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Abstract
The investigation of Non-Darcian Benard Marangoni Convection (NDBMC) is carried out in a Superposed
Fluid-Porous (SFP) layer, which consists of an incompressible, sparsely packed single component fluid saturated
porous layer above which lies a layer of the same fluid, with temperature dependent heat sources in both the
layers. The upper surface of the SFP layer is free with Marangoni effects depending on Temperature, where
the lower surface of the SFP layer is rigid. The thermal Marangoni numbers are obtained in closed form for two
sets of thermal boundaries set (i) Adiabatic-Adiabatic and set (ii) Adiabatic-Isothermal. Influence of temperature
dependent heat source in terms of internal Rayleigh numbers, viscosity ratio, Darcy Number, thermal diffusivity
ratio on NDBMC, is investigated in detail.
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1. Introduction
Marangoni convection which is the convection due to surface
tension, has many applications in engineering and geophysical
problems. It occurs around vapor bubbles during nucleation
and the growth of vapor bubbles resulting from the variation
in surface tension caused by temperature and/or concentration
variations along the surface of the bubble. Experimental tests
and numerical analysis of nucleate boiling have shown that

heat transfer resulting from Marangoni flow can be signifi-
cant under microgravity and may also be important in earth’s
gravity. Marangoni-induced flow is also important in crystal
growth melts, in which the flow produces undesirable effects
under microgravity in the same manner as buoyancy-induced
natural convection. Welding is a fabrication process where the
Marangoni effect has to be account for. When the base metal
during welding reaches its melting point, a weld pool forms.
Marangoni forces within these pools can affect the flow and
temperature distribution and modify the molten pool exten-
sion. This can potentially result in stresses within the material
as well as deformation. The growth of crystals by various
methods, oil re-covery in petroleum industry and energy stor-
age are some of other important applications of Marangoni
convection.

Some literature on Marangoni convection / flow are by Ta-
tiana Gambaryan-Roisman (2010) has developed a model de-
scribing Marangoni convection, interface dynamics and evap-
oration in liquid films on composite substrates or substrates
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of functionally graded materials. Alexander and Alexan-
der (2010) considered two cases flat non-deformable and de-
formable surface and performed linear stability analysis and
showed that in both cases of the upper surface monotonic and
oscillatory modes exist. They determined convection thresh-
olds and critical Marangoni numbers for monotonic as well
as for oscillatory mode. M. S. Al-Qurashi (2013) obtained nu-
merical solution for thermal convection in two porous layers.
Flow in the upper layer is governed by Brinkman’s equations
model and in the lower layer is governed by Darcy’s model
using Legendre polynomials. Gangadharaiah (2015) studied
the effects of thermal anisotropy and mechanical anisotropy
on the onset of Bernard-Marangoni convection in compos-
ite layers with anisotropic porous material. The upper fluid
surface, free to atmosphere was considered to be deformable.
The eigen value problem was solved using a regular pertur-
bation technique with wave number as perturbation parameter.

