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Householder’s method for solving the p-adic polynomial equations
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Abstract. This work offers an analogue of Householder’s Method for solving a root-finding problem f(x) = 0 in the p-adic
setting. We apply this method to calculate the square roots of a p-adic number a ∈ Qp where p is a prime number, and
through the calculation of the approached solution of the p-adic polynomial equation f(x) = x2 − a = 0. We establish the
rate of convergence of this method. Finally, we also determine how many iterations are needed to obtain a specified number
of correct digits in the approximate.
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1. Introduction and Background

Given a prime number p, the field of p-adic numbers Qp were first introduced by Kurt Hensel at the end of
the 19th century in a short paper written in German [8], which can be thought of as the completion of the field of
rationals Q with respect to the p-adic norm, similar to how one constructs the field of real numbers R from Q (see
[1], [3], [5], [6]). The p-adic numbers are useful because they provide another toolset for solving problems, one
which is sometimes easier to work with than the real numbers. They have applications in number theory, analysis,
algebra, and more. For about a century after the discovery of p-adic numbers, they were mainly considered as
objects of pure mathematics. However, numerous applications of these numbers to theoretical physics have been
proposed, to quantum mechanics, to p-adic - valued physical observables and many others. The field of p-adic
numbers Qp endowed with a metric dp generated by p-adic valuation is also a fundamental example in the theory
of ultrametric spaces. Nevertheless, many metric properties of the space (Qp, dp) remain unexplored now.

Finding the approximate solution of the nonlinear equation f(x) = 0 is one of the basic problems and
frequently occurs in scientific work of various fields. Due to the higher order of the equation and the involvement
of the transcendental functions, analytical methods for obtaining the exact root cannot be employed and therefore,
it is only possible to obtain approximate solutions by relying on numerical methods based on iteration procedure
[4], [15]. If we come across a problem that the function f is not known explicitly or the derivatives of the function
are difficult to compute, then a method that uses only computed values of the function is more appropriate.
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In fact, there are some results of the existence of square and cubic roots of p-adic numbers. For instance, in
[13], the authors demonstrated how classical root-finding methods from numerical analysis can be employed to
compute the multiplicative inverses of integers modulo pn, n ∈ N. A similar problem was addressed by Zerzaihi,
Kecies, and Knapp [21] by using the fixed point iteration to compute the Hensel codes of square roots p-adic
numbers. In [19] and [20] Zerzaihi and Kecies then extended the root-finding problem to the cube roots in Qp of
p-adic numbers by approximating the zeroes of g(x) = x3 − a, a ∈ Qp, using the secant and Newton method.
A related study was also carried out in [14] where Kecies considered the problem of finding the square roots of
p-adic numbers in Qp through the secant method. A similar problem also appeared in [11] wherein Ignacio et al.
computed the square and cube roots of p-adic numbers via Newton-Raphson method.

Lately, a series of investigations explored the problem of finding square roots and the q-th roots of p-adic
numbers. For instance, in [2], the authors proposed an analogue of Steffensen’s method in finding roots of a
general p-adic polynomial equation f(x) = 0 in Zp. Meanwhile, in [17], the author described an analogue of
Halley’s method for approximating roots of p-adic polynomial equations f(x) = 0 in Zp. A related study which
examines a p-adic analogue of Olver’s method was also considered in [16]. On the other hand, In [10], the authors
gave the conditions for the existence of the q-th roots of p-adic numbers, and then applied the Newton-Raphson
method to compute the q-th roots.

Our contribution in the present paper is to show how we can use classical root-finding method (Householder’s
method [9], [18]) to calculate the zero of a p-adic polynomial equation given by

f(x) = x2 − a = 0, a ∈ Q∗p. (1.1)

Our goal is to calculate the first numbers of the p-adic development of the solution of the previous equation, and
this solution is approached by a sequence of the p-adic numbers (xn)n ⊂ Qp constructed by the Householder
method.

