

https://doi.org/10.26637/MJM0804/0149

A study on *r*-regular and *l*-regular near-rings

Marisetti Sowjanya^{1*}, A. Gangadhara Rao², P.M. Padmalatha³ and T. Radharani ⁴

Abstract

In this paper, by studying *r*-regular near-rings and *m*-regular near-rings, we proved some characterizations of *m*-regular near-rings, *r*-regular near-rings with IFP. We introduced the term *l*-regular near-ring and proved some results.

Keywords

m-regular near-ring, r-regular near-ring, l-regular near-ring, IFP.

AMS Subject Classification

16Y30.

¹ Department of Mathematics, Eluru College of Engineering & Technology, Eluru-534004, Andhra Pradesh, India.

²Department of Mathematics, V S R and N V R College, Tenali-522201, Andhra Pradesh, India.

³ Department of Mathematics, JMJ College for Women, Tenali-522202, Andhra Pradesh, India.

⁴Department of Mathematics, Lakireddy Balireddy College of Engineering, Mylavaram-521230, Andhra Pradesh, India. ***Corresponding author**: ¹ sowjanyachallari@gmail.com; ²raoag1967@gmail.com; ³padmalatha323@gmail.com;

⁴radharanitammileti@gmail.com

Article History: Received 30 October 2020; Accepted 22 December 2020

©2020 MJM.

Contents

1	Introduction 2197	'
2	Preliminaries	,
3	Characterization of " <i>r</i> -regular near-rings"2199)
4	Characterization of " <i>l</i> -regular near-rings" 2200)
5	Conclusion	2
	References	2

1. Introduction

Development of the concept of near-rings is highly shaped by the inventive research on Ring theory. In ring theory, Roos [14] defined the concept of regularity and this notion was enforced and developed to Near-rings and several mathematicians gave a various characterization of near-rings such as Bell [2], Steve Ligh [7],YV Reddy and CVLN Murthy [13], Ramakotaiah [10, 11], Dheena [5], S Suryanarayanan and N Ganesan [18], Atagün, Akin and Kamacı, Hüseyin and Taştekin, İsmail and SEZGİN, Aslıhan [1]. Yong UK Cho [3] and Christian Lompjerzy Matczuk [8] developed the concept of semicentral idempotents for near-rings and rings. Especially, in ideal theory, Pairote Yiarayong [20] developed a strong relationship on various kinds of prime ideals in nearrings. Wendt Gerhard [19] investigated minimal ideals and primitivity in Right near-rings. Recently, S Ramkumar and T Manikantan [12] established the notion of the extension of a fuzzy soft set over a near-ring.

2. Preliminaries

For necessary definitions and basic results, the author follows [9]. In this Preliminaries section, We recall the required definitions and results as follows.

Definition 2.1. A triplet $(\mathfrak{K}, +, .)$ is referred to as The, Right near-ring where

- 1. \Re holds the properties of a "Group" under addition.
- 2. R holds the properties of a "Semi-group" under multiplication.
- 3. $(t^1 + q^1) . s^1 = t^1 . s^1 + q^1 . s^1, \forall t^1, q^1, s^1 \in \mathfrak{K}$ (right distributive law).

Moreover in this paper, we consider Right nearring(\Re , +, .) and we designate a right near-ring as \Re unless and otherwise mentioned. We write t^1s^1 to denote $t^1.s^1$ for any two elements t^1 and s^1 in a near-ring \Re .

Example 2.2. Let $(\mathfrak{K}, +)$ where $\mathfrak{K} = \{i^1, p^1, q^1, r^1\}$ be a Klein's four group with addition and product tables mentioned below is an example for a near-ring. [see Pilz, p408 (13)(0,7,13,9)]

Table 1. Addition table						
+	i^1	p^1	q^1	r^1		
i^1	i^1	p^1	q^1	r^1		
p^1	p^1	i^1	r^1	q^1		
q^1	q^1	r^1	i^1	p^1		
r^1	r^1	q^1	p^1	i^1		
Tal	ole 2.	Prod	uct ta	ble		
.	i^1	p^1	q^1	r^1		
$\frac{1}{i^1}$	i^1 i^1	p^1 i^1	$\frac{q^1}{i^1}$	r^1 i^1		
$\frac{1}{p^1}$	$ \begin{array}{c} i^1 \\ i^1 \\ i^1 \\ i^1 \end{array} $	$\frac{p^1}{i^1}$ $\frac{p^1}{p^1}$	$\frac{q^1}{i^1}$ $\frac{q^1}{q^1}$	$\frac{r^1}{i^1}$		
$\begin{array}{c} \cdot \\ i^1 \\ p^1 \\ q^1 \end{array}$	i^{1} i^{1} i^{1} i^{1} i^{1}	$\frac{p^1}{i^1}$ $\frac{p^1}{i^1}$		$\frac{r^1}{i^1}$ $\frac{r^1}{i^1}$		

Definition 2.3. Let \Re is referred to as "Zero-symmetric nearring(ZSN)" if $k0 = 0 \forall k \in \Re$ i.e. $\Re = \Re_0$.

In the above example 2.2, $(\mathfrak{K}, +, .)$ is a ZSN and we denote it as $\mathfrak{K} \in \eta_0$.