There is some literature available on convective instability
with heat sources in single fluid / porous layers / superposed
layers. Thirlby (1970) conducted a numerical study of steady
laminar convection in an infinite horizontal layer of fluid
bounded by a rigid plate above at constant temperature and
bounded below by a thermal insulator with uniformly dis-
tributed heat sources. Tveitereid and Palm (1976) studied
a motion for finite Prandtl numbers and small supercritical
Rayleigh numbers by using amplitude expansion in a fluid
layer with uniformly distributed internal heat sources. Clever
(1977) made a study of stationary two dimensional convection
in an internally heated, infinite Prandtl number, horizontal
fluid layer bounded by rigid plates of unequal temperatures.
Riahi (1984) carried out the investigation of nonlinear con-
vection in a horizontal with internal heat source. Pal (2011)
investigated about the combined effects of non-uniform heat
source/sink and thermal radiation on heat transfer of a laminar
boundary layer flow of an incompressible viscous fluid over
an unsteady stretching permeable surface by Runge-Kutta-
Fehlberg method. Siddheshwar and Stephen Titus (2013)
analytically carried out the Rayleigh Benard Convections with
variable heat source/sink using Fourier series. Mahabalesh-
war et.al(2017) found the qualitative effect of variable internal
heat source and variable gravity on the onset of convection
in a horizontal fluid saturated sparsely packed porous layer
using single term Galerkin technique. Elyazid Flilihi et.al
(2017) performed a semi-analytical investigation to analyze
the thermal convection flow with a radiation flux and a variable
internal heat generation along an inclined plate embedded in a
saturated porous medium. The flow in the porous medium was
modeled with the Darcy-Brinkman law taking into account
the convective term, while the temperature field was obtained
from the energy equation. The resulting coupled differential
equations were then solved numerically by a computational
program based on the fifth order Runge-Kutta scheme with
shooting iteration technique. Sumithra et.al (2020) investi-
gated single component Marangoni convection in composite

layer, comprising of an incompressible single component fluid
saturated porous layer over which lies a layer of same fluid
with constant heat sources in both the layers. This composite
layer was subjected to linear, parabolic and inverted parabolic
temperature profiles. A closed form solution was obtained
for the thermal Marangoni numbers, which was an expres-
sion of various parameters. Here in this paper, an attempt is
made to understand the effect of temperature dependent heat
sources/sinks on NDBMC in a SFP layer. This SFP layer is
bounded below and above by rigid and free boundaries with
surface tension effects depending on temperature at the free
boundary. The eigen value, the Thermal Marangoni Num-
ber (TMN) which the criterion for the onset of Marangoni
convection is obtained for two cases of temperature bound-
ary combinations, set (i) Adiabatic – Adiabatic and set (ii)
Adiabatic – Isothermal.

2. Mathematical formulation
Consider a superposed fluid-porous (SFP) layer system con-
sisting of a horizontal single component fluid saturated isotropic
sparsely packed porous layer of thickness dm and above this
lies a layer of same fluid of thickness d, both the layers are
with heat sources/sinks Q and Qm depending on Temperature,
respectively. The lower surface of the porous is rigid and the
upper surface is free with Marangoni effects depending on
temperature. Choose a Cartesian coordinate system where
origin is taken to be at the interface between porous and fluid
layer and z-axis is vertically upward.The governing equations
for fluid layer are

∇.~q = 0 (2.1)

ρ0 [
∂~q
∂ t

+(~q.∇)~q] =−∇P+µ∇
2~q (2.2)

∂T
∂ t

+(~q.∇)T = κ∇
2T +Q(T −T0) (2.3)

and the same for porous layer

∇m.~qm = 0 (2.4)
ρ0

φ
[
∂ ~qm

∂ tm
] =−∇mPm−

µ

K
~qm +µm∇

2
m ~qm

(2.5)

A
∂Tm

∂ tm
+(~qm.∇m)Tm = κm∇

2
mTm +Qm(Tm−T0) (2.6)

Where,~q is velocity vector, ρ0 is fluid density, t is time, µ

is fluid viscosity, P is Pressure, T is Temperature, κ is ther-
mal diffusivity of the fluid, K is permeability of the porous
medium, Q is heat source/sink for fluid layer, φ is porosity, A

=
(ρ0Cp)m

(ρ0Cp) f
ratio of heat capacities , Cp is Specific heat and the

quantities with subscript ’m’ denote the same in the porous
layer and ’f’ denotes the fluid layer.
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The basic state of fluid and porous layer is quiescent, have the
following solutions.