The rest of the paper is organized as follows. The next section recalls several concepts about Qp which will be
used through the paper. Our main contribution is formally stated and proved in Section 3, and a short concluding
remark is given in the last section.

2. Preliminaries

Definition 2.1. Fix a prime number p ∈ Z. The p-adic valuation on Z is the function vp : Z−{0} −→ R defined
as follows: for each integer n ∈ Z, n 6= 0, let vp(n) be the unique positive integer satisfying

n = pvp(n)n′ with p - n′.

In other words, the p-adic valuation of n is the highest power of p that divides n.
We extend vp to the field of rational numbers as follows: if x = a

b ∈ Q∗, then

vp(x) = vp(a)− vp(b).

Definition 2.2. For any x ∈ Q, we define the p-adic absolute value (or the p-adic norm) of x by

|x|p = p−vp(x),

if x 6= 0, and we set |0|p = 0.
This norm satisfies the so called strong triangle inequality

|x+ y|p ≤ max
{
|x|p , |y|p

}
for all x, y ∈ Q, (2.1)

and this is a non-Archimedean norm. The p-adic norm leads us to the p-adic metric on Q defined by

dp(x, y) = |x− y|p for all x, y ∈ Q. (2.2)
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We actually have something stronger than a metric. Thanks to the non-Archimedean property dp is an
ultrametric. Rather than the ordinary Triangle Inequality, dp satisfies the Strong Triangle Inequality

dp(x, y) ≤ max {dp(x, z), dp(z, y)} for all x, y, z ∈ Q. (2.3)

We note that the range of the map |·|p is the set {0} ∪ {pn : n ∈ Z} unlike the usual |·|p on R whose values
include all non-negative real numbers.

Definition 2.3. For each prime p, the field of p-adic numbers denoted Qp is the completion of the field of rational
numbers Q with respect to the p-adic norm |·|p which contains the rational numbers Q as a dense subset.
The elements of Qp are equivalent classes of Cauchy sequences in Q with respect to the extension of the p-adic
norm. For some x ∈ Qp let (xn)n be a Cauchy sequence of rational numbers representing x. Then by definition

|x|p = lim
n−→+∞

|xn|p . (2.4)

Each equivalence class of Cauchy sequences defining some element of Qp contains a unique canonical
representative Cauchy sequence. In order to describe its construction, we need the following theorem.

Theorem 2.4. [7] Any p-adic number α ∈ Qp can be written in the form

α =

∞∑
j=n

ajp
j ,

where each aj ∈ Z, and n is such that |α|p = p−n. Moreover, if we choose each aj ∈ {0, 1, 2, ..., p− 1}, then
the expansion is unique. (In this case, the expansion is the canonical representation of α.)

Remark 2.5. Notice that there is a one-to-one correspondence between the power series expansion

α = anp
n + an+1p

n+1 + an+2p
n+2... (2.5)

and the abbreviated representation
α = anan+1an+2...

where only the coefficients of the powers of p are exhibited. Because of this correspondence we can use the power
series expansion and the abbreviated representation interchangeably. In fact, we shall refer to each of them as
the p-adic expansion for α. The abbreviated representation is completely analogous to the representation of the
decimal expansion of a real number. In fact, we complete the analogy by introducing a p-adic point as a device
for displaying the sign of n. Thus, we write

α =


anan+1an+2...a−2a−1 · a0a1a2..., for n < 0,

·a0a1a2..., for n = 0,

·0...0anan+1..., for n > 0.