Definition 2.4. Let \mathfrak{D} be a subgroup of \mathfrak{K} is said to be \mathfrak{K} -subgroup (\mathfrak{K} -SG) if $\mathfrak{K}\mathfrak{D} \subseteq \mathfrak{D}$.

If $S, T \subseteq \mathfrak{K}$ then we define $ST = \{st/s \in S, t \in T\}$. We, now designate a normal subgroup as NSG.

Definition 2.5. Let \Im be a NSG of $(\Re, +)$ is referred to as the left ideal of \Re , if $\forall t, p \in \Re$, $\forall s \in \Im$, $t(p+s) - tp \in \Im$.

Definition 2.6. Let \mathfrak{I} be a NSG of $(\mathfrak{K}, +)$ is referred to as the right ideal of \mathfrak{K} if $\mathfrak{I}\mathfrak{K} \subseteq \mathfrak{I}$.

Definition 2.7. Let \mathfrak{I} be a NSG of $(\mathfrak{K}, +)$ is referred to as ideal(two-sided ideal)if it satisfies both the definitions of left ideal and a right ideal of \mathfrak{K} .

Proposition 2.8. [9, proposition 1.34(c)] For a $\Re \in \eta_0$, every ideal is a \Re -SG of \Re .

Definition 2.9. Assume that F is a non-void subset in \Re . Then $\{L_s/s \in I\}$ be the family of all left ideals which contain $F.L = \bigcap_{s \in I} L_s$ is the smallest one among all left ideal containing F can be referred as "left ideal generated by F".

Definition 2.10. Assume that an ideal \mathfrak{A} of \mathfrak{K} is termed to "principal ideal" if \mathfrak{A} is generated by one component.

If an ideal \mathfrak{A} which is generated by an element 'a', then \mathfrak{A} is symbolized by $\langle a \rangle$.

If a left ideal \mathfrak{A} is generated by a single component 'a', then \mathfrak{A} is symbolized by $\langle a |$.

If the right ideal \mathfrak{A} is generated by a single component '*a*', then \mathfrak{A} is symbolized by $|a\rangle$.

Definition 2.11. *The center of a near-ring* \mathfrak{K} *is defined as* $\mathfrak{C} = \{x \in \mathfrak{K}/nx = xn, \forall n \in \mathfrak{K}\}.$

Elements in \mathfrak{C} are said to be central.

Definition 2.12. A component 'p' is termed as an idempotent element of \Re if $p^2 = p$, for $p \in \Re$.

Definition 2.13. A non-zero element 't' in \Re is termed as nilpotent, if $\exists k \in \Re$ which is greater than or equal to 2 such that $t^k = 0$.

Definition 2.14. A subset \mathfrak{S} of \mathfrak{K} is referred to as "nil" if for all $t \in \mathfrak{S}$ are nilpotent.

Definition 2.15. *The set* $(0: \Delta) = \{t \in \Re/tx = 0, \forall x \in \Delta\}$, *where* Δ *be a subset of* \Re *, is known as the annihilator of* Δ *.*

If $\Delta = \{\delta\}$, then $(0 : \Delta)$ is denoted by $(0 : \delta)$.

Corollary 2.16. [9, corollary 1.43 (a)] For any $\delta \in \mathfrak{K}$, $(0: \delta)$ is a "left ideal" of \mathfrak{K} .

Corollary 2.17. [9, corollary 1.43 (b)] If Δ is a \Re -SG of Γ , then the annihilator $(0 : \Delta)$ is an ideal in \Re .

According to [2, 5, 9], let \Re is identified as Insertion of Factors Property(IFP), supposing that $ts = 0 \implies tps = 0$, $\forall t, s, p \in \Re$. The above-mentioned near-ring Example2.2 is an example for IFP near-ring.

Proposition 2.18. [9, proposition 9.3] The following affirmations are equivalent:

- \Re has the insertion of factors property(IFP).
- (0:s) is an ideal of \mathfrak{K} , $\forall s \in \mathfrak{K}$.
- Let $\mathfrak{I} = (0:\mathfrak{S})$, for all subsets \mathfrak{S} of \mathfrak{K} , \mathfrak{I} is an ideal.

Definition 2.19. For each component $k \in \mathfrak{K}$, if $k^2 = 0 \Rightarrow k = 0$, then \mathfrak{K} is known as reduced near-ring.

Lemma 2.20. [5, lemma 2.8] For each d, l in $\Re \in \eta_0$, which is a reduced near-ring then dlt = dtl where $t^2 = t$, t is in \Re .

Proposition 2.21. [9, proposition 9.37] If $\mathfrak{K} \in \mathfrak{\eta}_0$ is having no non-zero nilpotent components, then \mathfrak{K} satisfies the IFP.

Definition 2.22. For each component $c \in \mathfrak{K}$, if $\mathfrak{K}c = \mathfrak{K}c^2$ then \mathfrak{K} is known as "left bi potent".

Definition 2.23. For each component $k \in \mathfrak{K}$, there is a component l in \mathfrak{K} such that k = klk, then \mathfrak{K} is known as "regular near-ring(RN)".

Definition 2.24. For each component $p \in \mathfrak{K}$, there is a component l in \mathfrak{K} such that $p = lp^2$, then \mathfrak{K} is known as "left strongly regular near-ring(left SRN)".