~q = ~qb = 0, P = Pb(z), T = Tb(z) (2.7)
~qm = ~qmb = 0, Pm = Pmb(zm), Tm = Tmb(zm) (2.8)

The Temperature distributions Tb(z) & Tmb(zm) are found to
be

Tb(z) =
(Tu−T0)Sin(

√
Q
κ

z)

Sin(

√
Q
κ

d)

+T0, 0≤ z≤ d (2.9)

Tmb(zm) =

(T0−TL)Sin(
√

Qm

κm
zm)

Sin(
√

Qm

κm
dm)

+T0, −dm ≤ zm ≤ 0

(2.10)

Where,

T0 =

√
Q κ TuSin(

√
Qm

κm
dm)+

√
Qm κm TLSin(

√
Q
κ

d)

√
Qm κmSin(

√
Q
κ

d)+
√

Q κSin(
√

Qm

κm
dm)

is the interface temperature and subscript ’b’ denote the basic
state.

We super impose infinitesimal disturbances on the basic state
for fluid and porous layer respectively

~q = ~qb +~q′, P = Pb(z)+P′, T = Tb(z)+θ (2.11)

~qm = ~qmb + ~q′m, Pm = Pmb(zm)+P′m, Tm = Tmb(zm)+θm

(2.12)

Where, the prime indicates the perturbation quantities. The
quantities with the subscript ’b’ represent the quantities in
basic state.

Introducing (2.11) and (2.12) in (2.1)-(2.3) and (2.4)-(2.6)
respectively, operating curl twice to eliminate the pressure
term from equations (2.2) and (2.5), then all the resulting equa-
tions then non-dimensionalised using appropriate scale factors
according to Vanishreeet.al(2020) and Sumithra et.al(2020).

The dimensionless equations are then subjected to normal
mode analysis as follows:

[
W
θ

]
=

[
W (z)
θ(z)

]
f (x,y)ent (2.13)

[
Wm
θm

]
=

[
Wm(zm)
θm(zm)

]
fm(xm,ym)enmtm (2.14)

With ∇2
2 f +a2 f = 0 and ∇2

2m fm +a2
m fm = 0 , where a & am

are wave numbers, n & nm are the frequencies, W & Wm are
the dimensionless vertical velocities in fluid and porous layer
respectively & obtain the following equations.

In 0≤ z≤ 1

(D2−a2 +
n
Pr
)(D2−a2)W = 0 (2.15)

[(D2−a2 +n+RI)θ +
W
√

RICos
√

RIz
Sin
√

RI
] = 0 (2.16)

In −1≤ zm ≤ 0

(D2
m−a2

m)µ̂Da+
nmDa
Prm

−1](D2
m−a2

m)Wm =0

(2.17)

[(D2
m−a2

m +nmA+RIm)θm +Wm

√
RImCos

√
RImzm

Sin
√

RIm
] =0

(2.18)

Where

Pr =
µ

ρ0κ
is the Prandtl number

RI =
Q
κ

d2 is the internal Rayleigh number in

f luid layer

µ̂ =
µm

µ
is the viscosity ratio

Da =
K
d2

m
is the Darcy number

Prm =
µφ

ρ0κm
is the Prandtl number in porous layer

RIm =
Qm

κm
d2

m is the internal Rayleigh number in

porous layer.

Assume that the present problem satisfies the principle of
exchange instability, so putting n = nm = 0, the ordinary dif-
ferential equations in 0≤ z≤ 1 & −1≤ zm ≤ 0 respectively
are
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(D2−a2)2W = 0

(2.19)

(D2−a2 +RI)θ +
W
√

RICos
√

RIz
Sin
√

RI
= 0

(2.20)

[(D2
m−a2

m)µ̂Da−1](D2
m−a2

m)Wm = 0
(2.21)

[(D2
m−a2

m +RIm)θm +Wm

√
RImCos

√
RImzm

Sin
√

RIm
] = 0

(2.22)

Since the equations (2.19), (2.20), (2.21) and (2.22) are ODE’s,
to solve these equations, eight velocity boundary conditions
and four temperature boundary conditions are needed.