(2.6)

Definition 2.6.
(1) A p-adic number is said to be a p-adic integer if its canonical expansion contains only nonnegative powers of
p. The set of p-adic integers is denoted by Zp, so

Zp =

x ∈ Qp : x =

∞∑
j=0

ajp
j

 . (2.7)

It is easy to see that
Zp =

{
x ∈ Qp : |x|p ≤ 1

}
. (2.8)

38



Householder’s method for solving the p-adic polynomial equations

In other words, Zp appears as the closed unit ball in Qp.
(2) Any p-adic integer whose first digit is non-zero is called a p-adic unit. The set of p-adic units is denoted by
Z×p . Hence we have

Z×p =

x =

∞∑
j=0

ajp
j : a0 6= 0

 =
{
x ∈ Zp : |x|p = 1

}
, (2.9)

meaning that the group of units of Zp is then the unit sphere in Qp.

The following proposition follows at once from the definition of the p-adic norm and the p-adic unit.

Proposition 2.7. [12] Let x be a p-adic number of norm p−n. Then x can be written as the product x = pnu,
where u ∈ Z×p .

According to the above definition 2.3, Qp is a complete metric space, and, consequently, every Cauchy
sequence converges. Cauchy sequences are characterized as follows.

Theorem 2.8. [1] A sequence (an) in Qp is a Cauchy sequence, and therefore convergent, if and only if it satisfies

lim
n−→+∞

|an+1 − an|p = 0. (2.10)

Now let us consider a numerical series
∞∑
j=0

aj , aj ∈ Qp. We say that this series converges if the sequence of

its partial sums sn =
n∑

j=0

aj converges in Qp, and it converges absolutely if the series
∞∑
j=0

|aj |p converges in R.

The following result is an important tool for determining whether a series of p-adic numbers converge in Qp or
not.

Proposition 2.9. [1] A series
∞∑

n=0
an with an ∈ Qp converges in Qp if and only if lim

n−→+∞
an = 0, in which case∣∣∣∣∣

∞∑
n=0

an

∣∣∣∣∣
p

≤ max
n
|an|p . (2.11)

Proposition 2.10. [1] If
lim

n−→+∞
xn = x, xn, x ∈ Qp, |x|p 6= 0,

then the sequence of norms
{
|xn|p : n ∈ N

}
must stabilize for sufficiently large n, i.e., there exists N such that

|xn|p = |x|p ,∀n ≥ N. (2.12)

For fixed primes p the p-adic numbers have many applications to ordinary number theory especially to solving
congruences modulo p. Important in this regard is Hensel’s Lemma. The lemma says that if a polynomial equation
has a simple root modulo a prime number p, then this root corresponds to a unique root of the same equation
modulo any higher power of p. This root can be found by iteratively lifting the solution modulo successive
powers of p and is an analog of Newton’s method. First, we define congruence in Qp.

Definition 2.11. We say that a and b ∈ Qp are congruent mod pn and write a ≡ b mod pn if and only if
|a− b|p ≤ p−n.

Theorem 2.12. [5] (Hensel’s Lemma)
Let f(x) = c0 + c1x + ... + cnx

n be a polynomial in Zp [x] (coefficients are p-adic integers). Let f ′(x) be the
formal derivative of f(x). Suppose ā0 ∈ Zp with f(ā0) ≡ 0 mod p and f ′(ā0) 6≡ 0 mod p. Then, there exists
a unique p-adic integer a such that f(a) = 0 and a ≡ ā0 mod p.

As an application of the Hensel’s lemma, we investigate the squares in Qp.

Corollary 2.13. [6] Let p 6= 2 be a prime. An element x ∈ Qp is a square if and only if it can be written
x = p2ny2 with n ∈ Z and y ∈ Z×p a p-adic unit.
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3. Main Results

Finding iterative methods for solving nonlinear equations is an important area of research in numerical analysis
at it has interesting applications in several branches of pure and applied science can be studied in the general
framework of the nonlinear equations f(x) = 0. Due to their importance, several numerical methods have been
suggested and analyzed under certain condition. These numerical methods have been constructed using different
techniques. It arises in a wide variety of practical applications in Physics, Chemistry, Biosciences, Engineering,
etc.