According to [15], for each component $q \in \mathfrak{K}$, there is a component *l* which is an idempotent in \mathfrak{K} such that $q = ql, l \in \langle q |$, then \mathfrak{K} is known as "*r*-regular near-ring(r-RN)".

Theorem 2.25. [15, Theorem 2.8] If \Re is r-RN with 1 and has IFP then a = al implies a = la, where l is an idempotent in \Re , $l \in \langle a |$.

Theorem 2.26. [15, Theorem 2.9] Let \Re be a r-RN which satisfies IFP with 1 then \Re is reduced.

Lemma 2.27. [9] [17] Let $\Re \in \eta_0$ has IFP if and only if \mathfrak{H} is an ideal where $\mathfrak{H} = (0:\mathfrak{S})$, for all subsets \mathfrak{S} of \mathfrak{K} .

Lemma 2.28. [5, lemma 1] If a near-ring $\Re \in \eta_0$ is reduced then for any $0 \neq a \in \Re$

- 1. $\Re \setminus A(a)$ is reduced and the residue class \overline{a} of $a \mod A(a)$ is a nonzero divisor where $A(a) = \{x \in \Re/xa = 0\}$.
- 2. $k_1k_2...k_n = 0$ implies $\langle k_1 \rangle \langle k_2 \rangle ... \langle k_n \rangle = 0$ for any $k_1, k_2, ...k_n$ in \mathfrak{K} .

Theorem 2.29. [5, Theorem 1]

Let a near-ring \mathfrak{K} be reduced. If \mathfrak{S} is a nonvoid multiplicative subsemigroup of \mathfrak{K} such that $0 \notin \mathfrak{S}$, then a completely prime ideal \mathfrak{V} exists in \mathfrak{K} such that $\mathfrak{V} \cap \mathfrak{S} = \emptyset$.

3. Characterization of "*r*-regular near-rings".

The principal object "*m* -regular near-ring" was cited by G.Gopala Krishna Moorthy, R. Veega, and S. Geetha [6] and proved some results. In this section, with a new idea, we introduced "*m*-regular near-ring with *r*-regular near-ring" and gave some characterization.

According to [6] For each component $k \in \mathfrak{K}$, there is a component l in \mathfrak{K} such that $k = kl^m k$ where $m \ge 1$ is a fixed integer, then \mathfrak{K} is known as "*m*-regular near-ring(m-RN)".

Lemma 3.1. [6, lemma 3.10] Let \mathfrak{K} be a m-RN, $a \in \mathfrak{K}$ and $a = ab^m a$. Then

- The idempotents are ab^m and b^ma .
- $ab^m \Re = a \Re \& \Re b^m a = \Re a$.

Let \mathfrak{D} subset of \mathfrak{K} then $\sqrt{\mathfrak{D}}=\{x \in \mathfrak{K}/x^k \in \mathfrak{D}, for some k \ge 1\}$

Definition 3.2. Let \mathfrak{D} be an ideal of \mathfrak{K} is known as Semi-Prime Ideal(S-PI) supposing that for all ideals \mathfrak{I} of \mathfrak{K} , $\mathfrak{I}^2 \subseteq \mathfrak{D}$ implies $\mathfrak{I} \subseteq \mathfrak{D}$.

Theorem 3.3. Let $\mathfrak{K} \in \eta_0$ be a m-RN, r-RN with unity, and has IFP. Then $\mathfrak{C} = \sqrt{\mathfrak{C}}$ where \mathfrak{C} is \mathfrak{K} -SG of \mathfrak{K} .

Proof. Assume that \mathfrak{C} is a \mathfrak{K} -SG of \mathfrak{K} . Let $p \in \mathfrak{C}$ implies $p^1 \in \mathfrak{C}$ which implies $p \in \sqrt{\mathfrak{C}}$ hence, we get $\mathfrak{C} \subseteq \sqrt{\mathfrak{C}}$.

Now let $p \in \sqrt{\mathfrak{C}} \Rightarrow p^k \in \mathfrak{C}$.

By using the definition of m-RN, lemma 3.1 and theorem 2.25, we have $p = pl^m p = p(l^m p) = (l^m p) p = l^m p^2$ Now, $p = l^m pp = l^m (l^m p^2) p = l^{2m} p^3 = \cdots = l^{(k-1)m} p^k \subseteq$ $\Re \mathfrak{C} \subseteq \mathfrak{C}$. Hence, we get $\sqrt{\mathfrak{C}} \subseteq \mathfrak{C}$. Thus, $\mathfrak{C} = \sqrt{\mathfrak{C}}$ where \mathfrak{C} is \Re -SG of a \Re .

Definition 3.4. For each component p,t in a m-RN \Re is referred to have IFP if pt = 0 then $pl^m t = 0$, for some l in \Re and $m \ge 1$ is a fixed integer.

Theorem 3.5. If $\mathfrak{K} \in \eta_0$ be a m-RN, r-RN in which all the idempotents are central then \mathfrak{K} is reduced.

Proof. Suppose $p \in \Re$ such that $p^2 = 0$. By using the definition of m-RN, and lemma 3.1, $p = pl^m p = l^m p^2 = l^m 0 = 0$. Therefore, \Re is reduced.

Theorem 3.6. If $\mathfrak{K} \in \eta_0$ be a m-RN, r-RN in which all the idempotents are central then \mathfrak{K} satisfies IFP.