3. Boundary Conditions
The suitable velocity and temperature Boundary conditions
also non-dimensionalized and subjected to normal mode anal-
ysis and they are

Velocity boundary Conditions:

W (1) = 0;Wm(−1) = 0;W (0) =
ζ

εT
Wm(0);

DW (0) =
ζ 2

εT
DmWm(0);

D2W (0)+a2W (0) = µ̂
ζ 3

εT
[D2

mWm(0)+a2
mWm(0)];

DmWm(−1) = 0;

D3W (0)−3a2DW (0) =
−ζ 2

DaεT
DmWm(0)+

ζ 4

εT
[D3

mWm(0)−3a2
mDmWm(0)];

D2W (1)+a2Mθ(1) = 0 (3.1)

Temperature boundary Conditions:

Set (i) A-A, Adiabatic-Adiabatic temperature boundary
conditions:

Dθ(1) = 0; θ(0) = θm(0)
εT

ζ
;

Dθ(0) = Dmθm(0); Dmθm(−1) = 0 (3.2)

Set (ii) A-I, Adiabatic-Isothermal temperature boundary
conditions:

Dθ(1) = 0; θ(0) = θm(0)
εT

ζ
;

Dθ(0) = Dmθm(0); θm(−1) = 0 (3.3)

Where,

ζ =
d

dm
is the depth ratio

εT =
κ

κm
is the thermal di f f usivity ratio

M =
−(T0−Tu)d

µK
∂σ

∂T
is the thermal Marangoni

number

Where, σ is the surface tension and T is the temperature.

4. Method of solution
Solution for W and Wm are obtained by solving the equations
(2.19) and (2.21) by using the boundary conditions (3.1)

W (z) = A1[Coshaz+A2Sinhaz+A3zCoshaz+A4zSinhaz]

(4.1)

Wm(zm) = A1[Am1Coshamzm +Am2Sinhamzm+

Am3Coshδ zm +Am4Sinhδ zm] (4.2)

Where A2,A3,A4,Am1,Am2,Am3,Am4 are constants determined
by solving the boundary conditions (2.23) and they are as fol-
lows:

A2 =
B9Am2 +B10Am4

B8
; A3 =

amAm2 +δAm4−aB3A2

B3

A4 =
B6Am1 +B7Am3−aB5

B5
; Am1 = B2−Am3 ;

Am2 =
B11Am1 +B13Am3−B14Am4

B12
;

Am3 =
−Ω15−Ω14Am4

Ω13

Am4 =
Ω13Ω18−Ω15Ω16

Ω16Ω14−Ω13Ω17
;

Where

Ω1 = B3B5a−B1B3B5 ; Ω2 = B3B5−B1B3B5a ;

Ω3 = B8Ω1−B2B3B6B8 ; Ω4 = B3B7B8−B3B6B8 ;

Ω5 = B1B5B8am +Ω2B9 ; Ω6 = B1B5B8δ +Ω2B10;
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Ω7 = B11B2 ; Ω8 = B13−B11; Ω9 =−amB12B2;

Ω10 = amB12−δB14; Ω11 = amB11; Ω12 = δB13;

Ω13 = B12Ω4 +Ω5Ω8 ; Ω14 = B12Ω6−B14Ω5 ;

Ω15 = Ω5Ω7−Ω3B12 ; Ω16 = Ω11Ω8 +B12Ω10 ;

Ω17 = B12Ω12−Ω11B14 ; Ω18 = Ω11Ω7 +Ω9B12;

B1 =
Cosha
Sinha

; B2 =
εT

ζ
; B3 =

εT

ζ 2 ; B4 =
µ̂ζ 3

2aεT
;

B5 =
2aεT

µ̂ζ 3 ; B6 = 2a2
m; B7 = δ 2 +a2

m ; B8 =−2a3;

B9 =
−ζ 2am

DaεT
+

ζ 4a3
m

εT
−3a3

m;

B10 =
−ζ 2δ

DaεT
+

ζ 4δ 3

εT
−3a3

mδ ;

B11 =Cosham ; B12 = Sinham;

