
Malaya Journal of Matematik, Vol. 8, No. 4, 2208-2211, 2020

https://doi.org/10.26637/MJM0804/0151

Transit index by means of graph decomposition
K.M. Reshmi1* and Raji Pilakkat2

Abstract
Many topological indices for graphs are defined and are widely studied. Some are distance based and some are
degree based. They find applications in many fields like chemical graph theory and networking. The concept of
transit of a vertex and transit index of a graph was defined by the authors in their previous work. The transit of a
vertex v is “the sum of the lengths of all shortest path with v as an internal vertex” and the transit index of G is
T I(G) is the sum of the transit of all vertices of G. In this paper we introduce the concept of majorized shortest
path, transit decomposition of a graph and transit decomposition number.
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1. Introduction
In the fields of chemical graph theory, molecular topology
and mathematical chemistry, a topological index also known
as a connectivity index is a type of a molecular descriptor
that is calculated based on the molecular graph of a chemical
compound. Topological indices are numerical parameters of a
graph which characterize its topology and are usually graph
invariant. In[4], transit index of a graph was introduced and
its correlation with one of the physical property -MON of
octane isomers was established.

In this paper we introduce the concept of majorized short-
est path and transit decomposition of a graph. We also dis-
cuss certain results which helps in computing transit index of
graphs. The transit decomposition number in case of certain
graphs are also determined.

Throughout G denotes a simple, connected, undirected
graph with vertex set V and edge set E. For undefined terms
we refer [1].

Preliminaries
Definition 1.1. [4] Let v be any vertex of G. Then the transit
of v denoted by T (v) is “the sum of the lengths of all shortest
path with v as an internal vertex” and the transit index of G
denoted by T I(G) is

T I(G) = ∑
v∈V

T (v)

Lemma 1.2. [4] For a vertex v of the graph G, T (v) = 0 iff
〈N[v]〉 is a clique.ie T (v) = 0 iff v is a simplicial vertex of G

Theorem 1.3. [4] For a path Pn, Transit index is

T I(Pn) =
n(n+1)(n2−3n+2)

12

Theorem 1.4. [5] Let Cn be a cycle with n even. Then

i) T I(Cn) =
n2(n2−4)

24

ii) T I(Cn+1) =
n(n2−4)(n+1)

24

Definition 1.5. [5] Two vertices v1 and v2 of a graph are
called transit identical if the shortest paths passing through
them are same in number and length.
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2. Majorized shortest paths
Definition 2.1. A path M through v is called a majorized
shortest path of v, abbreviated as msp(v) or msp, if it satisfies
the following conditions.
1. M is a shortest path in G with v as an internal vertex.
2. There exists no path M′ such that, M′ is a shortest path in
G with v as an internal vertex and M as a subpath of it.
We denote the collection of all msp(v) by Mv and

⋃
v∈V

Mv by

MG

Example 2.2. Consider the graph G in figure [1]. Let M1 :
1234,M2 : 1235,M3 : 123. Then M1 and M2 are msp(2), while
M3 is not a majorized shortest path of 2.

1 2 3
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5

Figure 1. Graph G

MG for various graphs

1. For a path Pn, MG ={ Pn }
2. For a star Sn, MG is the collection of all paths of length 2
connecting two pendant vertex.
We know that there are C(n−1,2) such paths and their inter-
section is {c}, where c is the central vertex
∴ T I(G) =C(n−1,2)×T I(P3) = (n−1)(n−2)
3. For a cycle Cn, n > 3, every majorized shortest path is d in
length, where d is the diameter.
For every vertex v ∈Cn, |Mv | = d−1 . Hence |MG | =n.

Proposition 2.3. For a graph G, MG is unique.

Proposition 2.4. Let e = uv be any edge of G. If e is not a
part of any majorized shortest path in G, then e ∈C3

Proof. Let us assume that e is not a part of any majorized
shortest path in G. Let v1 6= u be a neighbour of v in G. Then
the shortest path from v1 to u is of length ≤ 2. If it is 2, the
path v1vu will be a part of the majorized shortest path through
v. Hence d(u,v1) = 1, showing e = uv is part of C3.

Proposition 2.5. In a tree T , msp(v) connects pendant ver-
tices of T,∀v ∈ V . Conversely every path connecting two
pendant vertex is a msp for every internal vertex of it.

Proof. Suppose M be a msp(v) , v∈ T . Let M : v1v2 . . .v . . .vk.
Suppose if possible one of the end vertex of M be a non

pendant vertex of T . Without loss of generality let us assume
v1 is not a pendant vertex. Then d(v1)> 1. Let u be a neighbor
of v1 other than v2. Then the path uv1v2 . . .v . . .vk is a shortest
path in T with v as an internal vertex and with M as a subpath
of it. This is a contradiction.
Conversely, let M be a path connecting two pendant vertices,
say u1 and u2 of T . Let v be an internal vertex of M. We need
to show that M ∈Mv . Assume M /∈Mv .Then either (i)M
is not a shortest path in T or (ii)M is a subpath of some M′

with v as an internal vertex. Since T is a tree, u1−u2 path is
unique and hence M is a shortest path. So (i) does not hold.
Again u1,u2 are pendant vertices proves (ii) wrong.