Proof. Let $t, p \in \Re$ such that tp = 0. Now, $(pt)^2 = (pt)(pt) = p(tp)t = p0 = 0$. By the theorem 3.5, pt = 0. For $m \ge 1$, a fixed integer, consider $(tl^m p)^2 = (tl^m p)(tl^m p) = tl^m (pt)l^m p = tl^m 0 = 0$. By the theorem 3.5, $tl^m p = 0$. Hence \Re has IFP.

Theorem 3.7. If $\mathfrak{K} \in \eta_0$ be a m-RN, r-RN in which all the idempotents are central then every \mathfrak{K} -SG is an ideal.

Proof. Let \Re be r-RN in which all idempotents are central. By the definition of r-RN and By the theorem 2.25, we have $a = ea, e^2 = e, e \in \langle a |$.

Let $a \in \mathfrak{K}$, Since, by the definition of m-RN, we have $a = ab^m a$ where $m \ge 1$, a fixed integer and By the lemma 3.1, $b^m a$ is idempotent.

Let $b^m a = e$ then by using the lemma 3.1, $\Re e = \Re b^m a = \Re a$. Let $\mathfrak{F} = \{c - ce/c \in \mathfrak{K}\}.$ Claim: $(0:\mathfrak{F}) = \{y \in \mathfrak{K}/sy = 0 \forall s \in \mathfrak{F}\} = \mathfrak{K}e.$ Now, $(c - ce)e = ce - ce^2 = ce - ce = 0 \ \forall c \in \mathfrak{K}.$ By the theorem 3.6, \Re has IFP, $(c - ce) \Re e = 0 \quad \forall c \Rightarrow \Re e \in$ $(0:\mathfrak{F}).$ Let $y \in (0:\mathfrak{F}) \Rightarrow sy = 0$, for all $s \in \mathfrak{F}$. $\Rightarrow syx^m y = 0.$ Now, $yx^m - (yx^m)e \in \mathfrak{F} \Rightarrow [yx^m - (yx^m)e]y = 0.$ $\Rightarrow yx^m y - yx^m ey = 0, for all \ e \in \langle y |.$ \Rightarrow y - ye = 0 \Rightarrow y = ye \in \Re e. $\Rightarrow (0:\mathfrak{F}) \subseteq \mathfrak{K}e.$ Therefore, $(0:\mathfrak{F}) = \mathfrak{K}e = \mathfrak{K}b^m a = \mathfrak{K}a$. By the lemma 2.27, $(0:\mathfrak{F})$ become an ideal, for any subset of F of R. $\Rightarrow \Re a$ become an ideal.

Thus, every \Re -SG is an ideal of \Re .

Theorem 3.8. If $\mathfrak{K} \in \mathfrak{\eta}_0$ be a m-RN, r-RN in which all the idempotents are central then \mathfrak{K} is semi-prime near-ring.

Proof. Let us define an ideal \mathfrak{D} in \mathfrak{K} such that $pt \in \mathfrak{D}$ for $p, t \in \mathfrak{K}$.

Let F be R-SG of R.

Then by the theorem 3.7, \mathfrak{F} is an ideal of \mathfrak{K} and suppose that $\mathfrak{D}^2 \subseteq \mathfrak{F}.$

Since \Re is zero-symmetric, $\Re \mathfrak{D} \subseteq \mathfrak{D}$.

If $p \in \mathfrak{D}$, then $p = pt^m p \in \mathfrak{DRD} \subseteq \mathfrak{DD} \subseteq \mathfrak{D}^2 \subseteq \mathfrak{F}$. $\Rightarrow \mathfrak{D} \subseteq \mathfrak{F}$.

So, any A-SG of A is a S-PI.

Specifically, $\{0\}$ is a S-PI and hence \Re is a semi-prime nearring.

Example 3.9. Let us define \Re on $Z_6 = \{0, 1, 2, 3, 4, 5\}$ with addition and product tables.[see Pilz, p409 (24)(3, 5, 5, 3, 1, 1)]

Addition is modulo 6.

Table 3. Product table								
	0	1	2	3	4	5		
0	0	0	0	0	0	0		
1	3	5	5	3	1	1		
2	0	4	4	0	2	2		
3	3	3	3	3	3	3		
4	0	2	2	0	4	4		
5	3	1	1	3	5	5		

Then $(\mathfrak{K}, +, .)$ is a r-RN and also m-RN.

4. Characterization of "/-regular near-rings".

On studying the concepts of *r*-regular near-ring in [15, 16], the term *l*-regular near-ring was introduced. Yong Uk Cho [4] introduced semicentral idempotents and developed some results in the concept of reducibility in near-ring and we extended this notion of semicentral idempotent to the generalized regular near-rings namely *r*-regular near-ring(r-RN) and *l*-regular near-rings(l-RN).

We introduce the term "l-regular near-ring(l-RN)" as follows:

Definition 4.1. For each element $q \in \Re$, there is a component l which is an idempotent in \Re such that $q = lq, l \in |q\rangle$, then \Re is known as "l-regular near-ring(l-RN)".

Definition 4.2. For each element $p^2 = p \in \mathfrak{K}$ is referred to be left semicentral idempotent(left-SCI) if $\mathfrak{K}p = p\mathfrak{K}p$.