B13 =Coshδ ; B14 = Sinhδ ;

Thermal Marangoni number(TMN) for set (i) Adiabatic-
Adiabatic (A-A) temperature boundary condition:

Solving (2.20) and (2.22) we obtain θ and θm using the tem-
perature boundary conditions (3.2)

θ(z) = A1[A5Coshbz+A6Sinhbz]+ f (z)

Where, b =
√

a2−RI

θm(zm) = A1[Am5Coshbmzm +Am6Sinhbmzm]+ f (zm)

Where, bm =
√

a2
m−RIm

The coefficients A5,A6,Am5,Am6 are obtained by solving θ(z)
and θm(zm) using the A-A temperature boundary conditions
as follows:

f (z) = S[I1 + I2 + I3 + I4]

fm(zm) = Sm[Im1 + Im2 + Im3 + Im4]

S =
−
√

RIA1

Sin
√

RI
; Sm =

−
√

RImA1

Sin
√

RIm

I1 =
1

2a
√

RI
SinhazSin

√
RIz ; I2 =

A2

2a
√

RI
Sin
√

RIzCoshaz;

I3 =
A3

2a
√

RI
[zSin
√

RIzSinhaz− Sin
√

RIz
a

Coshaz+

Cos
√

RIz√
RI

Sinhaz];

I4 =
A4

2a
√

RI
[zSin
√

RIzCoshaz− Sin
√

RIz
a

Sinhaz+

Cos
√

RIz√
RI

Coshaz];

Im1 =
Am1

2am
√

RIm
SinhamzmSin

√
RImzm;

Im2 =
Am2

2am
√

RIm
CoshamzmSin

√
RImzm;

Im3 =
Am3

c2 +4δ 2RIm
[2δ
√

RImSin
√

RImzmSinhδ zm +

c Cos
√

RImzmCoshδ zm];

Im4 =
Am4

c2 +4δ 2RIm
[2δ
√

RImSin
√

RImzmCoshδ zm +

c Cos
√

RImzmSinhδ zm];

A5 =
εT

ζ
[Am5−P3]+P2 ; A6 =

1
b
[Am6bm−P5 +P4];

Am5 =
P7Coshbm−P6Coshb

bSinhbCoshbm
εT

ζ
+bmSinhbmCoshb

;

Am6 =
P6 +bmSinhbmAm5

bmCoshbm
;

P7 = P1 +P5Coshb+(
εT

ζ
P3−P2)bSinhb−P4Coshb;

P6 =

√
RIm

Sin
√

RIm
{ Am1

2am
√

RIm
(−
√

RImSinhamCos
√

RIm−

amCoshamSin
√

RIm)+
Am2

2am
√

RIm
(
√

RImCosham

Cos
√

RIm +amSinhamSin
√

RIm)+
Am3

c2 +4δ 2RIm

(−2δ 2√RImSin
√

RImCoshδ −2δRImCos
√

RImSinhδ

− cδCos
√

RImSinhδ + c
√

RImSin
√

RImCoshδ )

+
Am4

c2 +4δ 2RIm
(2δ 2√RImSin

√
RImSinhδ

+2δRImCos
√

RImCoshδ

+ cδCos
√

RImCoshδ − c
√

RImSin
√

RImSinhδ )};

P5 =

√
RIm

Sin
√

RIm
{Am2

2am
+

Am4

c2 +4δ 2RIm
[2δRIm + cδ ]};

P4 =
1

2aSin
√

RI
[A2
√

RI +A3(
a√
RI
−
√

RI

a
)] ;

P3 =
c
√

RImAm3

(c2 +4δ 2RIm)Sin
√

RIm
; P2 =

A4

2a
√

RISin
√

RI
;

P1 =
1

2aSin
√

RI
[
√

RISinhaCos
√

RI +aCoshaSin
√

RI +

A2
√

RICoshaCos
√

RI +A2aSinhaSin
√

RI
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+A3(
√

RISinhaCos
√

RI +aCoshaSin
√

RI

+CoshaCos
√

RI(
a√
RI
−
√

RI

a
)−SinhaSin

√
RI)