Let us consider the nonlinear equation of the type

f(x) = 0. (3.1)

For simplicity, we assume that r is a simple root of the equation (3.1) and x0 is an initial guess sufficiently close
to r. Using the Taylor’s series expansion of the function f , we have

f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0) = 0. (3.2)

First two terms of the equation (3.2) gives the first approximation, as

x = x0 −
f(x0)

f ′(x0)
. (3.3)

This allows us to suggest the following one-step iterative method for solving the nonlinear equation (3.1).
For a given x0, find the approximate solution xn+1 by the iterative scheme

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, ... (3.4)

Algorithm (3.4) is known as Newton method and has second-order convergence [4].
Again from (3.2) we have

x = x0 −
f(x0)

f ′(x0)
− f ′′(x0)(x− x0)2

2f ′(x0)
. (3.5)

Substitution again from (3.3) into the right hand side of (3.5) gives the second approximation

x = x0 −
f(x0)

f ′(x0)
− f ′′(x0) (f(x0))

2

2 (f ′(x0))
3 . (3.6)

This formula allows us to suggest the following iterative methods for solving the nonlinear equation (3.1).
For a given x0, compute approximates solution xn+1 by the iterative scheme

xn+1 = xn −
f(xn)

f ′(xn)
− (f(xn))

2
f ′′(xn)

2 (f ′(xn))
3 , n = 0, 1, 2, ... (3.7)

Algorithm (3.7) is known as Householder method for solving the nonlinear equations [9]. This method is one of
the famous methods in producing a sequence of approximation roots of (3.1) with initial point x0.

To calculate the square root of a p-adic number a ∈ Q∗p, one studies the following problem

f(x) = x2 − a = 0, a ∈ Q∗p. (3.8)

The solution of the previous equation is approached by a sequence of the p-adic numbers (xn)n ⊂ Qp constructed
by the Householder method.
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In this section we analyze the convergence of the method described previously. The important part of the
convergence is about the convergence rate. In practice, a numerical method may take a large number of iterations
to reach the optimum point. Therefore, it is important to employ methods having a faster rate of convergence.

The rate of convergence plays an important role in the theory of any iterative procedure that is producing
a convergent sequence to the exact solution. The method converges faster to the solution for high order of
convergence. Therefore, it requires a lesser number of iterations for a given accuracy. Rate of convergence of a
numerical method is usually measured by the numbers of iterations and function evaluations needed to obtain an
acceptable solution.

A practical method to calculate the rate of convergence is to calculate the sequence (en)n defined by

en = xn+n0+1 − xn+n0 . (3.9)

with n0 ∈ N. Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number
of correct significant digits in the approximation increases by a factor of approximately s. Moreover, the number
of iterations necessary to obtain the desired precision M which represents the number of p-adic digits in the
development of

√
a is very important for our objectives. it’s all about finding n such that

|xn+n0+1 − xn+n0
|p ≤ p

−M , (3.10)

this is equivalent to
vp(en) ≥M. (3.11)

Let a ∈ Q∗p a p-adic number such that

|a|p = p−vp(a) = p−2m,m ∈ Z. (3.12)

If (xn)n is a sequence of p-adic numbers that converges to a p-adic number α 6= 0, then from a certain rank one
has

|xn|p = |α|p . (3.13)

We also know that if there exists a p-adic number α such that α2 = a, then vp(a) is even and

|xn|p = |α|p = p−m. (3.14)

We consider the following equation
f(x) = x2 − a. (3.15)

We know that the iterative formula of the Householder method is given by

∀n ∈ N : xn+1 = xn −
f(xn)

f ′(xn)
− (f(xn))

2
f ′′(xn)

2 (f ′(xn))
3 .