Definition 4.3. For each element $q^2 = q \in \Re$ is referred to be right semicentral idempotent(right-SCI) if $q\Re = q\Re q$.

Definition 4.4. For each element $e^2 = e \in \Re$ is referred to be central idempotent(*CI*) if ek = ke for all $k \in \Re$.

Theorem 4.5. Let $\mathfrak{K} \in \eta_0$, *r-RN* with 1 and has IFP. Then every left-SCI is right-SCI.

Proof. Since by the theorem 2.25, q = qe implies q = eq for all $q \in \mathfrak{K}$.

Let $\mathfrak{K} \in \eta_0$, r-RN with 1 and has IFP.

Now for each $q \in \mathfrak{K} \exists e^2 = e \in \mathfrak{K}$ such that $q = qe, e \in \langle q | \subseteq \langle q \rangle$.

Since $(1-e)e = 0 \implies (1-e)qe = 0 \forall q \in \mathfrak{K}$.

 $\implies qe - eqe = 0 \implies qe = eqe \implies e$ is left-SCI. By the theorem 2.25, $qe = eqe = eq \implies eqe = eq \implies e$

is right-SCI.

Thus, every left-SCI is right-SCI. \Box

Corollary 4.6. Let $\mathfrak{K} \in \eta_0$, r-RN with 1 and has IFP. Then \mathfrak{K} is central.

Theorem 4.7. Let $\mathfrak{K} \in \mathfrak{h}_0$ be *l*-*RN* with 1 and has IFP. Then for any idempotent is left-SCI.

Proof. Let $\Re \in \eta_0$, 1-RN with 1 and has IFP. Now for each $q \in \Re \exists e^2 = e \in \Re$ such that $q = eq, e \in |q\rangle \subseteq \langle q \rangle$. Since $(1 - e)e = 0 \implies (1 - e)qe = 0 \forall q \in \Re$. $\implies qe - eqe = 0 \implies qe = eqe \implies e$ is left-SCI. Thus, for any idempotent is left semicentral idempotent(left-SCI).

In the above theorems 4.5, 4.7 and corollary 4.6, the concepts of unity and reducibility is essential.

Example 4.8. Consider a near-ring on the group $Z_6 = \{0, 1, 2, 3, 4, 5\}$ with addition and product table given below.[see Pilz, p410 (53)(0, 1, 4, 3, 4, 1)] Addition is modulo 5.

 Table 4. Product table

		-				
	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	4	3	4	1
2	0	2	2	0	2	2
3	0	3	0	3	0	3
4	0	4	4	0	4	4
5	0	5	2	3	2	5

This near-ring is r-RN and also l-RN. This near-ring is ZSN, reduced without unity. It is clear that the idempotent elements 2 and 5 are not central. This near-ring \Re is right-SCI but not left-SCI. (for an element $1 \in \Re$ such that $2.1 \neq 1.2.1$).

Example 4.9. Any regular near-ring(RN) is r-RN and l-RN. Let us consider \Re on the group $Z_5 = \{0, 1, 2, 3, 4\}$ with addition and product tables. [see Pilz, p408, (7)(0, 1, 4, 1, 4)] Addition is modulo 5.

Table 5. Product table							
•	0	1	2	3	4		
0	0	0	0	0	0		
1	0	1	2	3	4		
2	0	4	3	2	1		
3	0	1	2	3	4		
4	0	4	3	2	1		

Then $(\mathfrak{K}, +, .)$ is a RN.

Remark 4.10. In the above mentioned example 4.9, the nearring \mathfrak{K} is left-SCI but not right-SCI(for an element $1 \in \mathfrak{K}$ such that $2.1 \neq 2.1.2$).

Theorem 4.11. For a near-ring \Re is *l*-RN then $\Re = \Re l$.

Proof. By the definition of 1-RN, then l = el, since $e^2 =$ $e,e \in |l\rangle$. $\implies l \in \mathfrak{K}l \ \forall l \in \mathfrak{K}.$ Therefore $\Re = \Re l$.

Theorem 4.12. For a near-ring \Re is l-RN then (0:u) = $(0:\mathfrak{K}u) = (0:\mathfrak{K}), \forall u \in \mathfrak{K}$

Proof. Since \Re is l-RN, $u \in \Re u$. Let $x \in (0 : \mathfrak{K}u)$. Now $x \Re u = 0 \implies xu = 0 \implies (0 : \Re u) \subset (0 : u)$. Let $x \in (0:u)$ then xu = 0 $\implies x \Re u = 0 \implies x \in (0: \Re u) \implies (0: u) \subset (0: \Re u).$ Therefore $(0: u) = (0: \Re u)$. By the theorem 4.11, $(0: u) = (0: \Re u) = (0: \Re)$.

Theorem 4.13. Let a near-ring \Re be l-RN. Then every principal ideal is generated by an idempotent.

Proof. Let $c \in \mathfrak{K}$. Consider a principal ideal generated by c, $\langle c \rangle$. If \mathfrak{K} is l-RN, $c = uc, u^2 = u, u \in |c\rangle \subseteq \langle c\rangle \implies \langle u \rangle \subseteq \langle c \rangle.$ $c = uc \in \langle u \rangle \implies \langle c \rangle \subseteq \langle u \rangle.$

Therefore $\langle c \rangle = \langle u \rangle$.