+A4(
√

RICoshaCos
√

RI +aSinhaSin
√

RI

+SinhaCos
√

RI(
a√
RI
−
√

RI

a
)−CoshaSin

√
RI)];

From the last velocity boundary conditions in (3.1), we have

M =
−D2W (1)

a2θ(1)
(4.3)

And using the same condition for set (i) Adiabatic-Adiabatic
condition, the TMN is

MAA =
Q1

Q2

Where,

Q1 =(a2+A3a2+2A4a)Cosha+(A2a2+A4a2+2A3a)Sinha;

Q2 = A5Coshb+A6Sinhb− 1
2aSin

√
RI

[SinhaSin
√

RI +

A2CoshaSin
√

RI +A3(SinhaSin
√

RI−
CoshaSin

√
RI

a
+

SinhaCos
√

RI√
RI

)+A4(CoshaSin
√

RI−
SinhaSin

√
RI

a
+

CoshaCos
√

RI√
RI

)]

Thermal Marangoni number for set (ii) Adiabatic-
Isothermal (A-I) temperature boundary condition:

Solving (2.20) and (2.22) we obtain θ and θm using the tem-
perature boundary conditions (3.3)

θ(z) = A1[A5Coshbz+A6Sinhbz]+ f (z)

Where, b =
√

a2−RI

θm(zm) = A1[Am5Coshbmzm +Am6Sinhbm(zm)]+ f (zm)

Where, bm =
√

a2
m−RIm

The coefficients A5,A6,Am5,Am6 are obtained by solving θ(z)
and θm(zm) using the A-I temperature boundary conditions as
follows:

f (z) = S[I1 + I2 + I3 + I4]

f (zm) = Sm[Im1 + Im2 + Im3 + Im4]

S =
−
√

RIA1

Sin
√

RI
; Sm =

−
√

RImA1

Sin
√

RIm

I1 =
1

2a
√

RI
SinhazSin

√
RIz ; I2 =

A2

2a
√

RI
Sin
√

RIzCoshaz ;

I3 =
A3

2a
√

RI
[zSinhazSin

√
RIz−

Sin
√

RIz
a

Coshaz+

Cos
√

RIz√
RI

Sinhaz];

I4 =
A4

2a
√

RI
[zCoshazSin

√
RIz−

Sin
√

RIz
a

Sinhaz+

Cos
√

RIz√
RI

Coshaz];

A5 =
εT

ζ
[Am5−P3]+P2; A6 =

1
b
[Am6bm−P5 +P4];

Am5 =
P7Sinhbm +P6bmCoshb

bSinhbSinhbm
εT

ζ
+bmCoshbCoshbm

;

Am6 =
Am5Coshbm−P6

Sinhbm
;

P7 = P1 +P5Coshb+(
εT

ζ
P3−P2)bSinhb−P4Coshb;

P6 =

√
RIm

Sin
√

RIm
{ Am1

2am
√

RIm
(SinhamSin

√
RIm)−

Am2

2am
√

RIm
(CoshamSin

√
RIm)

+
Am3

c2 +4δ 2RIm
(2δ
√

RImSinhδSin
√

RIm

+ cCoshδCos
√

RIm)+

Am4

c2 +4δ 2RIm
(−2δ

√
RImCoshδSin

√
RIm− cSinhδCos

√
RIm)};

P4 =
1

2aSin
√

RI
[A2
√

RI +A3(
a√
RI
−
√

RI

a
)];

P3 =
c
√

RImAm3

(c2 +4δ 2RIm)Sin
√

RIm
; P2 =

A4

2a
√

RISin
√

RI
;