Therefore the iteration of the Householder method associated with the function f given in (3.15) is written in the
form

∀n ∈ N : xn+1 = xn −
1

2xn

(
x2n − a

)
− 1

8x3n

(
x2n − a

)2
. (3.16)

Theorem 3.1. If xn0
is the square root of a of order r, then

1) If p 6= 2, then xn+n0
is the square root of a of order wn, where the sequence (wn)n is defined by

∀n ∈ N : wn = 3nr + 2m(1− 3n). (3.17)

2) If p = 2, then xn+n0 is the square root of a of order w′n, where the sequence (w′n)n is defined by

∀n ∈ N : w′n = 3nr + (2m+ 3) (1− 3n). (3.18)
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Proof. Let (xn)n be the sequence defined by (3.16). We have

∀n ∈ N : x2n+1 − a =
1

64

1

x6n

(
a− x2n

)3 (
a− 9x2n

)
. (3.19)

We assume that xn0
is the square root of a of order r, i.e,

x2n0
≡ a mod pr, r ∈ N. (3.20)

Then
vp
(
x2n0
− a
)
≥ r,

hence we obtain ∣∣x2n0
− a
∣∣
p
≤ p−r.

On the other hand, we put

g(x) =
1

64

1

x6n

(
a− 9x2n

)
. (3.21)

Since

|64|p =


1, if p 6= 2,

1
64 = 1

26 , if p = 2,

(3.22)

we have

|g(xn0
)|p =

∣∣∣∣ 1

64

1

x6n0

(
a− 9x2n0

)∣∣∣∣
p

=

∣∣∣∣ 1

64

∣∣∣∣
p

∣∣∣∣ 1

x6n0

∣∣∣∣
p

∣∣a− 9x2n0

∣∣
p

This gives

|g(xn0
)|p ≤

∣∣∣∣ 1

64

∣∣∣∣
p

∣∣∣∣ 1

x6n0

∣∣∣∣
p

max
{
|a|p ,

∣∣9x2n0

∣∣
p

}
On the other hand, using the proposition 2.10, we get

|g(xn0
)|p ≤


p6mp−2m, if p 6= 2,

2626m2−2m, if p = 2,

≤


p4m, if p 6= 2,

24m+6, if p = 2.

We obtain ∣∣x2n0+1 − a
∣∣
p

= |g(xn0
)|p
∣∣a− x2n∣∣3p ,

and so we have 
∣∣x2n0+1 − a

∣∣
p
≤ p4mp−3r, if p 6= 2,∣∣x2n0+1 − a

∣∣
2
≤ 24m+62−3r, if p 6= 2.

Using the definition 2.11, we get
x2n0+1 − a ≡ 0 mod p3r−4m if p 6= 2,

x2n0+1 − a ≡ 0 mod 23r−4m−6 if p = 2.
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In this manner, we find that if p 6= 2, then

∀n ∈ N : x2n+n0
− a ≡ 0 mod pwn , (3.23)

where the sequence (wn)n is defined by

∀n ∈ N :


wn+1 = 3wn − 4m,

w0 = r.

(3.24)

It is clear that (wn)n is a linear recurrence sequence of order 1, whose general term is given by

∀n ∈ N : wn = 3nr + 2m(1− 3n). (3.25)

Furthermore
vp(x2n+n0

− a) ≥ wn. (3.26)

If p = 2, then
∀n ∈ N : x2n+n0

− a ≡ 0 mod 2w
′
n , (3.27)

where the sequence (w′n)n is defined by

∀n ∈ N :


w′n+1 = 3w′n − (4m+ 6),

w′0 = r.