Example 4.14. Let us consider \Re on $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition and product table given below.[see Pilz, p409 (24)(3, 5, 5, 3, 1, 1)]Addition is modulo 6.

Table 6. Product table							
•	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	3	5	5	3	1	1	
2	0	4	4	0	2	2	
3	3	3	3	3	3	3	
4	0	2	2	0	4	4	
5	3	1	1	3	5	5	

Table C. Draduat table

This near-ring $(\mathfrak{K}, +, .)$ is both r-RN and l-RN.

The only ideals of \Re are $\{0\}$, $\{0, 2, 4\}$ and $\{0, 1, 2, 3, 4, 5\}$.

Theorem 4.15. Let a near-ring \Re be *l*-RN. Then \Re has no nonzero nil ideals.

Proof. Suppose A be a nonzero nil ideal in \Re . Let $0 \neq a \in A$ and $a = ea, e \in |a\rangle, e^2 = e$. By the theorem 4.13, $e \in \langle e \rangle = \langle a \rangle \subseteq A$. \implies 'e' is nilpotent, which is a conflict to 'e' is idempotent. Thus, A has no nonzero nil ideals.

Theorem 4.16. For a near-ring $\mathfrak{K} \in \mathfrak{n}_0$ is *l*-RN and every \Re -subgroup is an ideal of \Re then \Re is left SRN.

Proof. Suppose that R is I-RN and every R-subgroup is an ideal of R. By proposition 2.8, $a = ea, e^2 = e, e \in |a\rangle \subseteq \langle a \rangle = \Re a$. $\implies e = na$, forsome $n \in \mathfrak{K}$. Therefore $a = ea = naa = na^2$ for some $n \in \Re$. Hence *R* is left SRN.

Theorem 4.17. For a near-ring $\mathfrak{K} \in \mathfrak{n}_0$ is *l*-RN with 1 then \mathfrak{K} is reduced.

Proof. Let $t \in \mathfrak{K}$ and $t^2 = 0 \implies t \in (0:t) \implies \langle t \rangle \subset (0:t)$. Suppose \Re is 1-RN, then $t = et, e^2 = e, e \in |t\rangle \subseteq \langle t\rangle \subseteq$ $(0:t) \implies et = 0.$ Therefore t = 0. Hence R is reduced.

Theorem 4.18. For a near-ring $\mathfrak{K} \in \mathfrak{n}_0$ is *l*-RN with 1 and has *IFP then* d = ed *implies* d = de *where 'e' is an idempotent.*

Proof. Suppose R is I-RN with 1 and has IFP. Now $d \in \mathfrak{K} \exists e^2 = e \in \mathfrak{K} \ni d = ed, e \in |d\rangle \subseteq \langle d \rangle$. Since $(1-e)e = 0 \implies (1-e)de = 0 \forall d \in \Re \implies de$ $ede = 0 \implies de = ede = ed = d$ [by the lemma 2.20]. Therefore d = ed implies d = de.

Definition 4.19. Let \Re is referred to as weakly regular nearring(WRN) if $A^2 = A$ for every ideal A of \Re .

Definition 4.20. Let an ideal \mathfrak{D} of \mathfrak{R} is referred to as "Completely Prime Ideal(CPI) if $kl \in \mathfrak{D}$ implies $k \in \mathfrak{D}$ or $l \in \mathfrak{D}$.

Definition 4.21. Let an ideal \mathfrak{D} of \mathfrak{K} is referred to as "3-*Prime Ideal*(3-*PI*) *if* $kn^{1}l \in D$ *implies* $k \in D$ *or* $l \in D$ *for every* $n^1 \in \mathfrak{K}$.

Theorem 4.22. Let a near-ring \mathfrak{K} be l-RN. Then \mathfrak{K} is WRN.

Proof. Let \mathfrak{D} be an ideal of \mathfrak{K} and $a \in \mathfrak{D}$. $a = ea, e^2 = e, e \in |a\rangle \subseteq \langle a \rangle \subseteq \mathfrak{D} \subseteq \mathfrak{D}.\mathfrak{D} = \mathfrak{D}^2.$ But $\mathfrak{D}^2 \subseteq \mathfrak{D}$, therefore $\mathfrak{D} = \mathfrak{D}^2$. Thus, £ is WRN.

Theorem 4.23. Let a near-ring \Re be *l*-RN. Then \Re has no nonzero nilpotent ideal.

Proof. Suppose J be a nonzero nilpotent ideal in \Re . Then $J^k = (0)$ for some k which is greater than or equal to 2. By the theorem 4.22, every ideal in a R is idempotent i,e., $J = J^2$. $J^{k} = J^{k-2}J = J^{k-4}J^{2}J = J^{k-4}JJ = J^{k-4}J^{2} = J^{k-4}J = \dots$ Continuing in this way we get J = (0). It is a contradiction. Thus R has no nonzero nilpotent ideal.

Theorem 4.24. Let a near-ring \Re be l-RN with left unity then every CPI is a maximal.