P1 =
1

2aSin
√

RI
[
√

RISinhaCos
√

RI +aCoshaSin
√

RI +

A2
√

RICoshaCos
√

RI +A2aSinhaSin
√

RI +

A3(
√

RISinhaCos
√

RI +aCoshaSin
√

RI +CoshaCos
√

RI

(
a√
RI
−
√

RI

a
)−SinhaSin

√
RI)

+A4(
√

RICoshaCos
√

RI +aSinhaSin
√

RI

+SinhaCos
√

RI(
a√
RI
−
√

RI

a
)−CoshaSin

√
RI)];

From the Boundary Conditions, we have

M =
−D2W (1)

a2θ(1)
(4.4)

And using the same condition for set (ii) Adiabatic-Isothermal
condition, the TMN is
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MAI =
Q3

Q4

Where

Q3 =(a2+A3a2+2A4a)Cosha+(A2a2+A4a2+2A3a)Sinha;

Q4 = A5Coshb+A6Sinhb− 1
2aSin

√
RI

[SinhaSin
√

RI

+A2CoshaSin
√

RI +A3(SinhaSin
√

RI

− CoshaSin
√

RI

a
+

SinhaCos
√

RI√
RI

)

+A4(CoshaSin
√

RI−
SinhaSin

√
RI

a
+

CoshaCos
√

RI√
RI

)]

5. Results and Discussions
The effect of Darcy-Brinkman Marangoni convection in a SFP
system consisting of a fluid layer overlying a porous layer
saturated by the same system in the presence of temperature
dependent heat source is investigated theoretically. The eigen
value problem is solved exactly and an analytical expression
for the TMN, M as a function of various parameters of the
system, is obtained for two types of temperature boundary
conditions, viz (i) both the boundaries of the SFP layer are
adiabatic A-A , (ii) lower rigid boundary is isothermal and
upper free surface is adiabatic A-I. The effects of RI , RIm the
internal Rayleigh numbers for the fluid and porous layers, the
horizontal wave number ’a’ , the thermal diffusivity ratio ’εT ’
and the Darcy number ’Da’ on the TMN, M against the depth
ratio ζ are displayed in the following figures (1)-(6).

Figure 1. Comparison of thermal Marangoni number for A-A
and A-I

The effect of different temperature boundary conditions
(A-A and A-I) on TMNs as a function of depth ratio ’ζ ’ is
shown in Fig (1). It is observed that in both the cases, TMNs,
MAA and MAI , decreases initially with ζ and reaches minimum
and then increases with further increase in ζ . It is also ob-
served that MAA < MAI . The minimum values of M in the case
of A-A boundaries occur at ζ =0.8 whereas for A-I boundaries,

the minimum TMN occurs at ζ slightly less than 0.8. Beyond
these values of ζ for the corresponding cases, M increases.
When ζ is small, it implies that the system is dominated by
porous layer. For the figures (2)-(6) the variation of TMN is
shown for fixed values of a=1.1, Da=1.0, εT = 0.5, µ̂= 1.5, RI=
-0.5, RIm= -0.5.

(a)

(b)

Figure2: Effects of wave number ’a’
Figures 2(a) and 2(b) are the plots of MAA and MAI versus the
depth ratio ζ for linear temperature distribution for different
wave numbers ’a’= 1.0, 1.1, 1.2, when the other parameters
are fixed. From Fig. 2(a), it is clear that increasing cell size
increase the TMN, M in the porous layer dominated SFP layer
and the trend is reversed as the value of ζ increases. All the
three curves for different values of ’a’ coincide at a value
of ζ between 0.8 and 1.0, after which M is seen decreasing
for increasing ’a’. However, M increases with increase in
ζ in this region of fluid dominant SFP layer and the reverse
is happening in the porous layer dominant SFP layer. The
difference in the values of TMNs for different wave numbers
is small for ζ <1.0 compared to the difference in the values
of TMNs for ζ >1.0. The results are qualitatively similar in
the case of A-I as depicted in figure 2(b).
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(a)

(b)