Hence the proof.

Corollary 2.6. |MT |=C(p,2), where T is a tree and p the
number of pendant vertices of T .

Proposition 2.7. Consider the graph G(V,E). Let v ∈V and
Mv be the collection of all majorized paths in G with v as
an internal vertex. If Mv ={M1,M2}, then T (v) = TM1(v)+
TM2(v)−TM1∩M2(v)

Proof. Given {M1,M2} = msp(v) .Let S be the collection
of all shortest paths in G with v as an internal vertex. Then
T (v) = sum of lengths of paths in S
Let S1 and S2 be the collection of all subpaths of M1,M2
with v as an internal vertex, respectively. Then TMi(v) is the
sum of the lengths of the paths in Si.
Consider M1 ∩M2. Either M1 ∩M2 = {v} or M1 ∩M2 is a
subpath of M1 and M2 with v as an internal vertex. Let S ′

be the collection of subpaths of M1∩M2 with v as an internal
vertex. Then S ′ ⊂S1 and S ′ ⊂S2. Hence the proof.

Let G(V,E) and Mv be the collection of all majorized
path in G with v as an internal vertex. If Mv ={Mi, i =
1,2, . . .k}, then the result[2.7] could be extended by applying
the inclusion-exclusion principle in set theory.

Theorem 2.8. Let G(V,E) be a graph and v ∈ V . If Mv =
{M1,M2, . . . ,Mk} then, T (v) = TM1(v) + . . . + TMk(v)
− TM1∩M2(v) − . . . − TMk−1∩Mk(v)
+ . . .+(−1)k+1TM1∩M2∩M3...∩Mk(v)

Proposition 2.9. Let G(V,E) and MG be the collection of
all majorized paths in G. If MG ={M1,M2}, then T I(G) =
T I(M1)+T I(M2)−T I(M1∩M2)

Proof.

T I(G) = ∑
v∈V

T (v)

= ∑
v∈V

[TM1(v)+TM2(v)−TM1∩M2(v)]

= ∑
v∈M1

T (v)+ ∑
v∈M2

T (v)− ∑
v∈M1∩M2

T (v)

= T I(M1)+T I(M2)−T I(M1∩M2)

2209
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Let G(V,E) be a graph and MG be the collection of
all majorized path in G. If MG ={Mi, i = 1,2, . . .k}, then
the result[2.9] could be extended by applying the inclusion-
exclusion principle in set theory.

Theorem 2.10. Let G(V,E) be a graph and MG be the col-
lection of all majorized path in G. If MG ={Mi, i = 1,2, . . .k},
T I(G) = Tv(M1)+ . . .+Tv(Mk)−Tv(M1∩M2)− . . .
−Tv(Mk−1 ∩Mk)+ . . .+(−1)k+1Tv(M1 ∩M2 ∩M3 . . .∩Mk).
Hence knowing the majorized shortest paths of a graph, one
could compute the transit index of a graph.

3. Transit decomposition
Definition 3.1. A decomposition of a graph G into a col-
lection of subgraphs τ = {T1,T2, . . . ,Tr}, where each Ti is
either a chordless cycle in G or a majorized shortest path
of G such that T I(G) = ∑

i
T I(Ti)−∑

i 6= j
T I(Ti ∩ Tj) + . . .+

(−1)r+1
∑T I(T1∩T2∩ . . .∩Tr) is called a Transit Decompo-

sition of G. We denote a transit decomposition of minimum
cardinality by τmin.
The minimum cardinality of a transit decomposition of G is
called the Transit decomposition number, denoted by θ(G)
or simply θ if there is no other confusion. Clearly MG is a
transit decomposition of G. We denote |MG | by θa(G) or
simply θa.

Example 3.2. Consider the graph in the figure [2].
Let M1 : 1234;M2 : 1254;M3 : 345;M4 : 325;C1 : 23452. Here

4 5

3 2

1

Figure 2. Graph G

MG ={M1,M2,M3,M4}. Here τmin = {M1,M2,C1}, the tran-
sit decomposition of minimal cardinality. Hence θ = 3, while
θa = 4 .

Proposition 3.3. If Cn is a chordless cycle in G, with n > 3,
then Cn ∈ τmin.

Remark 3.4. If e is an edge of G that does not belong to any
cycle in G, it will be a part of some Ti ∈ τ

Transit decomposition number for
various graphs

• If G is a tree , τ = MG and θ = θa =C(p,2), where p
is the number of pendant vertices.