Proof. Let \mathfrak{C} be a CPI of \mathfrak{K} Suppose $\mathfrak{C} \subset \mathfrak{M} \subseteq \mathfrak{K}$ then $\exists a \in \mathfrak{M} \setminus \mathfrak{C}$ Now $a = ea, e^2 = e, e \in |a\rangle \subseteq \langle a \rangle \subseteq \mathfrak{M} \implies e \in \mathfrak{M}$. $(1-e)a = 0 \in \mathfrak{C} \implies 1-e \in \mathfrak{C} \subset \mathfrak{M} \implies 1-e \in \mathfrak{M}$. Let $c \in \mathfrak{K}$ then $c = 1.c = (1-e+e)c = (1-e)c + ec \in \mathfrak{M}$. Therefore $\mathfrak{K} = \mathfrak{M}$. Hence \mathfrak{C} is a maximal ideal.

Theorem 4.25. Let \Re be a l-RN with left unity and has IFP then every 3-PI is maximal.

Proof. Let \mathfrak{C} be a 3-PI of \mathfrak{K} . Assume $\mathfrak{C} \subset \mathfrak{M} \subseteq \mathfrak{K}$. Let $c \in \mathfrak{M} \setminus \mathfrak{C}$. Now $c = ec, e^2 = e, e \in |c\rangle \subseteq \langle c \rangle$. (1-e)c = 0. Since \mathfrak{K} has IFP, $(1-e)nc = 0 \forall n \in \mathfrak{K}$. $(1-e)\mathfrak{K}c = 0 \subseteq \mathfrak{C} \implies 1-e \in \mathfrak{C} \subseteq \mathfrak{M} \implies 1-e \in \mathfrak{M}$. For any x in $\mathfrak{K}, x = ex + (1-e)x \in \mathfrak{M}$. Therefore $\mathfrak{K} = \mathfrak{M}$. Thus \mathfrak{C} is maximal ideal.

Theorem 4.26. If a near-ring \mathfrak{K} is *l*-*RN* then every ideal *I* of \mathfrak{K} is *l*-*RN*.

Proof. Suppose \mathfrak{K} is l-RN, then $a = ea, e^2 = e, e \in |a\rangle$. Assume that *I* is an ideal \mathfrak{K} . Let $a \in I$ then $a = ea, e \in |a\rangle \subseteq I$. Therefore *I* is l-RN.

Theorem 4.27. For a near-ring $\mathfrak{K} \in \eta_0$ with identity,

1. R is l-RN and has IFP.

2. R is reduced and every CPI is maximal.

are equivalent.

Proof. (1) \implies (2) Suppose \Re is 1-RN.

By theorem 4.17, \Re is reduced and by theorem 4.24, it is proved.

 $(2) \implies (1)$

Suppose $\mathfrak{K} \in \eta_0$ is reduced and every CPI is maximal.

Since $\Re \in \eta_0$ is reduced, $ab = 0 \implies ba = 0$. Consider $nba = n(ba) = n0 = 0 \implies (nb)a = 0 \implies anb = 0 \forall n \in \Re$.

Therefore R has IFP.

Let $0 \neq a \in \mathfrak{K}$, by the lemma 2.28, $\overline{K} = \mathfrak{K} \setminus A(a)$ is reduced and \overline{a} is not a zero divisor.

Also, every CPI of \overline{K} is a maximal ideal in \overline{K} .

Let Q be the multiplicative subsemigroup generated by an element $\overline{a} - \overline{t} \ \overline{a}$ where $\overline{t} \in |a\rangle$.

If not, by the theorem 2.29, there exists a CPI \overline{P} with $\overline{P} \cap Q = \emptyset$.

Suppose $|a\rangle \subseteq \overline{P}$ then $\overline{a} \in \overline{P}$.

 $\implies \overline{a} - \overline{t}\overline{a} \in \overline{P}.$

 $\implies \overline{a} - \overline{t} \ \overline{a} \in \overline{P} \cap Q$, it is a contradiction to the fact that $\overline{P} \cap Q = \emptyset$.

Suppose $|a\rangle \not\subseteq \overline{P}$ and \overline{P} is maximal, we have $\overline{K} = \overline{P} + |a\rangle$. $\overline{1} = \overline{\alpha} + \overline{t}$ where $\overline{\alpha} \in \overline{P}, \overline{t} \in |a\rangle$. $\overline{a} = \overline{\alpha} \ \overline{a} + \overline{t} \ \overline{a}$. $\Longrightarrow \ \overline{a} - \overline{t} \ \overline{a} = \overline{\alpha} \ \overline{a} \in \overline{P}$. $\Longrightarrow \ \overline{a} - \overline{t} \ \overline{a} \in \overline{P} \cap Q$, it is a contradiction to the fact, $\overline{P} \cap Q = \emptyset$. Thus $\overline{0} \in Q$. Now $\overline{0} = (\overline{a} - \overline{t_1} \ \overline{a})(\overline{a} - \overline{t_2} \ \overline{a}) \cdots (\overline{a} - \overline{t_n} \ \overline{a}) = (\overline{1} - \overline{t_i}) \ \overline{a}, \ \overline{t_i} \in |a\rangle$. Since \overline{a} is not zero divisor, $(\overline{1} - \overline{t_i}) = 0 \implies \overline{1} = \overline{t_i}, t \in |a\rangle$. Hence $(1 - t) \in A(a) \implies (1 - t)a = 0, t \in |a\rangle, t^2 = t \implies a = ta, t^2 = t, t \in |a\rangle$. Therefore \mathfrak{K} is 1-RN.