Figure3: Effects of Darcy number ’Da’

Figures 3(a) and 3(b) are the plots of M versus ζ for linear
temperature distribution for different Darcy number ’Da’ =
0.03, 0.1, 1.0. The effect of Da for a set of fixed values of
other physical parameters a=1.1, RIm=-0.5 ,εT =0.5 , RI= -0.5,
µ̂=1.5 in case of both A-A and A-I boundaries is to decrease
M initially for small values of ζ (porous layer dominant SFP
layer) and then increase. It can be seen that the effect of Da
is to decrease the TMN, M in the case of both A-A and A-I
boundaries.

(a)

(b)

Figure4: Effects of Thermal diffusivity ’εT ’

The effect of εT on TMN, M, as a function of ζ is shown in
Figs. 4(a) and 4(b), respectively for fixed values of the remain-
ing parameters. It is observed that TMN, M in both the cases
(A-A and A-I boundaries), is maximum when the thermal
diffusivity of fluid and porous medium are equal, for small val-
ues of depth ratio ζ . One can observe that,{MAA(ζ )}(εT=1) >
{MAI(ζ )}(εT=1) for porous layer dominant SFP layer. For
smaller values of ζ , i.e., the porous layer dominant SFP layer
increase in thermal diffusivity ratio εT increases TMN, and
the trend reverses for larger values of ζ . This is because,
decrease in temperature increases the surface tension.

(a)

(b)
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Figure5: Effects of Viscosity ratio ’µ’

Figures 5(a)and 5(b) depict the effect of viscosity ratio
‘µ̂’ for a set of fixed parameters a=1.1, εT =0.5, Da= 1.0, RI=
-0.5,RIm= - 0.5, on TMN M, as a function of ζ for both A-A
and A-I boundaries. From these figures, it is clear that both
MAAand MAI decrease initially attains minimum and increases
with further increase in ζ .The effect of µ̂ is to decrease M.
However, beyond the value of ζ =1.7 the effect of µ̂ is seen
to increase M. This might be due to the fact that, this region
is fluid layer dominant SFP layer and viscosity being the
property of the fluid, will stabilize the system.

(a)

(b)

Figure6: Effects of Internal Rayleigh number ’RI’ for
fluid layer

Figures 6(a) and 6(b) are the plots of TMN, M vs. ζ for
different values of internal Rayleigh number for fluid layer, RI .
The positive and negative values of RI indicate the strength of
heat source and heat sink respectively. From these figures one
can conclude that, in the case of both A-A and A-I boundaries,
heat sink is more stabilizing than the source. This is once
again due to the fact that, heat source adds to the temperature
there by decreasing the surface tension and hence decrease in
the TMN. The effect of ζ on M is similar to that found in the
previous figures. We observe that MAI , increases more rapidly
than MAA for a given value of ζ .

(a)

(b)

Figure7: Effects of Internal Rayleigh number ’RIm’ for
porous layer

Figures 7(a) and 7(b) represent the changes in the TMN,
M vs. ζ for different values of internal Rayleigh number in
porous layer, RIm when a=1.1, µ̂=1.5, εT = 0.5, Da=1.0, RI=
-0.5. In case of both A-A and A-I boundaries, we observe
that M decreases initially attains minimum and then increases
with increase in ζ . The effect of RIm, (from sink to source) is
to destabilize the system. This effect is similar to that of RI .
The effect of RIm is more intensive for SFP layers with A-A
thermal boundaries.

6. Conclusion
Darcy-Brinkman-Marangoni convection in a composite sys-
tem with variable heat source is studied analytically and the
results are discussed in the previous section. From these re-
sults following conclusions can be drawn:

1. MAI(ζ )> MAA(ζ ) for all the parameters except εT = 1,
in figures 4a and 4b.

2. Heat source or sink can be effectively used to control
convection.
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3. Except for the case of Da, RI and RIm, the reversal
of results is observed after a certain value of ζ for
remaining parameters.
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