(3.28)

Which give
∀n ∈ N : w′n = 3nr + (2m+ 3) (1− 3n). (3.29)

Furthermore
v2(x2n+n0

− a) ≥ w′n. (3.30)

and so
∀n ∈ N : w′n = wn + 3(1− 3n). (3.31)

This complete the proof. �

Corollary 3.2. If xn0 is the square root of a of order r, then
1) If p 6= 2, then

∀n ∈ N : xn+n0+1 − xn+n0
≡ 0 mod psn , (3.32)

where the sequence (sn)n is defined by

∀n ∈ N : sn = 3nr +m(1− 2 · 3n). (3.33)

2) If p = 2, then
∀n ∈ N : xn+n0+1 − xn+n0

≡ 0 mod 2s
′
n , (3.34)

such as
∀n ∈ N : s′n = 3nr +m (1− 2 · 3n)− 3n+1. (3.35)

Proof. Let (xn)n be the sequence defined by (3.16). We have

∀n ∈ N : xn+1 − xn = −1

8

1

x3n

(
a− x2n

) (
a− 5x2n

)
. (3.36)
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This gives

∀n ∈ N : xn+n0+1 − xn+n0 = −1

8

1

x3n+n0

(
a− x2n+n0

) (
a− 5x2n+n0

)
. (3.37)

We put

h(x) = −1

8

1

x3
(
a− 5x2

)
.

Since

|8|p =


1, if p 6= 2,

1
8 = 1

23 , if p = 2,

(3.38)

we have

|h(xn+n0
)|p =

∣∣∣∣−1

8

1

x3n+n0

(
a− 5x2n+n0

)∣∣∣∣
p

=

∣∣∣∣18
∣∣∣∣
p

∣∣∣∣ 1

x3n+n0

∣∣∣∣
p

∣∣a− 5x2n+n0

∣∣
p

≤
∣∣∣∣18
∣∣∣∣
p

∣∣∣∣ 1

x3n+n0

∣∣∣∣
p

max
{
|a|p ,

∣∣5x2n+n0

∣∣
p

}

≤


p3mp−2m, if p 6= 2

2323m2−2m, if p = 2

≤


pm, if p 6= 2

2m+3, if p = 2.

Hence we obtain

|xn+n0+1 − xn+n0
|p =

∣∣h(xn+n0
)
(
a− x2n+n0

)∣∣
p

= |h(xn+n0
)|p ·

∣∣a− x2n+n0

∣∣
p

On the other hand, using (3.23) and (3.27), we get

|xn+n0+1 − xn+n0 |p ≤


pmp−wn , if p 6= 2

2m+32−w
′
n , if p = 2,

and so 
xn+n0+1 − xn+n0

≡ 0 mod pwn−m, if p 6= 2

xn+n0+1 − xn+n0
≡ 0 mod 2w

′
n−(m+3), if p = 2.

Therefore, if p 6= 2, then
∀n ∈ N : xn+n0+1 − xn+n0 ≡ 0 mod psn , (3.39)

where
∀n ∈ N : sn = wn −m = 3nr +m(1− 2 · 3n). (3.40)

Furthermore
vp(xn+n0+1 − xn+n0

) ≥ sn. (3.41)

If p = 2, then
∀n ∈ N : xn+n0+1 − xn+n0

≡ 0 mod 2s
′
n , (3.42)

where
∀n ∈ N : s′n = w′n − (m+ 3) = 3nr +m (1− 2 · 3n)− 3n+1 = sn − 3n+1. (3.43)

Furthermore
v2(xn+n0+1 − xn+n0) ≥ s′n. (3.44)

This complete the proof. �
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4. Conclusion

Our main results can be summarized as follows.

1. If p 6= 2, then the following are true.

(a) The rate of convergence of the sequence (xn)n is the order sn.

(b) If r − 2m > 0, then the number of iterations n to obtain M correct digits is

n =

 ln
(

M−m
r−2m

)
ln 3

 . (4.1)

2. If p = 2, then the following are true.

(a) The rate of convergence of the sequence (xn)n is the order s′n.

(b) If r − (2m+ 3) > 0, then the necessary number n of iterations to obtain M correct digits is

n =

 ln
(

M−m
r−2m−3

)
ln 3

 . (4.2)

3. In the p-adic setting, the Householder’s method converges cubically insofar as the number of significant
digits eventually triples with each iteration.
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