Definition 4.28. Let a near-ring \Re is referred to as "Left Quasi Duo(LQD)" if every maximal left ideal of \Re is two-sided ideal.

Theorem 4.29. For a near-ring $\mathfrak{K} \in \mathfrak{\eta}_0$ is the LQD with left unity 1, \mathfrak{K} is l-RN then $\mathfrak{K} = \langle q \rangle + (0:q)$.

Proof. Since \Re is 1-RN, then q = tq, $t^2 = t$, $t \in |q\rangle \subseteq \langle q \rangle$. $\implies q \in \langle q \rangle q.$ Then $\Re q \subseteq \Re \langle q \rangle q \subseteq \langle q \rangle q$. And we have $\langle q \rangle q \subseteq \Re q$. Therefore $\Re q = \langle q \rangle q$. Suppose that $\Re \neq \langle q \rangle + (0:q)$. Then there exists a maximal left ideal \mathfrak{C} such that $\langle q \rangle$ + $(0:q) \subseteq \mathfrak{C}.$ Since \Re is LQD, \mathfrak{C} is a two-sided ideal. Since $q \in \mathfrak{C}$, $\langle q \rangle q \subseteq \mathfrak{C}q \subseteq \mathfrak{K}q = \langle q \rangle q$. Therefore $\mathfrak{C}q = \langle q \rangle q$. Therefore $\Re q = \langle q \rangle q = \mathfrak{C}q$. Therefore $s \in \langle q \rangle$ such that $q = sq, s \in \langle q \rangle$ \implies $(1-s)q=0 \implies 1-s \in (0:q).$ Therefore $1 = s + (1 - s) \in \langle q \rangle + (0 : q) \subseteq \mathfrak{C}$. It is a contradiction. Therefore $\Re = \langle q \rangle + (0:q)$.

5. Conclusion

In mathematics, several researchers are working on algebra. Recently as an application of near-rings, mathematicians used planar near-rings, near-rings of polynomials, and other near-rings to expand designs and codes. In this publication, we made an effort to develop the concept of regular near-rings and generalized regular near-rings.

Acknowledgment

The authors are very thankful to the referees for their valuable suggestions to sharpen this article.

References

[1] A Atagun, H Kamacı, İ Taştekin and A SEZGİN, P-Properties in Near-Rings, J. Math. Fund. Sci., 51(2019), 152–167.

- [2] H E Bell, Near-rings in which each element is a power of itself, *Bull. Aust. Math. Soc.*, 2(1970), 363–368.
- [3] Y Uk Cho, A study on near-rings with semi-central idempotents, *Far East J. Math. Sci. (FJMS)* 98(2015), 759– 762.
- [4] Y Uk Cho, On Semicentral Idempotents in Near-Rings, Appl. Math. Sci., 9(2015), 3843 – 3846.
- ^[5] P Dheena, A generalization of strongly regular near-rings, *Indian J. Pure Appl. Math.* 20(1989), 58–63.
- [6] G Gopala Krishna Moorthy, R veega and S Geetha, On Pseudo m-power commutative Near-rings, *IOSR Journal* of Mathematics(IOSR-JM), 12(2016), 80–86.
- [7] S Ligh, On regular near-rings, *Math. Japon.*, 15(1970), 7–13.
- ^[8] C Lomp and J Matczuk, A note on semicentral idempotents, *Comm. Algebra.*, 45(2017), 2735–2737.
- ^[9] G Pilz, *Near-rings: the theory and its applications*, **23** edition, 2011.
- ^[10] D. Ramakotaiah, *Theory of Near Rings*, PhD Thesis, Andhra University, 1968.
- [11] D. Ramakotaiah and G K Rao, IFP near-rings, J. Aust. Math. Soc., 27(1979), 365–370.
- [12] S. Ramkumar and T. Manikantan, Extensions of fuzzy soft ideals over near-rings, *Malaya J. Mat.*, S(1)(2020), 626–631.
- [13] Y V Reddy and C V L N Murty, On strongly regular near-rings, Proc. Edinb. Math. Soc., 27(2)(1984), 61–64.
- [14] Roos, *Rings and Regularities*, PhD Thesis, Technische Hoge School, Delft, 1975.
- [15] M. Sowjanya, A. Gangadhara Rao, A. Anjaneyulu and T. Radha Rani, r-Regular Near-Rings, *International Journal of Engineering Research and Application*, 8(2018), 11–19.
- [16] M. Sowjanya, A. Gangadhara Rao, T. Radharani and V. Padmaja, Results on r-regular near-rings, *Int. J. Math. Comput. Sci.*, 4(15)(2020), 1327–1336.
- [17] G. Sugantha and R. Balakrishnan, γ near-rings, International Research Journal of Pure Algebra, 4(2014), 546– 551.
- [18] S. Suryanarayanan and N. Ganesan, Stable and pseudo stable near rings, *Indian J. Pure Appl. Math.*, 19(1988), 1206–1216.
- [19] G. Wendt, Minimal Ideals and Primitivity in Near-rings, *Taiwanese J. Math.*, 23(2019), 799–820.
- [20] P. Yiarayong, Some Basic Properties of Completely Prime Ideals in Near Rings, J. Math. Fund. Sci. 47(2015), 227–235.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

