \rangle$ $\implies (1-s)q = 0 \implies 1-s \in (0:q).$ Therefore $1 = s + (1 - s) \in \langle q \rangle + (0 : q) \subseteq \mathfrak{C}$. It is a contradiction. Therefore $\mathfrak{K} = \langle q \rangle + (0 : q)$. \Box

5. Conclusion

In mathematics, several researchers are working on algebra. Recently as an application of near-rings, mathematicians used planar near-rings, near-rings of polynomials, and other near-rings to expand designs and codes. In this publication, we made an effort to develop the concept of regular near-rings and generalized regular near-rings.

Acknowledgment

The authors are very thankful to the referees for their valuable suggestions to sharpen this article.

References

 $[1]$ A Atagun, H Kamacı, İ Taştekin and A SEZGİN, P-Properties in Near-Rings, *J. Math. Fund. Sci.,* 51(2019), 152–167.

- $[2]$ H E Bell, Near-rings in which each element is a power of itself, *Bull. Aust. Math. Soc.,* 2(1970), 363–368.
- [3] Y Uk Cho, A study on near-rings with semi-central idempotents, *Far East J. Math. Sci. (FJMS)* 98(2015), 759– 762.
- [4] Y Uk Cho , On Semicentral Idempotents in Near-Rings, *Appl. Math. Sci.,* 9(2015), 3843 – 3846.
- [5] P Dheena, A generalization of strongly regular near-rings, *Indian J. Pure Appl. Math.* 20(1989), 58–63.
- [6] G Gopala Krishna Moorthy, R veega and S Geetha, On Pseudo m-power commutative Near-rings, *IOSR Journal of Mathematics(IOSR-JM),* 12(2016), 80–86.
- [7] S Ligh, On regular near-rings, *Math. Japon.,* 15(1970), 7–13.
- $[8]$ C Lomp and J Matczuk, A note on semicentral idempotents, *Comm. Algebra.,* 45(2017), 2735–2737.
- [9] G Pilz, *Near-rings: the theory and its applications*, 23 edition, 2011.
- [10] D. Ramakotaiah, *Theory of Near Rings*, PhD Thesis, Andhra University, 1968.
- [11] D. Ramakotaiah and G K Rao, IFP near-rings, *J. Aust. Math. Soc.,* 27(1979), 365–370.
- [12] S. Ramkumar and T. Manikantan, Extensions of fuzzy soft ideals over near-rings, *Malaya J. Mat.*, S(1)(2020), 626–631.
- [13] Y V Reddy and C V L N Murty, On strongly regular near-rings, *Proc. Edinb. Math. Soc.,* 27(2)(1984), 61–64.
- [14] Roos, *Rings and Regularities*, PhD Thesis, Technische Hoge School, Delft, 1975.
- [15] M. Sowjanya, A. Gangadhara Rao, A. Anjaneyulu and T. Radha Rani, r-Regular Near-Rings, *International Journal of Engineering Research and Application,* 8(2018), 11– 19.
- [16] M. Sowjanya, A. Gangadhara Rao, T. Radharani and V. Padmaja, Results on r-regular near-rings, *Int. J. Math. Comput. Sci.,* 4(15)(2020), 1327–1336.
- [17] G. Sugantha and R. Balakrishnan, γ near-rings, *International Research Journal of Pure Algebra,* 4(2014), 546– 551.
- [18] S. Suryanarayanan and N. Ganesan, Stable and pseudo stable near rings, *Indian J. Pure Appl. Math.,* 19(1988), 1206–1216.
- [19] G. Wendt, Minimal Ideals and Primitivity in Near-rings, *Taiwanese J. Math.*, 23(2019), 799–820.
- [20] P. Yiarayong, Some Basic Properties of Completely Prime Ideals in Near Rings, *J. Math. Fund. Sci.* 47(2015), 227–235.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $* * * * * * * * * * *$