• If G is a cycle, θ = 1 and θa = n,n > 3

• If G is a path, θ = θa = 1.

• If G is a complete graph, θ = θa = 0.

Theorem 3.5. Let G = Kp,q, the bipartite graph. Then θ =
p(p−1)q(q−1)

4 and θa =
pq(p+q−2)

2 .

Proof. In the case of a complete bipartite graphs, every short-
est path is of length ≤2. Hence every shortest path is a

majorized shortest path. ∴ θa =
q

∑
1

c(p,2) +
p

∑
1

c(q,2) =

pq(p+q−2)
2

The chordless cycles in Kp,q is of girth 4. Also every shortest
path is part of some chordless cycle. Hence θ= the number of
cycles in Kp,q of girth 4 =C(p,2)×C(q,2)= p(p−1)q(q−1)

4

Theorem 3.6. Let G =Wn, n > 4, be the wheel graph. Then
θ = θa =

(n−1)(n−2)
2

Proof. In the wheel graph every chordless cycle is C3. Hence
θ = θa. Note that the diameter of the graph is 2. Hence every
majorized shortest path is of length ≤ 2. Since P2 is not a
majorized shortest path(msp), all msp in G are isomorphic to
P3. On the cycle of the wheel, starting with every vertex there
are 2 msp. Hence on a total (n-1) paths.
Other msp are those starts and ends on the cycle of the wheel
and passes through the center. With each vertex on the cycle
we can associate (n-4) such paths. Hence on a total (n−1)(n−4)

2

paths. Thus θ = θa =
(n−1)(n−2)

2

Theorem 3.7. If G=K2n−I, θa(G) = 2n(n−1) and θ(G) =
n(n−1)

2 ,n > 2, where I is the one factor of K2n

Proof. In K2n− I, there will be n pair of vertices which are
non adjacent. For a vertex v, d(v) = n− 1. Note that every
vertex of G are transit identical. There will be n−1 number
of msp(v) of length 2. Hence θa(G) = 2n(n−1).
Of the n pair of non adjacent vertices taking 2 pair at a time
we get a chordless cycle. Hence θ(G) = n(n−1)

2 .

Theorem 3.8. Let G be a unicyclic graph, with cycle Cr. If
the number of vertex of Cr with d(v)> 2 is one, then

1. θ(G) =C(p,2)+2p+1

2. θa(G) = 1
2 (p2 +3p+2r−4), where p is the number of

pendant vertices of G.

Proof. 1. When forming τmin we first include Cr. Cor-
responding to every pendant vertex, there will be 2
majorized shortest paths connecting it to vertices of the
cycle Cr. Thus including 2p paths to τ . Again there
are C(p,2) majorized shortest path connecting pendant
vertices among themselves.
Hence θ(G) =C(p,2)+2p+1

2210
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2. Here τmin = MG . In the previous case if we exclude
Cr and include every majorized shortest path of vertices
of Cr, which are r in number, we get MG . Note that
of these r msp, two of them forms a part of msp con-
necting pendant vertices to vertices of Cr. Hence we
get θa(G) = 1

2 (p2 +3p+2r−4).

Theorem 3.9. Let G be a unicyclic graph with cycle Cr. Let
u and v be two vertices at a distance b r

2c to each other with
d(v1),d(v2)> 2. Let T1 be a tree with p1 pendant edges and
T2 be a tree with p2 pendant edges rooted at u and v respec-
tively . Then

θ(G)=

{
C(p1 + p2,2)+ p1 + p2 +1 ,when r is odd

2p1 p2 +C(p1,2)+C(p2,2)+1 ,when r is even

Proof. Since G is unicyclic with cycle Cr, Cr ∈ τmin.
Case 1
Let u1,u2 and v1,v2 be the vertices of Cr adjacent to u and
v respectievly. When r is odd, the msp connecting pendant
vertices of T1 to T2 is unique. Hence they will be p1 p2 in
number. Either of v1,v2 (also u1,u2) lie on such msp. Without
loss of generality let us assume that u1 and v1 lie on these msp.
There will be p1 number of msp connecting pendant vertices
of T1 to v2 and p2 number of msp connecting pendant vertices
of T2 to u2. Hence we get θ(G) =C(p1+ p2,2)+ p1+ p2+1
Case 2
When r is even b r

2c =
r
2 . Hence u and v are diametrically

opposite vertices of Cr. For every pendant vertex of T1 there
are 2 msp connecting it to a vertex of T2. Altogether there
are 2× p1× p2 number of msp. The number of msp connect-
ing pendant vertices of T1 among themselves is C(p1,2) and
the case of T2 is C(p2,2). Thus θ(G) = 2p1 p2 +C(p1,2)+
C(p2,2)+1.
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